Szkła
Czym się różni ciecz od ciała stałego?
gęstość Czy szkło to ciecz czy ciało stałe? Szkło powstaje w procesie chłodzenia cieczy. Czy szkło to ciecz przechłodzona? kryształ szkło ciecz przechłodzona ciecz temperatura Szkło to NIE TO SAMO co ciecz przechłodzona!
Szkła- amorficzne ciała stałe Brak symetrii translacyjnej (uporządkowania dalekiego zasięgu) Istnieje uporządkowanie bliskiego zasięgu Szkło- zamrożona konfiguracyjnie ciecz (niska ruchliwość)
Szkło vs. kryształ różnice makroskopowe Szybkość zmiany kształtu lepkość (tarcie wewnętrzne) Lepkość ciał stałych 10 15 [P] (1 puaz =0.1Pa*s) Lepkość cieczy 10-2 [P] F Płyta o lepkości =1P przesuwa się pod wpływem siły ścinającej 1 Pa (F/pow. styku) na odległość równą grubości płyty w ciągu jednej sekundy
Szkło vs. kryształ różnice mikroskopowe Kryształ ruchy atomów mają charakter oscylacyjny. Istnieją położenia równowagowe (średnie położenia atomów). Ciecz ruchy atomów mają charakter translacyjny. Brak położeń Równowagowych. Szkło to w przybliżeniu stop-klatka cieczy.
Szkło vs. kryształ różnice mikroskopowe KRYSZTAŁ (komórka Wignera-Seitza) SZKŁO (wielościany Voronoia) 2D 3D
Szkło vs. kryształ różnice mikroskopowe Funkcja rozkładu radialnego krystalicznego i amorficznego germanu RDF 4 r 2 r dr
Temperatura przejścia szklistego T g T g temperatura, w której lepkość cieczy osiąga 10 13 P (umowna granica) B Aexp T T 0 Vogel Fulcher Tamman T 0 temperatura idealnego przejścia szklistego 10 13 [P] log T g temperatura
Model objętości swobodnej W strukturze krystalicznej mogą istnieć wakansje w stanie równowagi. W strukturze szkła, dziury rozmiaru atomu są niestabilne. Nadmiarowa objętość jest rozmieszczona przypadkowo w formie tzw. objętości swobodnej.
Model objętości swobodnej v f v v 0 v f objętość swobodna (free volume) v objętość właściwa v 0 objętość atomowa 1 D * D Aexp v / v f v* objętość krytyczna potrzebna do przeskoku Przejście szkliste następuje gdy v f jest wystarczająco małe. Gdy T T 0 to D 0, i v f 0
Paradoks Kauzmanna kryzys entropii S C c k S c k c k T T T m c k T S T C T d lnt m m rośnie wraz z przechłodzeniem T maleje wraz z przechłodzeniem W miarę przechładzania następuje porządkowanie w fazie ciekłej (spadek entropii) Poniżej temperatury T K >0K ciecz ma entropię niższą od entropii kryształu! Pogwałcona jest III zasada termodynamiki (T=0K => S=0)! Czy poniżej T K następuje przejście w idealny stan szklisty?
Paradoks Kauzmanna kryzys entropii W praktyce T K nie jest osiągalne najpierw pojawia się T g (T K T g -50)
Szkła mocne i słabe stała energia aktywacji zmienna energia aktywacji 0 exp E a k B T wykres Angella lepkość cieczy powyżej T g
Krajobraz energetyczny Szkło idealne poniżej T K
Czy przejście szkliste jest termodynamicznym przejściem fazowym? szybkie chłodzenie wolne chłodzenie T g to raczej zakres temperatur niż dobrze określony punkt przemiany. T g zależy od szybkości chłodzenia cieczy.
Czy przejście szkliste jest termodynamicznym przejściem fazowym? nieciągła pochodna dv/dt? przemiana fazowa II rzędu? symulacja MC: brak nieciągłości ściśliwości, brak termodynamicznego przejścia fazowego
Czy przejście szkliste jest termodynamicznym przejściem fazowym? Musi zajść termodynamiczna przemiana fazowa aby uniknąć paradoksu! Taka przemiana powinna zajść w T K dt dt 0 Tg T K
exo Określanie temperatury przejścia szklistego zmiana C p przy przejściu szkło ciecz przechłodzona zmiana współczynnika rozszerzalności ciepnej przy przejściu szkło ciecz przechłodzona
Jak uzyskać szkło? Schłodzić ciecz do T<T g unikając jednocześnie krystalizacji Tworzeniu szkła sprzyja: duża szybkość chłodzenia brak centrów zarodkowania heterogenicznego (czystość) odpowiedni skład (bliski eutektycznemu)
Szybkość zarodkowania fazy krystalicznej
Szybkość zarodkowania i wzrostu
Diagram czas-temperatura-przemiania (TTT)
Krytyczna szybkość chłodzenia a - < critical b - = critical c - > critical
Krytyczna szybkość chłodzenia critical 2K/s
Przykłady szkieł Szkła na bazie SiO 2 (silica glasses) (wiązanie kowalencyjne) Naturalny szklisty SiO 2 Syntetyczny szklisty SiO 2
Przykłady szkieł Szkła chalkogenidkowe (zawierające S, Se, Te) (wiązanie kowalencyjne) PRAM: Phase-change memory - GeSbTe
Przykłady szkieł Szkła metaliczne (wiązanie metaliczne)
Przykłady szkieł Szkła molekularne (wiązanie Van der Waalsa) Szkło cukrowe
Przykłady szkieł Szkła polimerowe (wiązania kowalencyjne między merami, wiązania wodorowe między łańcuchami) Poli(tereftalan etylenu) kauczuk
Modele struktury szkła Gęste, przypadkowe upakowanie kul Ciągła sieć przypadkowa Przypadkowe łańcuchy Szkła metaliczne: Zr 50 Cu 50, Fe 80 B 20 Szkła kowalencyjne: Si, SiO 2 Polimery amorficzne: polistyren, celofan
Przejście szkliste w gumie