BADANIA WSTĘPNE NAD KATADAMI TLENKOWYMI

Podobne dokumenty
Żarówka elektryczna jako pompa jonowo-sorpcyjna

XIV Konkurs Chemiczny dla uczniów gimnazjum województwa świętokrzyskiego. II Etap - 18 stycznia 2016

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW

CHEMIA ŚRODKÓW BIOAKTYWNYCH I KOSMETYKÓW PRACOWNIA CHEMII ANALITYCZNEJ. Ćwiczenie 9

Pracownia analizy ilościowej dla studentów II roku Chemii specjalność Chemia podstawowa i stosowana. Argentometryczne oznaczanie chlorków w mydłach

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW

2. Podczas spalania 2 objętości pewnego gazu z 4 objętościami H 2 otrzymano 1 objętość N 2 i 4 objętości H 2O. Jaki gaz uległ spalaniu?

wodny roztwór chlorku cyny (SnCl 2 ) stężony kwas solny (HCl), dwie elektrody: pręcik cynowy i gwóźdź stalowy, źródło prądu stałego (zasilacz).

SurTec 716 C. alkaliczna bezcyjankowa kąpiel cynk/nikiel

Oranż β-naftolu; C 16 H 10 N 2 Na 2 O 4 S, M = 372,32 g/mol; proszek lub

PODSTAWY STECHIOMETRII

ANALIZA OBJĘTOŚCIOWA

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2016/2017 eliminacje rejonowe

Odpowiedź:. Oblicz stężenie procentowe tlenu w wodzie deszczowej, wiedząc, że 1 dm 3 tej wody zawiera 0,055g tlenu. (d wody = 1 g/cm 3 )

Oznaczanie SO 2 w powietrzu atmosferycznym

X Konkurs Chemii Nieorganicznej i Ogólnej rok szkolny 2011/12

a. Dobierz współczynniki w powyższym schemacie tak, aby stał się równaniem reakcji chemicznej.

ZADANIA Z KONKURSU POLITECHNIKI WARSZAWSKIEJ (RÓWNOWAGI W ROZTWORZE) Opracował: Kuba Skrzeczkowski (Liceum Akademickie w ZS UMK w Toruniu)

SurTec 865 miedź kwaśna

Główne zagadnienia: - mol, stechiometria reakcji, pisanie równań reakcji w sposób jonowy - stężenia, przygotowywanie roztworów - ph - reakcje redoks

Litowce i berylowce- lekcja powtórzeniowa, doświadczalna.

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2019 CZĘŚĆ PRAKTYCZNA

Otrzymywanie siarczanu(vi) amonu i żelaza(ii) woda (1/6) soli Mohra (NH4)2Fe(SO4)2 6H2O

Podsumowanie trzeciego roku działalności PWL

RÓWNOWAŻNIKI W REAKCJACH UTLENIAJĄCO- REDUKCYJNYCH

Ćwiczenie 1. Zależność szybkości reakcji chemicznych od stężenia reagujących substancji.

CHEMIA ŚRODKÓW BIOAKTYWNYCH I KOSMETYKÓW PRACOWNIA CHEMII ANALITYCZNEJ. Ćwiczenie 6. Manganometryczne oznaczenia Mn 2+ i H 2 O 2

Recykling surowcowy odpadowego PET (politereftalanu etylenu)

CEL ĆWICZENIA Zapoznanie studentów z chemią 14 grupy pierwiastków układu okresowego

1 ekwiwalent 1,45 ekwiwalenta 0,6 ekwiwalenta

... imię i nazwisko,nazwa szkoły, miasto

ĆWICZENIE B: Oznaczenie zawartości chlorków i chromu (VI) w spoiwach mineralnych

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII... DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2011/2012 eliminacje wojewódzkie

ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1)

Powstawanie żelazianu(vi) sodu przebiega zgodnie z równaniem: Ponieważ termiczny rozkład kwasu borowego(iii) zachodzi zgodnie z równaniem:

WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2015/2016 CHEMIA

SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

VII Podkarpacki Konkurs Chemiczny 2014/2015

Konkurs przedmiotowy z chemii dla uczniów gimnazjów 13 stycznia 2017 r. zawody II stopnia (rejonowe)

b) Podaj liczbę moli chloru cząsteczkowego, która całkowicie przereaguje z jednym molem glinu.

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII

Wojewódzki Konkurs Przedmiotowy z Chemii dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013

WOJEWÓDZKI KONKURS CHEMICZNY

KATALITYCZNE OZNACZANIE ŚLADÓW MIEDZI

1 ekwiwalent 4 ekwiwalenty 5 ekwiwalentów

Test kompetencji z chemii do liceum. Grupa A.

STĘŻENIA STĘŻENIE PROCENTOWE STĘŻENIE MOLOWE

1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru

Analiza miareczkowa. Alkalimetryczne oznaczenie kwasu siarkowego (VI) H 2 SO 4 mianowanym roztworem wodorotlenku sodu NaOH

KATALIZA I KINETYKA CHEMICZNA

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

Piotr Chojnacki 1. Cel: Celem ćwiczenia jest wykrycie jonu Cl -- za pomocą reakcji charakterystycznych.

II Etap rejonowy 28 styczeń 2019 r. Imię i nazwisko ucznia: Czas trwania: 60 minut

c. Oblicz wydajność reakcji rozkładu 200 g nitrogliceryny, jeśli otrzymano w niej 6,55 g tlenu.

Zadanie 1. [ 3 pkt.] Uzupełnij zdania, wpisując brakującą informację z odpowiednimi jednostkami.

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) (13) T3 (96) Data i numer zgłoszenia patentu europejskiego:

Spis treści. Wstęp... 9

1 ekwiwalent 1 ekwiwalent

8. MANGANOMETRIA. 8. Manganometria

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

Ćwiczenia nr 2: Stężenia

XIV Konkurs Chemiczny dla uczniów gimnazjum województwa świętokrzyskiego. I Etap szkolny - 23 listopada 2016

XLVII Olimpiada Chemiczna

IX Podkarpacki Konkurs Chemiczny 2016/2017. ETAP I r. Godz Zadanie 1 (11 pkt)

WOJEWÓDZKI KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2016/2017 STOPIEŃ WOJEWÓDZKI 10 MARCA 2017R.

Recykling surowcowy odpadowego PET (politereftalanu etylenu)

XXIII KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY 2015/2016

Chemia nieorganiczna Zadanie Poziom: podstawowy

Zadanie: 1 (1pkt) Zadanie: 2 (1 pkt)

ĆWICZENIE NR 4 OTRZYMYWANIE PREPARATÓW RADIOCHEMICZNIE CZYSTYCH.

K1. KONDUKTOMETRYCZNE MIARECZKOWANIE STRĄCENIOWE I KOMPLEKSOMETRYCZNE

REDOKSYMETRIA ZADANIA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2019 CZĘŚĆ PRAKTYCZNA

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW. Eliminacje rejonowe II stopień

Podsumowanie drugiego roku działalności PWL

009 Ile gramów jodu i ile mililitrów alkoholu etylowego (gęstość 0,78 g/ml) potrzeba do sporządzenia 15 g jodyny, czyli 10% roztworu jodu w alkoholu e

PL B1. Instytut Chemii Przemysłowej im.prof.ignacego Mościckiego,Warszawa,PL BUP 07/06

Chemia. 3. Która z wymienionych substancji jest pierwiastkiem? A Powietrze. B Dwutlenek węgla. C Tlen. D Tlenek magnezu.

EDTA (roztwór 0,02 mol/l) Zgodnie z rozporządzeniem (WE) 1272/2008 związek nie jest. substancją niebezpieczną.

OCHRONA ŚRODOWISKA W ENERGETYCE NEUTRALIZACJA ŚCIEKÓW

1 ekwiwalent 6 ekwiwalentów 0,62 ekwiwalentu

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

VIII Podkarpacki Konkurs Chemiczny 2015/2016

INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 1 POWŁOKI KONWERSYJNE-TECHNOLOGIE NANOSZENIA

1. Zaproponuj doświadczenie pozwalające oszacować szybkość reakcji hydrolizy octanu etylu w środowisku obojętnym

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2012/2013 eliminacje rejonowe

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

Laboratorium Ochrony przed Korozją. GALWANOTECHNIKA Część I Ćw. 7: POWŁOKI NIKLOWE

KWAS 1,2-DIBROMO-2-FENYLOPROPIONOWY

1 ekwiwalent 2.5 ekwiwalenta 0.5 ekwiwalenta

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

ĆWICZENIE 1. Aminokwasy

Nazwy pierwiastków: A +Fe 2(SO 4) 3. Wzory związków: A B D. Równania reakcji:

OBLICZANIE WYNIKÓW ANALIZ I

OZNACZANIE ZAWARTOŚCI MANGANU W GLEBIE

Identyfikacja wybranych kationów i anionów

a) 1 mol b) 0,5 mola c) 1,7 mola d) potrzebna jest znajomość objętości zbiornika, aby można było przeprowadzić obliczenia

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

Transkrypt:

BADANIA WSTĘPNE NAD KATADAMI TLENKOWYMI Katoda tlenkowa jest najczęściej stosowanym źródłem elektronów w lampach elektronowych. Emisja elektronów z tego rodzaju katody zachodzi łatwo w dość niskich temperaturach, rzędu 900 C. Inną zaletą tej katody jest jej dość duża wydajność tj. stosunek prądu emisyjnego do mocy żarzenia. Do wad tej katody natomiast należy zaliczyć wrażliwość na zatrucia i dość złożoną technologię. Podjęte w PWL prace nad katodą tlenkową są czynione przede wszystkim z myślą o konstrukcji elektronowego wskaźnika wysterowania- magicznego oka. Stosowanie katod tlenkowych w tego typu lampach jest konieczne, bowiem w ich temperaturze pracy nie oślepiają one własnym światłem ekranu luminescencyjnego, dzięki czemu jest on dobrze widoczny. Katoda tlenkowa składa się z podłoża (najczęściej niklu) i warstwy tlenków baru, strontu a niekiedy i wapnia. Między warstwą tlenków a podłożem tworzy się tzw. warstwa pośrednia, mogąca wywierać szkodliwy wpływ na pracę lampy. Nie stosuje się bezpośredniego pokrycia katody tlenkami Ba, Sr, Ca ze względu na ich higroskopijność. Tlenki metali Ba, Sr, Ca na podłożu niklowym powstają wskutek rozkładu węglanów Ba, Cr, Ca. Bardzo ważne jest zapewnienie czystości węglanów [1,2], gdyż od spełnienia tego warunku zależy emisja katody tlenkowej. Na pokrycia katod stosuje się węglany podwójne Ba-Sr i węglany potrójne Ba-Sr-Ca. Otrzymuje się je w reakcji strąceniowej poprzez działanie roztworem węglanu sodu na mieszaniną azotanu Ba-Sr lub Ba-Sr-Ca: Ba(NO 3 ) 2 + Na 2 CO 3 BaCO 3 + 2 NaNO 3 Sr(NO 3 ) 2 +Na 2 CO 3 SrCO 3 + 2 NaNO 3 Ca(NO 3 ) 2 + Na 2 CO 3 CaCO 3 + 2 NaNO 3 Jak już wspomniano, ważna jest czystość węglanów. Jest zatem oczywiste, że ich czystość zależy od czystości użytych do reakcji strąceniowej reagentów: azotanów i węglanu sodu. Ubocznie powstający azotan (V) sodu powinien być możliwie dobrze usunięty z osadu węglanów, dlatego węglany należy przemywać czystą wodą. Pierwszym etapem prac w PWL było uzyskanie węglanów. Zdecydowano się na węglany podwójne Ba-Sr. W literaturze można było znaleźć parę istotnych informacji odnośnie ich preparatyki. [3] podaje, że najkorzystniej jest wykonywać strącanie z roztworów Ba(NO 3 ) 2 i Sr(CO 3 ) 2 o stężeniu 0,5 mol/dm3 w temperaturze 92 C (ze względu na najmniejsze wymiary kryształów węglanów, które w tych warunkach mają długość rzędu 2µ), nie podając jednak stężenia węglanu sodu ani szybkości mieszania, ograniczając się jedynie do stwierdzenia, że nie wpływa ona zasadniczo na przebieg strącania.

Węglany Ba-Sr otrzymano następująco. W kolbie miarowej o objętości 100 ml rozpuszczono 13,07g (0,05 mol) azotanu baru Ba(NO 3 ) 2. W drugiej kolbie 100 ml rozpuszczono 10,6g (0,05 mol) azotanu strontu Sr(CO 3 ) 2. Tym samym stężenia azotanów wynosiły 0,5 mol/dm3. W innym naczyniu rozpuszczono 10,7 g węglanu sodu Na 2 CO 3 (około 0,1 mol) w 150 ml wody. Wszystkie odczynniki miały czystość czysty. Fot.1. Strącone węglany Ba-Sr Następnie roztwory obu azotanów połączono, ogrzano do ok. 40 C i przesączono celem usunięcia zanieczyszczeń fizycznych, nierozpuszczalnych w wodzie. Tak samo przesączono roztwór węglanu sodu. Następnie oba roztwory ogrzano do 92 C, kontrolując temperaturę termometrem a następnie mieszając dodawano roztwór węglanu sodu do roztworów azotanów. Zaszły reakcje strąceniowe, prowadzące do powstania węglanów podwójnych Ba-Sr. Wytrącone węglany opadły na dno naczynia; klarowna ciecz znad ich osadu została zlana i dodana została porcja czystej wody. Następnie całość wymieszano i znów po sedymentacji węglanów zdekantowano klarowną ciecz znad osadu. Operację odmywania węglanów powtórzono 12 razy. Wielkość kryształów węglanów potrójnych skontrolowano pod mikroskopem. Kryształy miały postać igiełek nie dłuższych niż 2µ. Następnie węglany odsączono i wysuszono w temperaturze około 100 C. Wysuszone i rozdrobnione węglany przeniesiono do słoika z ciemnego szkła opatrując etykietką z datą otrzymania. Węglany nakłada się na rdzeń katody w postaci suspensji, to jest zawiesiny węglanów w odpowiednio rozcieńczonym lepiku, najczęściej nitrocelulozowym. Węglany wraz z lepikiem i rozcieńczalnikiem powinny być mielone w młynie kulowym. W PWL pastę sporządzono w skali mikro, bez mielenia. Użyto 3 cm 3 lepiku oraz 4,5 cm 3 octanu butylu jako rozcieńczalnika i dodano węglany potrójne. Ponieważ nie znaleziono przepisu na suspensję, podającego ile gramów węglanów należy użyć ilość tą dobrano w zasadzie przypadkowo.

Suspensja była wytrząsana w ciągu dwóch dni kilkanaście razy po kilkanaście minut celem możliwie dobrego wymieszania. Fot.2. Suspensja węglanowa (po lewej) Kolejną czynnością było sporządzenie lampy próbnej do badania emisji. Katoda była badana w układzie próbnej diody szklanej. System elektrod został dokładnie umyty: dwukrotnie w czterochloroetylenie i dwukrotnie w alkoholu. Dodatkowo, ze względu na obawę zanieczyszczenia podłoża chlorem [1] został jednokroć wygotowany w wodzie destylowanej. Fot.3. Wygotowywanie systemu w wodzie destylowanej Następnie na anodę zostały naniesione próbki luminoforów :czerwonego, niebieskiego i zielonego w formie zawiesiny w izopropanolu. Następnie naniesiono suspensję węglanową na podłoże niklowe katody, co zostało wykonane przez malowanie.

Skontrolowano naniesione próbki luminoforów w świetle lampy ultrafioletowej (tzw. ultrafiolet banknotowy) i zatopiono system w rurce szklanej, po czym znów skontrolowano próbki luminoforów w świetle UV. Stwierdzono częściowe odpadnięcie luminoforu zielonego i niebieskiego, co wskazuje na zbyt dużą gęstość pokrycia. Lampę zamocowano w kanale próżniowym zestawu pompowego i rozpoczęto pompowanie. Fot.4. Widok układu testowego Gdy próżnia osiągnęła wartość 8 10-6 Tr palnikiem ręcznym ogrzewano lampę celem odgazowania szkła. Odgazowanie spowodowało wzrost ciśnienia powyżej 1,2 10-5 Tr. Podczas wygrzewania próżnia poprawiała się jednak, osiągając znów 8 10-6 Tr. Następnie przystąpiono do formowania katody. W tym celu podano napięcie żarzenia ok. 2V. Nastąpił rozkład węglanów połączony ze wzrostem ciśnienia do ok. 5 10-5 Tr, jednak w ciągu kilkudziesięciu sekund próżniomierz wskazał 8 10-6 Tr. Podano więc napięcie anodowe 160V przez rezystor 2 47kΩ i stwierdzono przepływ prądu emisyjnego z jednoczesnym świeceniem

gazu w bańce na fioletowo. Prąd emisyjny wzrastał (do ok. 1,5 ma), jednak w pewnym momencie gwałtownie zaczął maleć z jednoczesnym zwiększeniem fioletowej poświaty. Zwiększono żarzenie do ok. 2,2V celem zapobieżenia zatruciu katody, jednak po krótkim czasie okazało się, że napyla się metal katody na bańkę. Wyłączono żarzenie. Podejrzewano, że świecenie połączone z zatruwaniem jest związane z desorpcją gazów z anody. Włączono ponownie żarzenie ustalając napięcie ok. 1,5V. Nastąpiło jak poprzednio świecenie i zatrucie. Odłączono więc żarzenie z postanowieniem, że nie będzie ono włączone do momentu nim próżnia nie poprawi się do wartości 5 10-6 Tr. Ponieważ poprawa próżni nie następowała wysunięto wniosek, że w układzie występuje nieszczelność. Test z polewaniem złącz acetonem wykazał nieszczelność przy spłaszczu. Miejsce nieszczelności posmarowano smarem próżniowym, co zaowocowało szybką poprawą próżni do wartości 3 10-6 Tr. Włączenie żarzenia wykazało szybką aktywację, przy czym już po krótkim formowaniu emisja wyniosła ok. 0,5 ma przy 1,2V żarzenia i ok. 200V napięcia anodowego (rezystor 2 47kΩ był włączony). Fot.5. Emisja z katody tlenkowej. Widoczne świecenie luminoforu czerwonego (punkt poniżej katody). Przy tym napięciu żarzenia katoda świeci nieznacznie jaśniej niż w lampie AZ1. Jednocześnie z przepływem prądu anodowego dało się zaobserwować intensywne świecenie jednej z próbek luminoforu czerwonego. W ciemności świecenie wykazują też próbki pozostałych luminoforów. Świecenie znika przy wyłączeniu żarzenia lub odłączeniu napięcia anodowego.

Zaobserwowano także, że nawet przy znacznym obniżeniu temperatury katody (żarzenie ledwo dostrzegalne w ciemności) luminofor czerwony wykazywał nadal widoczne świecenie (mimo bardzo małego prądu emisji, rzędu dziesiątków µa). Wydaje się, że słabe świecenie pozostałych luminoforów było w dużej mierze spowodowane trującym działaniem napylonego metalu katody. Przykładając zewnętrzne pole magnetyczne można było dostrzec lepsze świecenie luminoforu zielonego i niebieskiego, co sugeruje, że próbki te były ustawione mniej korzystnie względem emitującej powierzchni katody niż próbka luminoforu czerwonego. Świecenie tych luminoforów było jednak dość słabe. Pewien udział w słabym świeceniu pozostałych luminoforów ma też niewłaściwe dobranie grubości warstwy luminoforu i jego niezbyt dobra przyczepność. Oględziny powierzchni katody przy wyłączonym napięciu żarzenia wykazały, że nałożona warstwa nie złuszczyła się, ale ma zdecydowanie za małą gęstość pokrycia. Oznacza to konieczność dodania węglanów do suspensji lub kilkukrotnego malowania katody. Wnioski, jakie nasuwają się po przeprowadzeniu eksperymentu są następujące. 1.Wydaje się możliwe skonstruowanie elektronowego wskaźnika o czerwonej barwie świecenia ekranu a także wytwarzanie katod tlenkowych do tych wskaźników. Nie są tu konieczne bardzo znaczne wartości emisji ze względu na dużą wydajność luminoforu czerwonego. 2.Konieczne jest zwiększenie zawartości węglanów w suspensji. Otrzymane pokrycie jest bowiem zbyt cienkie, co jest jedną z przyczyn występowania różnic emisji poszczególnych miejsc katody. 3. Konieczne jest opracowanie metody nakładania ekranów luminescencyjnych 4.Sposób przeprowadzenia rozkładu węglanów nie jest tak krytyczny jak przypuszczano. Szybkość pompowania jest na tyle wystarczająca, że dwutlenek węgla odprowadzany jest z dostateczną szybkością. Obawa spieczenia warstwy emisyjnej [1] okazała się niesłuszna. 5. Wymagane są dalsze badania dotyczące preparatyki węglanów i pasty emisyjnej. Szczególnie interesujące byłoby zbadanie dwóch past (o równej zawartości węglanów) na bazie węglanów strąconych w PWL i węglanów o czystości dla TVC. 6. Wyjaśnienia wymaga kwestia wyżarzania podłoża w wodorze i na ile wpływa na równomierność emisji. Nie wystąpiło złuszczenie warstwy tlenków, czego obawiano się najbardziej. Literatura: [1] Podstawy konstrukcji i technologii lamp elektronowych W. Barwicz, PWT 1957r. [2] Technologia lamp elektronowych- T. Niemyski, PWT 1956r. [3] H. Derko "Wpływ warunków strącania na strukturę węglanów ziem alkalicznych"- biuletyn techniczny ZWLE 1-2/1955