Temat: Środowisko życia mikroorganizmów (czynniki abiotyczne)



Podobne dokumenty
Ćwiczenie 2. Temat: Wpływ czynników fizyko-chemicznych na drobnoustroje

Podstawowe prawa ekologiczne. zasady prawa teorie

BIOTECHNOLOGIA OGÓLNA

Temat: Komórka jako podstawowa jednostka strukturalna i funkcjonalna organizmu utrwalenie wiadomości.

Probiotyki, prebiotyki i synbiotyki w żywieniu zwierząt

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1537

Przemiana materii i energii - Biologia.net.pl

OFERTA NA BADANIA Instytutu Biotechnologii Przemysłu Rolno-Spożywczego im. prof. Wacława Dąbrowskiego Warszawa, ul Rakowiecka 36,

Temat: Czym zajmuje się ekologia?

Konkurs Biologiczny etap szkolny

TERAZ BAKTERIE MOGĄ DZIAŁAĆ NA NASZĄ KORZYŚĆ!

Część pierwsza ( 16 punktów)

Dział PP klasa Doświadczenie Dział PP klasa obserwacja

Temperatura i termoregulacja ZAKŁAD FIZJOLOGII ZWIERZĄT, INSTYTUT ZOOLOGII WYDZIAŁ BIOLOGII, UNIWERSYTET WARSZAWSKI

Krowa sprawca globalnego ocieplenia?

Pracownia w Kaliszu Kalisz ul. Warszawska 63a tel: fax: zhw.kalisz@wiw.poznan.pl

BIOTECHNOLOGIA OGÓLNA

Biochemia mikroorganizmów SYLABUS A. Informacje ogólne

PODSTAWY BIOTECHNOLOGII

OCENA CZYSTOŚCI MIKROBIOLOGICZNEJ SUROWEGO CUKRU TRZCINOWEGO

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 924

BIOSYNTEZA I NADPRODUKCJA AMINOKWASÓW. Nadprodukcja podstawowych produktów metabolizmu (kwas cytrynowy, enzymy aminokwasy)

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 578

ARKUSZ 1 POWTÓRZENIE DO EGZAMINU Z CHEMII

Co to jest FERMENTACJA?

EKOLOGIA. Początek Wszechświata. Historia Ziemi. Historia świata w pigułce

Nowe preparaty biobójcze o dużej skuteczności wobec bakterii z rodzaju Leuconostoc jako alternatywa dla coraz bardziej kontrowersyjnej formaliny.

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 576

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 576

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1473

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 589

Zakres akredytacji Oddziału Laboratoryjnego Powiatowej Stacji Sanitarno-Epidemiologicznej w Zielonej Górze.

Definicje podstawowych pojęć. (z zakresu ekologii)

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1537

Zadania na listopad. Zadanie 1 Meksyk położony jest od Buenos Aires na A. północny wschód B. południowy wschód C. północny zachód D.

Liofilizowany sok z kapusty kiszonej, mikronizowany błonnik jabłkowy, celulozowa otoczka kapsułki.

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 924

LISTA BADAŃ PROWADZONYCH W RAMACH ELASTYCZNEGO ZAKRESU AKREDYTACJI NR 1/LEM wydanie nr 7 z dnia Technika Real - time PCR

SZKOŁA PODSTAWOWA II Etap Edukacyjny: Klasy IV-VI Przyroda Czas realizacji materiału

Zakres badań Laboratorium Badań Żywności i Przedmiotów Użytku

Archeologia Środowiska

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 510

Procesy biotransformacji

Bez fosforu w kukurydzy ani rusz!

Ekologia wód śródlądowych - W. Lampert, U. Sommer. Spis treści

Zespół Szkół Nr3 im. Władysława Grabskiego w Kutnie

Budowa tkanki korzeni buraków cukrowych

Nawożenie dolistne roślin w warunkach stresu suszy. Maciej Bachorowicz

BIOCHEMICZNE ZAPOTRZEBOWANIE TLENU

Kryteria oceniania z chemii kl VII

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 578

Dominika Jezierska. Łódź, dn r.

Gdy temperatura rośnie Życie w wysokich temperaturach

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 578

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 510

METODY PRZECHOWYWANIA I UTRWALANIA BIOPRODUKTÓW SUSZENIE PODSTAWY TEORETYCZNE CZ.1

Sekcja Badania Żywności, Żywienia i Przedmiotów Użytku

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1455

WYKAZ METOD BADAWCZYCH W WKJ 4

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1537

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 617

Spis treści. Przedmowa 9 ROZDZIAŁ I

Hodowlą nazywamy masę drobnoustrojów wyrosłych na podłożu o dowolnej konsystencji.

Przeznaczenie komory chłodniczej

Producent: Barenbrug 208,00 zł Cena brutto: 170,00 zł Cena netto: 157,41 zł. Kod QR:

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 561

Probiotyki, prebiotyki i żywność probiotyczna

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 510

Tematy- Biologia zakres rozszerzony, klasa 2TA,2TŻ-1, 2TŻ-2

CORAZ BLIŻEJ ISTOTY ŻYCIA WERSJA A. imię i nazwisko :. klasa :.. ilość punktów :.

Spis treści. asf;mfzjf. (Jan Fiedurek)

Podstawy biogospodarki. Wykład 4

Witaminy rozpuszczalne w tłuszczach

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 561

Produkcja biomasy. Termin BIOMASA MIKROORGANIZMÓW oznacza substancję komórek wytwarzaną w wyniku masowej hodowli drobnoustrojów.

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1415

Las jako zjawisko geograficzne. (Biomy leśne)

LISTA BADAŃ PROWADZONYCH W RAMACH ELASTYCZNEGO ZAKRESU AKREDYTACJI NR 1/LEM wydanie nr 6 z dnia Technika Real - time PCR

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 404

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1415

Transport przez błony

Granice życia? Cz. I. Skrajne temperatury

Makro- i mikroskładniki w dokarmianiu dolistnym kukurydzy

Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym?

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1370

WYMAGANIA EDUKACYJNE Z BIOLOGII NA POSZCZEGÓLNE OCENY KLASA III. dopuszczająca dostateczna dobra bardzo dobra

Mleko. Ocena towaroznawcza mleka oraz zastosowanie w produkcji gastronomicznej. Mleko spożywcze -Koncentraty mleczne. Janina Niebudek.

WSPÓŁCZESNE TECHNIKI ZAMRAŻANIA

WYMAGANIA EDUKACYJNE Z BIOLOGII KLASA 5 DOBRY. DZIAŁ 1. Biologia jako nauka ( 4godzin)

Zanieczyszczenia chemiczne

Warszawa, dnia 28 czerwca 2012 r. Poz Rozporządzenie. z dnia 19 czerwca 2012 r. w sprawie wykazu laboratoriów referencyjnych

Antyoksydanty pokarmowe a korzyści zdrowotne. dr hab. Agata Wawrzyniak, prof. SGGW Katedra Żywienia Człowieka SGGW

WYMAGANIA EDUKACYJNE na poszczególne oceny śródroczne i roczne. Z CHEMII W KLASIE III gimnazjum

WYMAGANIA EDUKACYJNE w klasie III

Biologia środowiska PRACA ZBIOROWA POD KIERUNKIEM: prof. Anny Grabińskiej-Łoniewskiej prof. Marii Łebkowskiej

SPIS TREŚCI OD AUTORÓW... 5

I. Biologia- nauka o życiu. Budowa komórki.

WYKRYWANIE ZANIECZYSZCZEŃ WODY POWIERZA I GLEBY

Zakładane efekty kształcenia dla kierunku

Wykład 2. Anna Ptaszek. 7 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 2. Anna Ptaszek 1 / 1

Transkrypt:

Wykład 2 15/10/2010 ver. 2 (08/12/2010) Temat: Środowisko życia mikroorganizmów (czynniki abiotyczne) Środowisko życia bakterii Pojęcia stosowane w mikrobiologii środowiskowej Ekosystem wszystkie żywe organizmy w otoczeniu czynników abiotycznych (np. jezioro las) Ekosfera hydrosfera litosfera oraz atmosfera jako łącznika między środowiskami Ekolodzy zajmujących się mikroorganizmami używają terminu mikrośrodowisko (mikcroenviroment), dla określenie miejsca w siedlisku gdzie żyje dany mikroorganizm. Populacja grupa organizmów występujących na danym obszarze i należących do jednego gatunku Zespół organizmów (community) mieszanin różnych populacji mikrorganizmów występujących na danym obszarze E grupa fizjologiczna mikroorganizmów różnych taksonów prowadzące podobne procesy lub reakcje np. denitryfikacyjne Pojęcią stosowane w mikrobiologii środowiskowej cd. Konsorcjum naturalny związek fizyczny 2 lub większej liczby mikroorganizmów zwykle korzystny dla wszystkich partnerów którzy dopełniają swoje właściwości. Zwykle partnerzy są zbliżonej wielkości Błona biologiczna biofilm kolonie mikroorganizmów zagłębione w zewnątrzkomórkowych polimerach (najczęściej polisacharydach), które przytwierdzają je do podłoża stałego zwykle zanurzonego w wodzie lub poddawanego działaniu wody Mata mikroorganizmów zespoły mikroorganizmów rosnące warstwowo; zwykle w górnej warstwie sinice, potem fototrofy, anoksygenowe i chemoorganoheterotrofy, następnie bakterie redukujące siarczany powstają np. w gorących źródła i w strefie pływów Każde środowiska bytowania musi spełniać określone warunki aby mikroorganizmy mogły w nim rozwijać się: Są to czynniki natury: fizycznej. chemicznej biologicznej Określane inaczej jako czynniki abiotyczne i biotyczne Wszystkie organizmy wykazują określony zakres tolerancji wobec zmienności czynników środowiskowych Na zmienność tą składają się warunki zapewniające rozwój mikroorganizmów: minimalny, maksymalny, optymalny Rozróżnia się 2 optima: 1. fizjologiczne odnoszące się do reakcji fizjologicznych, które można zmierzy w warunkach laboratoryjnych w czystych kulturach 2. ekologiczne odnosi się do naturalnych warunków występowanie mikroorganizmów (zależy od warunków abiotycznych i biotycznych) Prawo minimum Liebiga Całkowita liczba lub biomasa organizmów jest ograniczona przez czynnik których w środowisku występuje w najmniejszym stężeniu. Czynnikami limitującymi SA często azot i fosfor. Prawo tolerancji Shelforda Występowanie organizmów w środowisku jest ograniczone przez różne czynniki środowiskowe, które muszą pozostawać w zakresie tolerancji danego organizmu. Jeśli

wartość danego czynnika przekroczy poziom minimalny lub maksymalny to organizm nie jest zdolny do wzrostu (przeżycia) Zakres tolerancji Eury szeroki np. eurytermiczny Steno wąski np. stednotermiczny File lubiący np. termofile, acidofile Biont tolerujących np. acidobiont Phobe nienawidzący np. barofob Wyróżniamy organizmy: Eurytopowe (kosmopolityczne, wszędobylskie) Stenotopowe (wyspecjalizowane) np. stenotermiczne Nisze ekologiczna obejmuje czynniki (np. światło pokarm miejsce) o które dany gatunek konkuruje z innymi gatunkami w biocenozie. Nisza umożliwia przeżycie odżywanie się rozród stabilność populacji. Hutchinson rozróżnia pojęcie: Niszy potencjalnej, w której organizmy mogą egzystować w pewnym zakresie tolerancji Niszy realnej, która jest wynikiem działania konkurencji i presji środowiskowej Siedlisko to miejsce (habitat), w którym występuje i zawsze można spotkać odpowiedni: gatunek, grupę fizjologiczna, zespół mikroorganizmów (microbial community) Czynniki abiotyczne: 1. Temperatura 2. Światło 3. Promieniowanie 4. Aktywność wody 5. Ciśnienie 6. Zasolenie 7. Odczyn 8. Potencjał redox 9. Związki nieorganiczne 10. Związki organiczne Temperatura wpływa: Bezpośrednio na: szybkość wzrostu aktywność enzymów skład chemiczny komórek Wymagania pokarmowe Pośrednio na: Regulacje rozpuszczalności związków wewnątrzkomórkowych Transport jonów Dyfuzje substancji chemicznych Zmianę właściwości osmotycznych błon komórkowych Temperatura 1 Bakterie mogą rosnąć i rozmnaża się w całym zakresie temp w którym woda występuje w stanie płynnym (tj. od nieco poniżej zera do > 100 C) Odkryto jednak bakterie zdolne do wzrostu w temp -23 (Corynebacterium bakteria)

(Sporobolomyces grzyb) występujące w silnie zasolonych wodach na Antarktydzie oraz w 121 (archeon szczep 121 a obecność nawet w + 250 C gorące źródła) Ekstremofile Środowiska, w których panują warunki niedogodne do życia dla ludzi i większości makroorganizmów, a w których mogą żyć niektóre mikroorganizmy w szczególności prokariotyczne, zwane są środowiskami ekstremalnymi Organizmy, które tam żyją zwane są ekstremofilami Do ekstromofili zaliczamy psychrofile, termofile, a w szczególności hipertermofile Stenotermalne w wąskim zakresie temp Eurotemalne w szerokim Każdy organizm może rosnąć rozwijać się w pewnym zakresie temperatur Temperatura minimalna to taka poniżej której organizm nie jest zdolny do wzrostu Temperatura maksymalna to taka powyżej której nie jest o zdolny do wzrostu Temperatura optymalna to temperatura, w której organizm rośnie najszybciej Te trzy temperatury, zwane są temperaturami kardynalnymi Temperatury kardynalne TU JEST WYKRES, MOŻE MICHAŚ GO WSTAWI <ŁADNY UŚMIECH MAM> ;) Tytuł wykresu: Wpływ temperatury na szybkość wzrostu Różnica między temperaturą minimalna a optymalną wynosi od 10 do 38 C (średnio 22,9 C) Różnica miedzy temperaturą optymalną a maksymalną wynosi od 2 24C (średnio 9,4 C) Podział organizmów na podstawie wartości temperatur optymalnych Psychrofile charakteryzuje niski zakres temperatur optymalnych Mezofile mają optimum temperatury zlokalizowane między wartościami charakterystycznymi dla psychrofili i termofili Termofile rosną optymalnie w temperaturach przekraczających 45 C Hipertermofile rosną optymalnie w temperaturach przekraczających 80 C

Podział prokariotów na podstawie temperatur kardynalnych Temperatury kardynalne C minimalna optymalna maksymalna Psychrofile 15 lub mniej ~20 Micrococcus cryophilus -4 10 24 Polaromonas vacualata 0 4 13 Mezofile 15-20 20-45 ~45 E. coli 10 37 45 Staphylococcus aureus 6 30-37 46 Termofile >45 - Thermus aquaticus 40 70-72 79 Bacillus stearothermophilus 30 60-65 75 Hipertermofile 55 lub więcej >80?? Pyrococcus abyssi 67 96 102 Pyrolobus fumarii 90 106 113 szczep 121 85 116 121 Psychrofile z optimum 14-15 C i maksimum 20C Mezofile z optimum 35 37 C (20 45) i maksimum 40 41 (ok. 45) C Termofile z optimum 55-60 C (.> 45) i nieokreślonym maximum Hipertermofile z optimum > 85 (> 80) C i nieokreślonym maximum TUTAJ SZAŁOWY WYKRES, do którego komentarz jest następujący Liczba generacji jest najmniejsza u psychrofili, a największa u hipertermofili Bakterie można podzielić uwzględniając zdolność wzrostu w temperaturach kardynalnych(min, opt, max) A TUTAJ MAŁO SZAŁOWE ALE CHYBA WAŻNE BO DŁUGO ROZKMINIANE

Tytuł wykresów: Podział bakterii na grupy w zależności od zdolności do wzrostu w różnych zakresach temperatur t. min t. opt. t.max 1 PF psychrofile <20 2 PMF psychromezofile <18 >20 3 MPF mezopsychorofie <15 18-42 <45 4 MEF mezoeurofile <15 18-42 >45 5 MF mezofile >15 18-42 <45 6 MTF mezotermofile >15 >42 7 TMF termomezofile <40 >42 8 TF termofile >40 Zalety tego podziału Podział ten uwzględnia więcej możliwości temperaturowych bakterii Opiera się na jednolitych kryteriach Obejmuje wszystkie znane gatunki bakterii w tym wciąż odkrywane Można uważać go za naturalnych Według nowego systemu np. w temperaturze 4 C mogą żyć aktywnie: Psychrofile (PF) Psychromezofile (PMF) Mezopsychrofile (MPF) I wyjątkowo mezoeuryfile (MEF) W ekologii mikroorganizmów i w mikrobiologii żywności często używany jest uproszczony schemat:

1. Psychrotolerany zdolne do wzrostu < 15 C pf, pmf, mpf, meuf 2. Mezotoleranty zdolne do wzrostu w 15-45 C pmf, mpf, mf, meuf, tmf 3. Termotolerancy zdone do wzrostu > 45C tf, tmf, mtf, meuf Psychrofile optimum temp 15 C lub mniej; maksimum poniżej 20 C minimum 0C lub mniej Psychrotoleranty (temp minimalna ok. 0 C,temp opt. > 20 (20-25) C) Znacznie szerzej rozpowszechnione niż psychrofile są tzw. Prychrotoleranty = psychrofile warunkowe rosną w temperaturach około 0 C, ale są również zdolne do wzrostu w zakresie temperatur 20-40 C Psychofile warunkowe (psychrotrofy mezopsychrofile) 1. Można wyizolować z gleby i wody w klimacie umiarkowanym, występują także w produktach spożywczych przechowywanych w lodówce, takich jak przetwory mleczne, mięso, warzywa czy owoce 2. Rosną one najlepiej w temperaturach 20-25 C, a ich wzrost w temp. Około 0 C jest wolny 3. Niektóre z nich mogą w przechowywanym w nieodpowiedni sposób jedzeniu namnożyć się w takim stopniu, ze stają się zagrożeniem dla zdrowia ludzi. Do takich bakterii należy np. Listeria monocytogenes, która wywołuje infekcje jelitowe zwane listeriozami (temp. min 1 C; temp. opt. 30-37 C; temp. maks. 45 C) Psychrofile spotykane są w produktach żywnościowych pochodzenia morskiego Psychrotrofy spotykane są w nabiale, wędlinach, warzywach i owocach np. Listeria monocytogenes, Yersinia enterolitica, Bacillus cereus Enzymy mikroorganizmów psychrofilnych charakteryzuje termowrażliwość (już 20C działa na nie niekorzystnie) Obniżenie temp powoduje: zahamowanie wzrostu syntezę białek tzw. białka szoku zimna CSP (cold shock proteins) których zadaniem jest przystosowanie do niskich temperatur Wzrost temperatury powoduje zahamowanie wzrostu Syntezę białek szoku termicznego HSP (heat shock proteins)

Maksymalna synteza HSP następuje na skutek wzrostu temperatury o 10 C powyżej temperatury optymalnej Ze środowisk naturalnych częściej niż psychrofile izolowane są psychrotrofy Przystosowanie do niskich temperatur 1. Enzymy maja w swojej strukturze drugorzędowej więcej struktur typu α - helisy daje im to większą plastyczność w niskich temperaturach 2. Enzymy mają więcej aminokwasów polarnych, a mniej hydrofobowych, co też im daje większa plastyczność dzięki czemu mogą być aktywne w niskich temperaturach 3. W lipidach błonowych większa zawartość nienasyconych kwasów tłuszczowych co umożliwia utrzymanie stanu półpłynnego błony a co za tym idzie nawet w niskich temperaturach zachodzi aktywny transport Mezofile występują np. w ciałach zwierząt stałociepłnych oraz w glebie i wodach w tej grupie spotykamy organizmy saprofityczne jak i patogenne Większość gatunków chorobotwórczych jest mezofilami, w tym bakterie wywołujące zatrucia pokarmowe Typowym mezofilem jest E. coli Optimum wzrostu na podłożu bogatym i ubogim to odpowiednio 39 i 37 C Temperatura maksymalna przypada na 48 i 45 C Temperatura minimalna to 8 i 10 C Na podłożu minimalny wartości temp maksymalnej i minimalnej mogą się nieco różnić tzn temp. maks. będzie nieco niższa, a temp. min. może być nieco wyższa. Mezofile Cd Mezofilami są wszystkie bakterie należące wraz z E.coli do rodziny Enterobacteriaceae, a także Bacillus subtilis Bakterie mezofile są wykorzystywane w wielu procesach biotechnologicznych np. Saccharomyces cerevisiae drożdże, bakterie fermentacji mlekowej (Lactobacillus sp.), bakterie fermentacji octowej Termofile i hipertermofile Organizmy, które rosną optymalnie w temperaturze przekraczającej 45C nazywamy termofilami, a te których optimum temperatury przekracza 80C hipertermofilami Hipertermofilami są różnego rodzaju: Archeony w tym wszystkie których nazwy zaczynają się przedrostkiem PYRO (Pyrococcus furiosus, Pyrolobus, Pyrobaculum) Bakterie i archeony mające w nazwie: THERM (Thermus aquaticus, Bacillus stearothermophilus) Termofile mogą występować: W kompostach i kiszonkach (60-65 C) W hałdach górniczych samonagrzewających się W urządzeniach grzewczych (55 80 C) W gorącej wodzie technologicznej W gorących źródłach na powierzchni Ziemi i na dnie oceanów Przystosowanie do wysokich temperatur

1. Białka skład aminokwasowy nie ma w sobie niczego niezwykłego Zwiększona stabilność białek w wysokich temperaturach wynika: ze sposobu ich zwinięcia zwiększonej liczby wiązań jonowych między różnymi aminokwasami gęstego upakowania hydrofobowego wnętrza białek obecności w cytoplazmie dużej ilości pewnych związków rozpuszczalnych, takich jak fosforan diinozytolu, fosforan diglicerolu które chronią białka przed denaturacją cieplną 2. DNA (różne mechanizmy u różnych arechonów) Odwrotna gyraza wprowadza dodatnie superskręty, które czynią DNA opornym na denaturację cieplna ( normalna gyraza wprowadza superskręty ujemne) Cykliczny 2 3 difosfoglicerynian potasu zapobiega zmianom chemicznym np. depurynacji Specyficzne białka niskocząsteczkowe wiążą się z DNA utrzymując jego strukturę dwuniciową 3. Błony mają dużo nasyconych kwasów tłuszczowych co umożliwia ich funkcjonowanie w wysokich temperaturach U hipertermofilnych archeonów błony składają się z pojedynczej warstwy lipidowej (dibifitanylotetraeter), która jest znacznie bardziej odporna na denaturacje termiczną Comment:Wraz ze wzrostem temperatury rośnie ilość nasyconych kwasów tuszowych SZALONA TABELA KTOREJ NIE MA SENSU WSTAWIAĆ --OK, ale jakby coś jest w fotkach Najwyższe temperatury w których może żyć różne grupy organizmów Zwierzęta skorupiaki 49-50 C; Rośliny Mchy 50 C; Grzyby 60-62 C, Bakterie(sinice) 70-74C; Archeony 121C

Liczba bakterii heterotroficznych występujących w gorących źródłach -Największa liczba gatunków przypada na 50-70 C, spada wraz ze wzrostem temperatury Liczba gatunków rośnie wraz ze wzrostem temperatury (ARCHEA) Przykłady wpływu temperatury na: 1. różnorodność gatunków W źródłach gorących największą różnorodność gatunków bakterii obserwuje się przy niskich temperaturach (50 70 C) W temperaturach powyżej 90C obserwuje się spadek różnorodności gatunków Gdy temperatura nadal rośnie następuje zmiana dominacji w populacji przeważają przedstawiciele Archea Przykłady wpływu temperatury na 2. szybkość wzrostu U zielenic temperaturowa zmiany tolerancji zależą od źródła izolacji np. Szczepy Chlorella izolowane z zimnych wód lepiej rosną w niższych temperaturach; mają jednak niższą właściwą szybkość wzrostu

Szczepy termofilne rosną szybciej w wyższych temperaturach i ich właściwa szybkość wzrostu jest 3x większa niż mezofilnych laboratoryjnych szczepów oraz około 6x większa niż szczepów psychrofilnych Przykłady wpływu temperatury na: 3. aktywność metaboliczną współczynnik Q10 Współczynnik Q10 to przyrost aktywności metabolicznej mikroorganizmów przy zmianie temperatury o 10 C Jeżeli Q10 = 2.0 to aktywność oddychania lub fotosyntezy lub redukcji siarczanów podwaja się przy każdej zmianie temperatury o 10C Q10 = (aktywność w temperaturze T+ 10C) / aktywność w temperaturze T