Perspektywy modernizacji korytarza międzynarodowego IX B, D na Litwie

Podobne dokumenty
Restrukturyzacja Łódzkiego Węzła Kolejowego

CENTRUM NAUKOWO-TECHNICZNE KOLEJNICTWA

Infrastruktura transportu kolejowego Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów

Infrastruktura transportu kolejowego

TOM II. szczegółowe warunki techniczne dla modernizacji lub budowy linii kolejowych. z wychylnym pudłem) TOM II SKRAJNIA BUDOWLANA LINII KOLEJOWYCH

TTS TECHNIKA TRANSPORTU SZYNOWEGO

Zarządzanie Systemami Transportowymi wykład 05 dla 2 sem. TO i ZBwTM (II stopień)

Przekrój normalny na prostej i na łuku Linia magistralna jednotorowa i kat. 1: na prostej i w łuku

METRO WYTYCZNE PROJEKTOWANIA WYKONAŁA: KATARZYNA KOZERA

TRANSPORT W POLSCE NA TLE KRAJÓW UNII EUROPEJSKIEJ

Modernizacje i rewitalizacje linii kolejowych pomiędzy miastamigospodarzami

Krajowe przepisy techniczne w zakresie drogi kolejowej. dr inż. Marek PAWLIK zastępca dyrektora IK ds. interoperacyjności

Spis treści. Przedmowa 11

Kształtowanie układu geometrycznego toru kolejowego w aspekcie bezpieczeństwa eksploatacji 5

Wpływ kolei dużych prędkości na podział międzygałęziowy w transporcie pasażerskim

Koleje podstawy. Wykład 1 Wprowadzenie. Pojęcia podstawowe. dr hab. inż. Danuta Bryja, prof. nadzw. PWr

KARTA CHARAKTERYSTYKI PROFILU DYPLOMOWANIA

ANALIZA CZYNNIKÓW WPŁYWAJĄCYCH NA ROZWÓJ WAD 227 SQUAT

Warunki rozwoju przewozów kolejowych

NAJNOWSZE TRENDY W BUDOWIE LINII DUŻYCH PRĘDKOŚCI W EUROPIE. dr inż. Andrzej Massel Centrum Naukowo-Techniczne Kolejnictwa

Kierunki rozwoju kolei dużych prędkości w Polsce

PODSTAWY PROJEKTOWANIA LINII I STACJI KOLEJOWYCH

KOLEJ DUŻYCH PRĘDKOŚCI RZECZ ZWYKŁA CZY NIEZWYKŁA?

Specyfikacja TSI CR INF

EKSPLOATACYJNE METODY ZWIĘKSZENIA TRWAŁOŚCI ROZJAZDÓW KOLEJOWYCH

PROBLEMY PROJEKTOWE MODERNIZACJI LINII KOLEJOWYCH NA PRZYKŁADZIE LINII NR 311 NA ODCINKU JELENIA GÓRA SZKLARSKA PORĘBA

CENNIK. 1. Stawki jednostkowe opłaty podstawowej za minimalny dostęp do infrastruktury kolejowej

Perspektywy funkcjonowania infrastruktury kolejowej na terenie województwa dolnośląskiego. Wrocław, 3 lutego 2011 r.

Transport w słuŝbie Euro 2012.

Kierunki rozwoju kolei dużych prędkości w Polsce

TTS TECHNIKA TRANSPORTU SZYNOWEGO 2014

Rozwój transportu kolejowego w Województwie Pomorskim

Ocena efektywności wariantów wrocławskiej kolei regionalnej w świetle dostępności i obciążenia sieci.

PKP LHS NA NOWYCH SZLAKACH

Miejsce polskiego rynku cargo w Europie

Kolejowe projekty inwestycyjne w Narodowym Planie Rozwoju na lata Zbigniew Szafrański Wiceprezes Zarządu PKP PLK S.A.

Prace na linii kolejowej E30 na odcinku Kędzierzyn Koźle Opole Zachodnie

Program budowy linii dużych prędkości w Polsce

Kluczowe działania zrealizowane w 2016 roku. inwestycje. Priorytety 2017

POLITECHNIKA WARSZAWSKA WYDZIAŁ INŻYNIERII LĄDOWEJ INSTYTUT DRÓG I MOSTÓW ZAKŁAD INŻYNIERII KOMUNIKACYJNEJ

Tytuł prezentacji: Autor:

Funkcjonowanie i perspektywy rozwoju infrastruktury kolejowej w regionie płockim. Płock, 27 czerwca 2014 r.

Program rewitalizacji istniejącej linii kolejowej Kraków - Zakopane. Zakopane, 23 października 2015 r.

Rozwój infrastruktury kolejowej w województwie Zachodniopomorskim.

Engineering, Architecture, Consulting. Nowoczesne koleje w Europie. Perspektywy rozwoju

SKRAJNIA BUDOWLI NA ODCINKACH TORU NA PROSTEJ I W ŁUKU

MAPA AKUSTYCZNA m. BYDGOSZCZY. Wyniki pomiarów hałasu szynowego - kolejowego

1. TRANSPORT KOLEJOWY

CENNIK. 1. Stawki jednostkowe opłaty podstawowej za minimalny dostęp do infrastruktury kolejowej

Wsparcie projektów w zakresie transportu kolejowego w ramach Lubuskiego Regionalnego Programu Operacyjnego na lata w województwie lubuskim

PKP S.A. Łódzkie Forum Regionalne Transportu Publicznego. Wybrane zagadnienia związane z siecią linii kolejowych dużych prędkości w Polsce

Strategia i priorytety inwestycyjne w transporcie kolejowym

Efektywność kolei dużych prędkości

WYBRANE ZAGADNIENIA KSZTAŁTOWANIA UKŁADU GEOMETRYCZNEGO LINII KOLEJOWYCH DUŻYCH PRĘDKOŚCI

Prędkość jazdy jako funkcja parametrów infrastruktury kolejowej w aspekcie bezpieczeństwa

Infrastruktura transportu kolejowego

UKŁADY GEOMETRYCZNE ROZJAZDÓW NA KOLEJACH DUŻYCH PRĘDKOŚCI

Koleje podstawy. Wykład 1 Wprowadzenie. Pojęcia podstawowe. dr hab. inż. Danuta Bryja, prof. nadzw. PWr

Nowe TSI dla całej europejskiej sieci kolejowej TRAKO Gdańsk,


CENNIK. 1. Stawki jednostkowe opłaty podstawowej za minimalny dostęp do infrastruktury kolejowej

Szanowna Pani Marszałek! Odpowiadając na interpelację pana posła Zbigniewa Matuszczaka (znak: SPS /14) przesłaną przy piśmie z dnia 29

Rynkowe perspektywy dużych szybkości w Polsce zastosowanie projektu UIC dla krajów w Europy Centralnej i Wschodniej.

CENNIK. 1. Stawki jednostkowe opłaty podstawowej za minimalny dostęp do infrastruktury kolejowej

Budowa połączenia kolejowego stacji Poznań Główny z Portem Lotniczym Poznań Ławica w ramach Poznańskiej Kolei Metropolitalnej

Jak polska kolej zmieni się w ciągu pięciu lat. Warszawa, 22 września 2017 r.

AKTUALNE UWARUNKOWANIA ROZWOJU KOLEI DUŻYCH PRĘDKOŚCI W POLSCE

Konsekwencje TSI NOI: Wymagania TSI NOI dotyczące hałasu kolejowego oraz możliwości badawcze polskich podmiotów w tym zakresie

113 mln zł na poprawę transportu kolejowego Oleśnica Krotoszyn

WPROWADZENIE DO BUDOWNICTWA KOMUNIKACYJNEGO WYKŁAD 2

PROJEKTOWANIE DRÓG SZYNOWYCH W PROFILU

Kierunki rozwoju kolei dużych prędkości w Polsce

kolejowej nr 358 na odcinku Zbąszynek Czerwieńsk wraz

NOWELIZACJA STANDARDÓW TECHNICZNYCH PKP POLSKIE LINIE KOLEJOWE S.A. W ZAKRESIE UKŁADÓW GEOMETRYCZNYCH TORÓW 1

CENNIK. 1. Stawki jednostkowe opłaty podstawowej za minimalny dostęp do infrastruktury kolejowej

Geometria osi drogi. Elementy podlegające ocenie jednorodności

ODDZIAŁ REGIONALNY w SZCZECINIE Szczecin, ul. Korzeniowskiego 1, tel.(091) , fax.(091) ,

TORY TRAMWAJOWE W PROFILU PODŁUŻNYM

Zakres programu budowy linii dużych prędkości w Polsce

Efekty modernizacji linii kolejowych w perspektywie

WYKŁAD WPROWADZAJĄCY

Plany inwestycyjne w perspektywie UE Warszawa, 16 kwietnia 2014 r.

Linia dużej prędkości Warszawa Łódź Wrocław/Poznań wyniki studium wykonalności

Centralny Port Komunikacyjny w systemie połączeń kolejami dużych prędkości (KDP) i regionalnych

Raport ITF: Wydatki na infrastrukturę transportową cz. II

PORÓWNANIE WŁASNOŚCI TRAKCYJNO- -RUCHOWYCH LOKOMOTYW EU07 i ET22 ZE SKŁADEM TOWAROWYM

Perspektywy rozwoju wysokiej jakości połączeń intercity w Polsce. 16 listopada 2011 r.

Koleje podstawy. Wykład 1 Wprowadzenie. Pojęcia podstawowe. dr hab. inż. Danuta Bryja, prof. nadzw. PWr

Możliwości wykorzystania transportu szynowego w realizacji połączenia Szczecin Kamień Pomorski Dziwnówek - Dziwnów. dr inż. Arkadiusz Drewnowski

Zasady wykonywania próbnych jazd po naprawach. Załącznik nr 10

TORY TRAMWAJOWE W PROFILU PODŁUŻNYM

Materiały do projektu bocznicy kolejowej dla zakładu przemysłowego I. Obliczenia elementów bocznicy

Zezwolenia na dopuszczenie do eksploatacji podsystemu strukturalnego. Interoperacyjność.

Wykaz parametrów technicznych na wyznaczonych międzynarodowych ciągach tranzytowych w ruchu towarowym

Wąskie gardła i bariery w korzystaniu z infrastruktury kolejowej

Rozwój współpracy gospodarczej między Polską i Niemcami w kontekście wzrostu znaczenia kolei

Zmiany w Grupie PKP w latach

BEZPIECZEŃSTWO INFRASTRUKTURY SZYNOWEJ NA BOCZNICACH KOLEJOWYCH

TECHNICZNE ASPEKTY BUDOWY I EKSPLOATACJI LINII KOLEJOWYCH DUŻYCH PRĘDKOŚCI

Transkrypt:

Laura Černiauskaitė, Kazys Sakalauskas Perspektywy modernizacji korytarza międzynarodowego IX B, D na Litwie Powierzchnia Republiki Litewskiej wynosi 65,3 tys. km 2. Gęstość sieci kolejowej Litwy jest stosunkowo duża 31 km na powierzchni 1000 km 2. Łączna długość eksploatowanych dróg kolejowych na Litwie wynosi 1775,3 km (21,8 km z szerokością toru 1435 mm, 1753,5 km z szerokością toru 1520 mm). Długość linii zelektryfikowanych to 122,0 km. Litwa ma stosunkowo dobrze rozwinięty system transportu oraz korzystne położenie geopolityczne. Od odzyskania niepodległości koleje litewskie, mając na uwadze ważność integracji z siecią transportową Europy, starały się odnowić stosunki z międzynarodowymi organizacjami kolejowymi oraz nawiązać robocze kontakty z kolejami krajów Europy Zachodniej i Wschodniej. Już w czerwcu 1992 r. koleje Litwy przystąpiły do międzynarodowej organizacji współpracy kolei (OSŻD) oraz odnowiły swoje członkostwo w Międzynarodowym Związku Kolei (UIC). Otworzyło to drzwi do międzynarodowych instytucji finansowych oraz innych funduszy [1 3]. Wielkości przewozów pasażerów różnymi rodzajami transportu w okresie ostatnich 10 lat przedstawiono w tablicy 2. Włączenie do sieci transportowej Europy oraz do rynku usług tranzytowych jest głównym celem kolei Litwy. Cel ten został zatwierdzony decyzją rządu Litwy w 1994 r. (w narodowym programie rozwoju transportu do 2010 r.). Duże znaczenie dla jego realizacji miało w tym samym roku postanowienie ministrów transportu Europy o rozwoju dziewięciu priorytetowych korytarzy transportowych w Europie Wschodniej. Sieć transportowych korytarzy międzynarodowych przedstawiono na rysunku 1. Po odzyskaniu niepodległości przewozy ładunków na kolejach Litwy znacznie się zmniejszyły (w okresie 1992 1995 masa ładunków zmniejszyła się 2,6 razy), a potem ustabilizowały się na poziomie około 30 mln t rocznie. W 2002 r. masa przewożonych ładunków zwiększyła się do 36,7 mln t, tj. o 25% więcej niż w 2001 r. Ponad połowa ładunków (50 65%) przewożona jest na trasach międzynarodowych. Główni dostawcy przewozów tranzytowych to: Federacja Rosyjska 58%, Białoruś 19%, Niemcy 7% oraz inne państwa 16%. Dążąc do pozycji równoprawnego partnera przewozów międzynarodowych należy wykonać transportu Rodzaj wiele prac. Najważniejsze zadanie to modernizacja infrastruktury kolejowej z celem jej integracji z siecią transportu kolejowego Europy. Wielkości przewozów ładunków realizowanych różnymi rodzajami transportu w okresie ostatnich 10 lat przedstawiono w tablicy 1. Przewozy pasażerów na kolejach Litwy corocznie się Rodzaj zmniejszają. W 2002 r. koleje transportu Litwy przewiozły tylko 7,2 mln pasażerów (5,7 mln na trasach wewnętrznych i 1,5 mln na trasach międzynarodowych), czyli 7% mniej niż w 2001 r. Przewozy ładunków różnymi rodzajami transportu Rok 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 [mln t] Tablica 1 Lotniczy 0,0028 0,0044 0,0026 0,0019 0,0028 0,0028 0,0025 0,0033 0,0033 0,0034 Rzeczny 0,7 0,6 0,5 0,6 0,7 1,3 0,8 0,9 0,5 0,5 Morski 5,5 4,9 5,8 4,7 4,5 4,2 4,3 4,5 4,7 4,8 Kolejowy 38,4 29,5 26,0 29,1 30,5 30,9 28,3 30,7 29,2 36,7 Drogowy 170,2 130,1 138,3 88,6 58,8 54,6 45,7 45,0 45,1 45,0 Razem 214,8 165,1 170,6 123,0 94,5 91,0 79,1 81,1 79,5 87,0 Przewozy pasażerów różnymi rodzajami transportu Fot. 1. TEP70-0346-1 pociąg Wilno Sestokai na stacji w Sestokai (15.08.2003) Fot. A. Massel Rok 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 [mln pas.] Lotniczy 0,2 0,3 0,24 0,2 0,27 0,3 0,3 0,34 0,36 0,38 Rzeczny 1,3 1,8 1,0 1,5 1,4 1,6 1,7 1,3 1,3 2,9 Tablica 2 Morski 0,016 0,026 0,038 0,041 0,036 0,044 0,051 0,064 0,069 0,058 Kolejowy 25,1 18,3 15,2 14,1 12,6 12,2 11,5 8,9 7,7 7,2 Drogowy 789,9 768,1 678,2 593,5 537,1 502,1 458,3 372,7 346,4 347,8 Razem 816,1 788,5 694,6 609,4 551,4 516,2 471,9 383,3 355,8 358,3 3/2004 37

Dwa korytarze międzynarodowe przecinają Litwę: I Helsinki Tallin Ryga Kaunas (Kowno) Warszawa, IX B,D Kijów Mińsk Vilnius (Wilno) Klaipėda (Kłajpeda) z odgałęzieniem Kaišiadorys Kausnas Kaliningrad. Sieć międzynarodowych korytarzy transportowych na Litwie przedstawiono na rysunku 2 [2 4]. Obecnie sektor transportu kolejowego Litwy, podobnie zresztą jak w wielu innych państw Europy Wschodniej, znacznie ustępuje pod względem technicznym, ekonomicznym, technologicznym oraz organizacyjnym współczesnym, efektywnie ze sobą współpracującym systemom transportu kolejowego Europy Za- Rys. 1. Sieć międzynarodowych korytarzy transportowych I i IX chodniej i Północnej. Przy integracji kolei Litwy z systemem transportu kolejowego Europy niezbędnym warunkiem są radykalne zmiany, w szczególności dostosowanie infrastruktury kolei do poziomu technicznego kolei państw Unii Europejskiej. Niezbędnym warunkiem tej integracji jest zwiększenie prędkości jazdy pociągów na głównych liniach kolejowych Litwy do 160 km/h. Obecnie największa prędkość pociągów pasażerskich wynosi 120 km/h, a towarowych 90 km/h [5], niemniej jednak na niektórych odcinkach głównych linii kolejowych możliwe jest osiąganie prędkości tylko 40 km/h. Oczywiście taka prędkość jazdy pociągów nie zadowala pasażerów zarówno w ruchu wewnętrznym, jak i międzynarodowym [4]. Równolegle należy dążyć do dostosowania poziomu technicznego obecnej infrastruktury linii kolejowych do standardów infrastruktury sieci kolejowej UE, zapewnienia należytego współdziałania z infrastrukturą transportową kontynentalnej Europy. Pozwoli to zaoferować usługi wysokiej jakości dla przewoźników oraz podróżnych, tym samym pobudzając wzrost tranzytu przez terytorium Litwy. Bardziej rygorystyczne wymagania są stosowane przy modernizacji linii kolejowych, które z inicjatywy Komisji Europejskiej są włączone do programu TINA (Transport Infrastructure Needs Assesment). Celem programu TINA było zbadanie potrzeb modernizacyjnych infrastruktury w krajach Środkowej i Wschodniej Europy, kandydujących do UE, zidentyfikowanie wspólnych projektów, które pozwolą rozwinąć multimodalną sieć transportową pomiędzy krajami UE i krajami kandydującymi do UE, oraz określenie możliwości finansowania tych projektów. Do programu TINA są włączone również korytarze międzynarodowe przecinające Litwę, tj. I oraz IX. Według programu TINA jest przewidziana kompleksowa modernizacja tych korytarzy do 2015 r. obejmująca nawierzchnię, systemy sterowania ruchem, stacje graniczne i rozrządowe, sieć kolejową w porcie morskim w Kłajpedzie. Według projektów modernizacji infrastruktury TINA na te cele należałoby wydać około 1181 mln euro (4077,7 mln litów). Projekty modernizacji infrastruktury TINA na Litwie są przedstawione na rysunku 3 [3]. Na podstawie wymagań TINA, przy modernizacji głównych linii kolejowych należy stosować się do dyrektywy 96/48 o interoperacyjności transeuropejskiego systemu kolei dużych prędkości. Według tej dyrektywy należy zapewnić w całości zgodność charakterystyk infrastruktury kolejowej i taboru w całej sieci transportu transeuropejskiego (TEN-Tr). Rys. 2. Sieć międzynarodowych korytarzy transportowych na Litwie Rys. 3. Projekty modernizacji infrastruktury TINA na Litwie 38 3/2004

Przy dostosowaniu sieci kolejowej Litwy (odgałęzienia międzynarodowego korytarza kolejowego IX B, D, przecinające terytorium Litwy) do systemu transportowego UE należy parametry elementów infrastruktury dostosować do wymagań porozumień międzynarodowych. Pierwszym zadaniem jest szybkie dostosowanie elementów konstrukcji drogi kolejowej oraz jej parametrów geometrycznych do wymagań sieci transportowej Europy. Bardzo ważnym wskaźnikiem w tym procesie jest poziom techniczny infrastruktury kolei żelaznej [6-8]. W 2003 r. dla kolei Litwy było przewidziane wyasygnowanie prawie 100 mln euro, z czego 70% na inwestycje w infrastrukturę. Najważniejsze projekty inwestycyjne w tym roku były ukierunkowane na modernizację IX międzynarodowego korytarza transportowego. Obecnie na trasie IX (B, D) korytarza międzynarodowego na Litwie 220 km linii kolejowych jest odnowionych zgodnie z wymaganiami standardów Unii Europejskiej [3]. Analiza istniejących parametrów kolei na trasie korytarzy IX B i IX D Czynnikami określającymi poziom techniczny infrastruktury kolei są: układ geometryczny w płaszczyźnie poziomej (plan) oraz pionowej (profil podłużny), elementy konstrukcji nawierzchni i podtorza oraz charakteryzujące je wskaźniki ilościowe i jakościowe. Podstawowym wskaźnikiem do oceny stanu technicznego infrastruktury jest prędkość ruchu pociągów. Wskaźnik ten najbardziej obiektywnie odzwierciedla ogólną jakość wszystkich elementów infrastruktury kolei. Przy przystosowywaniu (modernizacji) istniejących dróg kolejowych do podwyższonej prędkości ruchu pociągów pasażerskich niezbędne jest wykonanie szczegółowej analizy przyczyn ograniczeń prędkości oraz ich eliminacji [8]. Na potrzeby artykułu głównym obiektem badań był wybrany IX korytarz międzynarodowy, czyli dwa jego odgałęzienia przecinające terytorium Litwy: IX B Vilnius (Wilno) Klaipėda (Kłajpeda) o długości 376,361 km oraz IX D Kaišiadorys Kybartai (123,313 km). Obecny rozkład dopuszczalnych prędkości ruchu pociągów na liniach Vilnius Klaipėda i Kaišiadorys Kybartai przedstawiono na rysunkach 4 i 5. Na trasach korytarzy międzynarodowych z mieszanym ruchem pociągów normy litewskie dopuszczają maksymalne pochylenie podłużne do 15 [6-8]. Prace dotyczące zmniejszenia istniejących pochyleń muszą Rys. 4. Linia Vilnius Klaipėda być umotywowane analzą ekonomiczną i techniczną. Z uwagi na pochylenie podłużne, wybrane linie kolejowe na trasie korytarzy IX B i IX D (dla toru nr 1) podzielono na 4 grupy. Wyniki tych badań (dla toru nr 1) przedstawiono na rysunkach 6 i 7. Pierwsza grupa odcinki poziome, druga grupa to Rys. 5. Linia Kaišiadorys - Kybartai odcinki z pochyleniem do 4, na których nie ma ograniczeń prędkości ruchu. Grupa trzecia to odcinki o pochyleniach z przedziału 4,1 8, na których pociągi pasażerskie mogą jechać z prędkością do 160 km/h oraz grupa czwarta to odcinki z pochyleniami w przedziale 8,1 15, na których prędkość ruchu pociągów pasażerskich musi być ograniczona do 140 km/h. Otrzymane wyniki wskazują, że na trasie Kaišiadorys Kybartai pochyleń należących do grupy czwartej nie ma, a na trasie Vilnius Klaipėda pochylenia 8,1 15 występują tylko na 4,39% rozwiniętej długości trasy. Analizując wybrane linie kolejowe na trasie korytarzy IX B i IX D według ich geometrii w planie, wyodrębniono następujące elementy: łuki kołowe, zwłaszcza ich promienie R, długości krzywych przejściowych l 1 i l 2 oraz przechyłki na łuku h. Elementy te mają największy wpływ na prędkość ruchu pociągów [9]. Łuki o małych promieniach, długości krzywych przejściowych oraz przechyłki na łuku najbardziej ograniczają prędkość pociągu jadącego na takim odcinku. Na trasie Vilnius Klaipėda znajduje się 210 łuków kołowych, których łączna długość wynosi 92,275 km, co stanowi 24,53% długości całej trasy. Najmniejszy promień łuku kołowego ma 490 m, a największy 6936 m. Na trasie Kaišiadorys Kybartai znajdują się 52 łuki kołowe, których łączna długość wynosi 19,19 km, tj. 15,56% długości całej trasy. Najmniejszy promień łuku kołowego ma 280 m, a największy 5265 m. Z uwagi na promienie łuków linie kolejowe na trasie korytarzy IX B i IX D podzielono na cztery grupy. Pierwsza grupa zawiera łuki o promieniach do 650 m, na których prędkość ruchu pociągów pasażerskich jest ograniczona do 115 km/h. Druga grupa zawiera łuki o promieniach w przedziale 651 1000 m, na których dopuszczona prędkość ruchu pociągów pasażerskich wynosi 145 km/h. Grupa trzecia łuki kołowe o promieniach 1001 1200 m, na których pociągi pasażerskie mogą rozwijać prędkość do 160 km/h. Czwarta grupa łuki koło- Rys. 6. Pochylenie na linii Vilnius Klaipėda Rys. 7. Pochylenie na linii Kaišiadorys Kybartai 3/2004 39

Wymagania podanych standardów są podstawą przy rekonstrukcji lub budowie nowej drogi kolejowej, a także przy wykonaniu kapitalnego remontu toru. Konstrukcja nawierzchni zgodna z wymaganiami standardów IST 1005384.2 przedstawiono na rysunku 10. Rys. 8. Promienie na linii Vilnius Klaipėda Rys. 9. Promienie na linii Kaišiadorys Kybartai we o promieniach ponad 1200 m, na których pociągi pasażerskie mogą rozwijać prędkość powyżej 160 km/h. Wyniki badań dla toru nr 1 przedstawiono na rysunkach 8 i 9. Podczas analizy konstrukcji nawierzchni wydzielono następujące elementy: szyny, podkłady, podsypkę, rozjazdy i torowisko. Zgodność elementów konstrukcji z wymaganiami standardów była oszacowana na podstawie wykonanych badań eksperymentalnych [10, 11]. Uogólnione wyniki badań elementów konstrukcji na badanych trasach są przedstawione w pracach [6, 7]. W 1996 r. były wydane standardy przedsiębiorstwa (w języku litewskim) charakteryzujące nawierzchnię drogi kolejowej (szyny według normy europejskiej UIC 60, 60 E1, przytwierdzenia typu Pandrol Fast-clip, podkłady żelbetowe SWETRAK wyprodukowane według technologii szwedzkiej Abetong, tłuczeń frakcji 32 64 mm. Po drodze kolejowej o takiej konstrukcji pociągi pasażerskie mogą rozwijać prędkość do 160 km/h [11]. Tor musi być bezstykowy. Określenie maksymalnych prędkości na łukach Analizę prędkości na linii Vilnius Klaipėda i na linii Kaišiadorys Kybartai przeprowadzono dla toru nr 1. Na linii Vilnius Klaipėda analizą objęto 209 łuków, a na linii Kaišiadorys Kybartai 52 łuki. Do obliczeń maksymalnej prędkości na poszczególnych łukach (w istniejącym układzie geometrycznym) wzięto pod uwagę wyniki badań przedstawionych w pracy [12]. Prędkość maksymalna na łuku dla ruchu pociągów pasażerskich v max [km/h] jest określana według następującego wzoru: h v max = 3,6 R a n + g (1) S gdzie: v max maksymalna prędkość na łuku [km/h], R promień łuku kołowego [m], a n niezrównoważone przyspieszenie boczne na łuku kołowym (0,7 m/s 2 ), g przyspieszenie ziemskie [m/s 2 ], h wartość przechyłki na łuku [mm], S odległość osi toków szynowych (1,6 m). Histogram maksymalnych prędkości na łukach linii Vilnius Klaipėda przedstawiono na rysunku 11. Prędkości te zawierają się w przedziale od 80 do 210 km/h. Prędkością dominującą jest 130 km/h, którą można osiągnąć na 32 łukach, co stanowi 15,4% ogólnej liczby łuków objętych analizą. Również na 32 łukach możliwe jest osiągnięcie prędkości 110 km/h. Najmniejsze prędkości maksymalne, tj. 80 km/h, występują na 6 łukach. Na 80,77% analizowanych łuków objętych analizą maksymalna prędkość jest mniejsza niż 160 km/h. Prędkość większą niż 160 km/h można uzyskać na 7,68 % analizowanych łuków. Na 21 łukach (tj. na 10,09% łuków objętych analizą) maksymalna prędkość nie przekracza 90 km/h. Histogram maksymalnych prędkości na łukach linii Kaišiadorys Kybartai przedstawiono na rysunku 12. Na linii Kaišiadorys Kybartai prędkości na łukach zawierają się w przedziale od 50 do 210 km/h. Również i w tym przypadku prędkością dominującą jest prędkość 130 km/h, którą można osiągnąć na 10 łukach, stanowiących 19,24 % ogólnej liczby łuków objętych analizą. Najmniejsza prędkość, 50 km/h, występuje na jednym łuku o promieniu 280 m położonym w km 36,987 37,084, znajdującym się w obrębie stacji Kaunas. Na 59,61% analizowanych łuków objętych analizą maksymalna prędkość jest mniejsza niż 160 km/h. Prędkość większą niż 160 km/h można uzyskać na 34,62% analizowanych łuków. Na dwóch łukach (tj. na 3,84% łuków objętych analizą) maksymalna prędkość nie przekracza 90 km/h. Rys. 10. Konstrukcja nawierzchni zgodna z wymaganiami standardów IST 1005384.2 40 3/2004

Przejazdy teoretyczne oraz porównanie prędkości i czasu przejazdu ze stanem istniejącym Z analiz parametrów infrastruktury, przy założonej prędkości 120 km/h dla pociągów towarowych i 160 km/h dla pociągów pasażerskich niektóre odcinki nie spełniają obowiązujących wymagań. W celu wszechstronnej analizy elementów infrastruktury kolejowej jest stosowana metoda obliczeniowa, pozwalająca ustalić zależność prędkości oraz czasu jazdy pociągu od parametrów drogi (profilu podłużnego, długości krzywych, konstrukcji nawierzchni i innych). Do obliczenia czasu oraz prędkości ruchu pociągu zastosowano program komputerowy Trauka. Wielkościami wejściowymi są plan oraz profil linii, liczba postojów, masa składu, typ lokomotywy, liczba wagonów, miejsca ograniczenia prędkości i inne parametry [6, 7, 13, 14]. Przeanalizowano cztery warianty o podanej charakterystyce. Rys. 11. Histogram maksymalnych prędkości na poszczególnych łukach na linii Vilnius Klaipėda I wariant Typ lokomotywy TEP 70, maksymalna prędkość 120 km/h, masa składu 600 t, liczba wagonów 10. Przy obliczeniach prędkości ruchu i czasu są uwzględniane parametry krzywych, rozjazdy, ograniczenia prędkości między stacjami według istniejącego stanu technicznego drogi oraz czasowych ograniczeń prędkości. Pociąg jedzie po linii Vilnius Klaipėda z postojem na stacjach w Kaišiadorys i Šiauliai, oraz po linii Kaišiadorys Kybartai z postojem na jednej stacji w Kaunas (jeden jednominutowy postój). II wariant Typ lokomotywy TEP 70, maksymalna prędkość 160 km/h, masa składu 600 t, liczba wagonów 10. W tym wariancie pociąg jedzie również po linii Vilnius Klaipėda z postojem na stacjach w Kaišiadorys i Šiauliai, oraz po linii Kaišiadorys Kybartai z postojem na jednej stacji w Kaunas. Przy obliczeniach prędkości i czasu jest maksymalnie wykorzystana siła pociągowa lokomotywy oraz uwzględniane czynniki ograniczenia prędkości i czasu. III wariant Typ lokomotywy TEP 70, maksymalna prędkość 120 km/h, masa składu 420 t, liczba wagonów 7. Przy obliczeniach prędkości ruchu i czasu są uwzględniane parametry krzywych, rozjazdy, ograniczenia prędkości między stacjami według istniejącego stanu technicznego drogi oraz czasowych ograniczeń prędkości. Pociąg jedzie po linii Vilnius Klaipėda z postojem na stacjach w Kaišiadorys i Šiauliai, oraz po linii Kaišiadorys Kybartai z postojem na jednej stacji w Kaunas (jeden jednominutowy postój). IV wariant Typ lokomotywy TEP 70, maksymalna prędkość 160 km/h, masa składu 420 t, liczba wagonów 7. W tym wariancie pociąg jedzie również po linii Vilnius Klaipėda z postojem na stacjach w Kaišiadorys i Šiauliai, po linii Kaišiadorys Kybartai z postojem na jednej stacji w Kaunas. Przy obliczeniach prędkości i czasu jest maksymalnie wykorzystana siła pociągowa lokomotywy oraz uwzględniane czynniki ograniczenia prędkości i czasu. Rys. 12. Histogram maksymalnych prędkości na poszczególnych łukach linii Kaišiadorys Kybartai Uzyskane wyniki przejazdów teoretycznych dla toru nr 1, przedstawiono w tablicach 3 i 4. Przejazdy teoretyczne na linii Vilnius Klaipe da Wariant Tablica 3 I II III IV Czas przejazdu [min] 257,3 215,6 250,3 170,6 Skrócenie czasu jazdy [%] 16,21 31,84 Średnia prędkość [km/h] 88 105 90 132 Wzrost średniej prędkości jazdy [%] 19,32 46,67 Tablica 4 Przejazdy teoretyczne na linii Kaisiadorys Kybartai Wariant I II III IV Czas przejazdu [min] 88,6 69,6 86,4 57,0 Skrócenie czasu jazdy [%] 21,44 34,03 Średnia prędkość [km/h] 84 106 86 130 Wzrost średniej prędkości jazdy [%] 26,19 51,16 Analiza wyników obliczeń trakcyjnych pozwala wyciągnąć wniosek, że eliminacja ograniczeń prędkości (warianty II i IV) na linii Vilnius Klaipėda pozwala skrócić czas jazdy t od 16 do 32% i zwiększyć średnią prędkość od 19 do 47%. Natomiast na linii Kaišiadorys Kybartai odpowiednie skrócenia czasu przejaz- 3/2004 41

Analiza wyników obliczeń trakcyjnych wskazała, że na linii Vilnius Klaipėda należy przebudować 109 łuków w planie (46,066 km, około 50 % łącznej długości wszystkich łuków na tej linii), a na linii Kaišiadorys Kybartai 15 łuków (5,224 km, około 27% łącznej długości wszystkich krzywych na tej linii), które według IV wariantu obliczeń znajdują się w strefach ruchu z dużymi prędkościami. Możliwe jest skrócenie czasu jazdy o 80 min na linii Vilnius Klaipėda, a na linii Kaišiadorys Kybartai o 29,4 min (różnica czasu jazdy pociągów uzyskana w wariantach III i IV). q Fot. 2. TEP60-0286, pociąg Kłajpeda Wilno na stacji w Kłajpedzie (16.08.2003) Fot. A. Massel du t wynoszą od 21 do 34%, a zwiększenie prędkości wynosi od 26 do 51%. W celu zbadania kosztów jednej zaoszczędzonej minuty czasu jazdy pociągu wykonano obliczenia efektywności modernizacji infrastruktury przy porównaniu wariantów III i IV obliczeń trakcyjnych. Taki dobór wariantów do porównania wynikał z faktu, że w IV wariancie obliczeń skrócenie czasu jazdy pociągów jest największe, a zwiększenie średniej prędkości ruchu pociągów obserwuje się na obydwu analizowanych liniach. Ustalono, że na linii Vilnius Klaipėda prędkość i czas jazdy pociągów pasażerskich według wariantu IV zostaną osiągnięte, jeżeli na modernizację infrastruktury przeznaczy się około 671 mln litów (195 mln euro), a na linii Kaišiadorys Kybartai należałoby zużyć 107 mln litów (31 mln euro), bez wydatków na modernizację budowli drogi (na obie linie). Oznacza to, że jedna zaoszczędzona minuta czasu jazdy pociągów na linii Vilnius Klaipėda kosztowałaby 8417 litów (2440 euro), a na linii Kaišiadorys Kybartai 3639 litów (1055 euro). Wnioski IX międzynarodowy korytarz transportowy jest bardzo ważny dla rozwoju kolei żelaznych Litwy, a także dla rozwoju przewozów pasażerów i ładunków pomiędzy państwami Unii Europejskiej, państwami wstępującymi do Unii, Rosją i portem w Kłajpedzie. Modernizacja tego korytarza międzynarodowego będzie również miała znaczący wpływ na szybszy i bezpieczniejszy przewóz pasażerów i ładunków. Przy ustaleniu maksymalnej prędkości ruchu pociągów pasażerskich należy rozwiązywać złożone zadanie techniczno-ekonomiczne. Ograniczenie prędkości jazdy zależy od planu, profilu, stałych oraz czasowych ograniczeń prędkości. Ograniczenia prędkości są zlokalizowane na różnych odcinkach badanych tras, co wywołuje potrzebę zastosowania indywidualnych oraz globalnych metod rozwiązywania zadań zwiększania prędkości. Wyniki badań pokazały, że na badanych liniach promienie łuków kołowych większe niż 1200 m dotyczą odpowiednio 44,81% i 59,55% ogólnej długości wszystkich łuków. W celu zwiększenia prędkości ruchu pociągów należy w torach głównych zasadniczych na stacjach zmniejszać liczbę rozjazdów o skosie 1:11, wymienić rozjazdy o skosie 1:9 (na badanych liniach łącznie 58 szt.) oraz wzmocnić nawierzchnię drogi kolejowej zgodnie z wymaganiami standardów IST 1005384.2. Literatura [1] Jankauskaitė H.: International activities of LITHUANIAN RAILWAYS. Lithuanian railways 2/2002. [2] Biržiškis J.: From province of tsaris Russia to the European Transport market. Lithuanian railways 1/2002. [3] Trumpa V. S.: Transport corridors and the perspectives of their development. Lithuanian railways 1/2002. [4] Sakalauskas K.: Lithuanian railways a part of the European transport system. Lithuanian railways 2/2002. [5] Sakalauskas K.: Influence of standard development in railway line design on train speed. Transport, Vol XVI, 5/2001. [6] Černiauskaitė L., Sakalauskas K.: Technical and economical problems of integration of IX B and IX D international railway transport corridors into European railway transport network. Transport, Vol XVIII, 4/2003. [7] Černiauskaitė L., Rezgaitis R.: Solution of problems of train speed increment in Lithuanian railway lines. Civil Engineering and Management, Vol IX, 2003. [8] Sakalauskas K.: Problems of designing geometry and structure of high-speed railways. Transport, 1(14)/1997. [9] Bałuch M.: Badanie możliwości zwiększenia prędkości wybranych pociągów na linii Warszawa-Poznań. Prace Centrum Naukowo-Technicznego Kolejnictwa, nr 137. Warszawa. 2002. [10] IST 1005384.1 Railway track of 1520 mm gauge with passenger train speed of up to 160 km/h. Specification.: JSC Lithuanian railways, 1996. [11] IST 1005384.2 Upper structure of railway track of 1520 mm gauge with passenger train speed of up to 160 km/h. Specification.: JSC Lithuanian railways 1996. [12] Normy dopuskajemych skorostej dviżenija lokomotiwow i wagonow po żeleznodorożnym putiam 1520 (1524) mm. Prikaz No 2CZ, MPS RF. Moskwa 1994. [13] Sakalauskas K., Rezgaitis R.: Problems and perspectives of traffic of high speed passenger trains. Transport, Vol XV, 5/2000. [14] Bazaras Ž., Ivaškevičius A., Keršys R.: Calculation optimization of locomotive traction. Transport Engineering, Vol XIII, 4/1998. Autorzy Laura Černiauskaitė Kazys Sakalauskas Wileński Uniwersytet Techniczny Gedymina 42 3/2004