Wspomaganie obliczeń matematycznych. dr inż. Michał Michna
|
|
- Halina Nowacka
- 9 lat temu
- Przeglądów:
Transkrypt
1 Wspomaganie obliczeń matematycznych dr inż. Michał Michna
2 Wspomaganie obliczeń matematycznych Potrzeby Projektowanie Modelowanie Symulacja Analiza wyników Narzędzia Obliczenia algebraiczne, optymalizacja Rozwiązywanie układów równań algebraicznych i różniczkowych Prezentacja wyników, interpolacja, aproksymacja Import / eksport danych 2
3 Wspomaganie obliczeń matematycznych Numeryczne obliczenia Matlab Scilab Octave obliczenia w dużej skali algorytmy numeryczne wizualizacja wyników Toolbox y Matlab Simulink 3
4 Wspomaganie obliczeń matematycznych computer algebra system Obliczenia symboliczne Maple Mathematica MathCad Maxima Algorytmy numeryczne, Wizualizacja wyników możliwości składu tekstów matematycznych 4
5 Wspomaganie obliczeń matematycznych Metoda rachunku numeryczny symboliczny Możliwość rozwiązywania trudnych zadań praktycznych Wielość metod o różnej skuteczności Wymaga wiedzy wykraczającej poza rozwiązywane zadanie Wynik zazwyczaj tak tak najczęściej tak skończony zestaw liczb lub rysunek zazwyczaj nie tak najczęściej nie wzór lub informacja o charakterze rozwiązania 5
6 Wspomaganie obliczeń matematycznych Metoda rachunku numeryczny symboliczny Potrafi działać na abstrakcyjnych obiektach Dobrze radzi sobie z nieskończonościami Dobrze radzi sobie z mnogością parametrów Precyzja wyniku Ostateczna jakość wyniku nie zazwyczaj nie tak ograniczona niepewna tak zazwyczaj tak nie teoretycznie nieskończona niepewna 6
7 Zestawienie programów Komercyjne: Algebrator ClassPad Manager LiveMath Magma Maple Mathcad Mathematica MuPAD TI InterActive! WIRIS Open source Axiom Cadabra CoCoA DoCon Eigenmath Fri GAP GiNaC Macaulay2 Mathomatic Maxima OpenAxiom PARI/GP Reduce Sage SINGULAR SymPy Xcas Octave Scilab Free/shareware Fermat Nierozwijane Derive D Macsyma mumath Yacas 7
8 Wspomaganie obliczeń matematycznych Środowiska zintegrowane/hybrydowe Matlab Simulink Symbolic Math Toolbox (MuPAD) 8
9 Obliczenie numeryczne - Scilab SCILAB I.N.R.I.A. (Institut National de Recherche en Informatique et Automatique) rozwiązywanie układów liniowych, wyznaczanie wartości własnych, wektorów własnych, szybka transformacja Fouriera, rozwiązywanie równań różniczkowych, algorytmy optymalizacji, rozwiązywanie równań nieliniowych, generowanie liczb losowych, 9
10 Scilab Operacje na macierzach dodawanie, odejmowanie, mnożenie macierze jednostkowe 10
11 Scilab Rysowanie przebiegów funkcji 2D 11
12 Scilab Rysowanie przebiegów funkcji 3D 12
13 Mathcad środowisko pracy Mathcad 15.0, Mathcad Prime 1.0 Parametric Technology Corporation's 13
14 Obliczenia symboliczne - Mathcad Rozwiązanie równania kwadratowego Język programowania LISP x = (-B+SQRT(B**2-4*A*C))/(2*A) Arkusz kalkulacyjny =(-B1+PIERWIASTEK(B1*B1-4*A1*C1))/(2*A1) Mathcad 14
15 PTC Mathcad Prime 1.0 Środowisko obliczeń Document-centric Zaawansowane odkrywanie matematyki Biblioteki numeryczne Dynamiczna kontrola jednostek Reverse compatibility Edytor równań WYSIWYG Design of Experiments (DoE) 15
16 Mathcad Prime
17 Mathcad Prime
18 Obliczenia symboliczne - WolframAlpha 18
19 WolframAlpha Rozwiązywanie równań liniowych 19
20 WolframAlpha Rozwiązywanie równań różniczkowych 20
21 WolframAlpha Regresja liniowa 21
22 WolframAlpha Regresja ekspotencjalna 22
23 WolframAlpha Wykresy funkcji 2D 3D 23
24 Wolfram Mathematica 24 dr inż. Michał Michna
25 Wolfram Mathematica 25 dr inż. Michał Michna
26 Maxima Różniczkowanie i całkowanie symboliczne Rozwiązywanie równań i układów równań algebraicznych Rozwiązywanie wybranych typów równań różniczkowych Upraszczanie wyrażeń algebraicznych Tworzenie wykresów 2D i 3D (za pośrednictwem Gnuplota) Szeregi Fouriera Operacje na macierzach Obliczenia dowolnej precyzji Eksport wyników do TeX a Strukturalny język programowania (+Lisp) Wybrane operacje numeryczne Wybrane operacje statystyczne 26
27 Maxima 1968 MIT Departamentu Energii USA programu Macsyma 1988 GPL 27
28 Maxima Rozwiązywanie równań 28
29 Maxima Wykresy 2D 29
30 Maxima Wykresy 3D 30
31 Maxima Rozwiązywanie równań liniowych 31
32 Maxima Pochodne 32
33 Maxima Funkcje 33
34 Maxima Funkcje 34
35 Maxima Web Maxima, a Computer Algebra System elearning.cerfacs.fr/miscellane ous/tools/maxima/index.p hp 35
36 Analiza i wizualizacja danych AutoSignal DADISP Grapher IRISExplorer MapViewer Origin PeakFit SigmaScan SigmaPlot SigmaStat 36
37 Modelowanie i symulacje Mechatronika SPICE PSpice, LTSpice MAST/VHDL SABER Grafy wiązań - 20-Sim Modelica - Dynasim 37
dr inż. Michał Michna WSPOMAGANIE OBLICZEŃ MATEMATYCZNYCH
dr inż. Michał Michna WSPOMAGANIE OBLICZEŃ MATEMATYCZNYCH Wspomaganie obliczeń matematycznych Potrzeby Projektowanie Modelowanie Symulacja Analiza wyników Narzędzia Obliczenia algebraiczne optymalizacja
Bardziej szczegółowoWspomaganie obliczeń matematycznych. dr inż. Michał Michna
Wspomaganie obliczeń matematycznych dr inż. Michał Michna Wspomaganie obliczeń matematycznych Potrzeby Projektowanie Modelowanie Symulacja Analiza wyników Narzędzia Obliczenia algebraiczne, optymalizacja
Bardziej szczegółowoObliczenia inżynierskie. oprogramowanie matematyczne
Obliczenia inżynierskie oprogramowanie matematyczne Mathcad środowisko pracy Mathcad 15.0, Mathcad Prime 1.0 Parametric Technology Corporation's 2 PTC Mathcad Prime 1.0 Środowisko obliczeń Document-centric
Bardziej szczegółowoKomputerowe Wspomaganie Obliczeń. dr Robert Kowalczyk
Komputerowe Wspomaganie Obliczeń dr Robert Kowalczyk Komputerowe Wspomaganie Obliczeń Programy Komputerowego Wspomagania Obliczeń to programy komputerowe wspomagające obliczenia numeryczne lub symboliczne
Bardziej szczegółowoPWSZ w Tarnowie Instytut Politechniczny Elektrotechnika
PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika METODY NUMERYCZNE WYKŁAD Andrzej M. Dąbrowski amd@agh.edu.pl Paw.C p.100e Konsultacje: środa 14 45-15 30 czwartek 14 45 - Wykład 2 godz. lekcyjne.
Bardziej szczegółowoObliczenia Naukowe. Wykład 11:Pakiety do obliczeń: naukowych i inżynierskich Przegląd i porównanie. Bartek Wilczyński
Obliczenia Naukowe Wykład 11:Pakiety do obliczeń: naukowych i inżynierskich Przegląd i porównanie Bartek Wilczyński 30.5.2016 Plan na dziś Pakiety do obliczeń: przegląd zastosowań różnice w zapotrzebowaniu:
Bardziej szczegółowoObliczenia inżynierskie. Liczby, Programy CAS, Arkusz kalkulacyjny
Obliczenia inżynierskie Liczby, Programy CAS, Arkusz kalkulacyjny Reprezentacja liczb w komputerze 2 Pozycyjne systemy liczbowe System dziesiętny ( decymalny, arabski) podstawą kolejnych potęg jest 10
Bardziej szczegółowoObliczenia inżynierskie. Liczby Programy CAS Arkusz kalkulacyjny
Obliczenia inżynierskie Liczby Programy CAS Arkusz kalkulacyjny 2 3 Pozycyjne systemy liczbowe System dziesiętny ( decymalny, arabski) podstawą kolejnych potęg jest 10 do zapisu potrzebnych 10 cyfr: 1,2,3,4,5,6,7,8,9,0
Bardziej szczegółowoSpis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII
Spis treści Od autora..................................................... Obliczenia inżynierskie i naukowe.................................. X XII Ostrzeżenia...................................................XVII
Bardziej szczegółowoArchitektura dużych projektów bioinformatycznych
Architektura dużych projektów bioinformatycznych Pakiety do obliczeń: naukowych, Inżynierskich i statystycznych Przegląd i porównanie Bartek Wilczyński 23.11.2014 Plan na dziś Pakiety do obliczeń: przegląd
Bardziej szczegółowoWykład Ćwiczenia Laboratorium Projekt Seminarium 15 30
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim PAKIETY MATEMATYCZNE Nazwa w języku angielskim Mathematical Programming Packages Kierunek studiów (jeśli
Bardziej szczegółowoInżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.
Bardziej szczegółowoWYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim PAKIETY MATEMATYCZNE Nazwa w języku angielskim Mathematical Programming Packages Kierunek studiów (jeśli
Bardziej szczegółowoDostawa oprogramowania. Nr sprawy: ZP /15
........ (pieczątka adresowa Oferenta) Zamawiający: Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu, ul. Staszica,33-300 Nowy Sącz. Strona: z 5 Arkusz kalkulacyjny określający minimalne parametry techniczne
Bardziej szczegółowoPakiety matematyczne. Matematyka Stosowana. dr inż. Krzysztof Burnecki
Pakiety matematyczne Matematyka Stosowana dr inż. Krzysztof Burnecki 22.05.2013 Wykład 12 Mathematica. Wprowadzenie Obliczenia w Mathematice Wolfram Alpha Slajdy powstały na podstawie strony www.mathematica.pl
Bardziej szczegółowoArchitektura dużych projektów bioinformatycznych
Architektura dużych projektów bioinformatycznych Pakiety do obliczeń: naukowych, Inżynierskich i statystycznych Przegląd i porównanie Bartek Wilczyński 10.4.2019 Plan na przyszły tydzień: quiz Kto używał
Bardziej szczegółowoWYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
I. KARTA PRZEDMIOTU. Nazwa przedmiotu: Matematyka III. Kod przedmiotu:. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego. Kierunek: Informatyka 5. Specjalność: Systemy wspomagania decyzji\technologie
Bardziej szczegółowoTop 38 w roku GeoGebra
Top 38 w roku 2017 GeoGebra 6.0.379.0 GeoGebra to opensource'owy i wielokrotnie nagradzany program do nauki matematyki do zainstalowania na komputerach pracujących pod kontrolą systemów operacyjnych z
Bardziej szczegółowo2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26
Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne
Bardziej szczegółowoTworzenie macierzy pełnych Generowanie macierzy pełnych Funkcje przekształcające macierze pełne
SPIS TREŚCI 1. WSTĘP 7 2. ŚRODOWISKO MATLABA 10 2.1. Charakterystyka 10 2.2. Budowa pakietu 11 2.2.1. Okno poleceń, katalogów i pamięci roboczej 12 2.2.2. Podstawowe zasady poruszania się w obrębie środowiska
Bardziej szczegółowoKARTA MODUŁU (część I)
UNIWERSYTET ROLNICZY IM. HUGONA KOŁŁĄTAJA W KRAKOWIE KARTA MODUŁU () Moduł Informatyczne podstawy projektowania składa się z dwóch przedmiotów: Informatyczne podstawy projektowania (), Informatyczne podstawy
Bardziej szczegółowoSymPy czyli matematyka w Pythonie
SymPy czyli matematyka w Pythonie Mateusz Paprocki Wrocław University of Technology University of Nevada, Reno 8 października 2010 Plan prezentacji Matematyka w Pythonie Wprowadzenie
Bardziej szczegółowoWykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy
Bardziej szczegółowoWykorzystanie programów komputerowych do obliczeń matematycznych
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy Przykłady: Programy wykorzystywane
Bardziej szczegółowoKARTA MODUŁU (część I, 2013/2014)
UNIWERSYTET ROLNICZY IM. HUGONA KOŁŁĄTAJA W KRAKOWIE KARTA MODUŁU (, 013/014) Moduł Informatyczne podstawy projektowania składa się z dwóch przedmiotów: Informatyczne podstawy projektowania (), Informatyczne
Bardziej szczegółowoOPIS MODUŁU KSZTAŁCENIA (przedmiot lub grupa przedmiotów)
OPIS MODUŁU KSZTAŁCENIA (przedmiot lub grupa przedmiotów) Nazwa modułu/ przedmiotu Narzędzia informatyczne w warsztacie inżyniera Nazwa jednostki prowadzącej przedmiot Instytut Matematyki, Fizyki Przedmioty:
Bardziej szczegółowoSymPy matematyka symboliczna w Pythonie
SymPy matematyka symboliczna w Pythonie Mateusz Paprocki Continuum Analytics, Inc. 30 listopada 2015 Co to jest matematyka symboliczna? Python operuje na liczbach zmiennoprzecinkowych
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Obliczenia symboliczne Symbolic computations Kierunek: Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Informatyka Rodzaj zajęć: wykład,
Bardziej szczegółowoKARTA MODUŁU (część I)
UNIWERSYTET ROLNICZY IM. HUGONA KOŁŁĄTAJA W KRAKOWIE KARTA MODUŁU () Moduł Informatyczne podstawy projektowania składa się z dwóch przedmiotów: Informatyczne podstawy projektowania (), Informatyczne podstawy
Bardziej szczegółowoMatlab - zastosowania Matlab - applications. Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Matlab - zastosowania Matlab - applications A. USYTUOWANIE MODUŁU W SYSTEMIE
Bardziej szczegółowoPREZENTACJA MODULACJI FM W PROGRAMIE MATHCAD
POZA UIVE RSITY OF TE CHOLOGY ACADE MIC JOURALS o 92 Electrical Engineering 2017 DOI 10.21008/j.1897-0737.2017.92.0034 Jakub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* Janusz KOWALSKI** PREZETACJA MODULACJI FM W
Bardziej szczegółowoWykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy
Bardziej szczegółowoRozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera
Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera Arkadiusz Syta A. Syta (Politechnika Lubelska) 1 / 19 Wstęp Przegląd wybranych pakietów oprogramowania i funkcji Rozwiązywanie równań
Bardziej szczegółowoPODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
Bardziej szczegółowoOpis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań
TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: POZIOM KSZTAŁCENIA: PROFIL KSZTAŁCENIA:
Bardziej szczegółowoKierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2016/2017 Język wykładowy: Polski
Bardziej szczegółowoKARTA KURSU (realizowanego w module specjalności) Metody numeryczne
KARTA KURSU (realizowanego w module ) Administracja systemami informatycznymi (nazwa ) Nazwa Nazwa w j. ang. Metody numeryczne Numerical methods Kod Punktacja ECTS* 3 Koordynator dr Kazimierz Rajchel Zespół
Bardziej szczegółowoElementy projektowania inzynierskiego Przypomnienie systemu Mathcad
Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia
Bardziej szczegółowoPRZETWARZANIE I ORGANIZOWANIE DANYCH: ARKUSZ KALKULACYJNY
PRZETWARZANIE I ORGANIZOWANIE DANYCH: ARKUSZ KALKULACYJNY Dr inż. Marcin Witczak Uniwersytet Zielonogórski Przetwarzanie i organizowanie danych: arkusz kalkulacyjny 1 PLAN WPROWADZENIA Profesjonalne systemy
Bardziej szczegółowoInformatyka. Wykład 0. Witold Dyrka 13/2/2012
Informatyka Wykład 0 Witold Dyrka witold.dyrka@pwr.wroc.pl 13/2/2012 Dzisiejszy wykład w oparciu o... J. Brucker, A Brief History of Matlab. http://www.cpe.ku.ac.th/~anan/courses/204111-matlab/document-2004/2004-01-2-history-matlab-jim.ppt
Bardziej szczegółowoINFORMATYKA TECHNICZNA Komputerowe Wspomaganie Obliczeń Wykład 3. Komputerowe wspomaganie obliczeń w programie Mathcad. dr inż.
INFORMATYKA TECHNICZNA Komputerowe Wspomaganie Obliczeń Wykład 3. Komputerowe wspomaganie obliczeń w programie Mathcad dr inż. Paweł Surdacki Instytut Podstaw Elektrotechniki i Elektrotechnologii Politechniki
Bardziej szczegółowoE-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu. Dynamicznych. Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu Dynamicznych Nazwa modułu w języku
Bardziej szczegółowoKierunek: Matematyka w technice
Kierunek: Matematyka w technice Wykaz modułów kształcenia z podziałem na semestry Forma zajęć: W wykład C ćwiczenia L laboratorium P projekt S searium E egza Semestr 1 Analiza matematyczna I Algebra liniowa
Bardziej szczegółowoObliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński
Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa
Bardziej szczegółowoMetody numeryczne. dr hab inż. Tomasz Chwiej. Syllabus:
Metody numeryczne dr hab inż. Tomasz Chwiej Syllabus: https://syllabuskrk.agh.edu.pl/pl Plan wykładu 1. Arytmetyka komputerowa, błędy numeryczne 2. Rozwiązywanie układów algebraicznych równań liniowych
Bardziej szczegółowoSYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)
Załącznik nr do Uchwały Senatu nr 0/01/015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 015-018 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Komputerowe wspomaganie nauczania
Bardziej szczegółowoElektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy. Obowiązkowy Polski VI semestr zimowy
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Bardziej szczegółowoECTS Razem 30 Godz. 330
3-letnie stacjonarne studia licencjackie kier. Matematyka profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Algebra liniowa z geometrią analityczną I 7 30 30 E Analiza matematyczna I 13 60 60 E Technologie
Bardziej szczegółowoInformacje o ogłoszeniu
Informacje o ogłoszeniu Data publikacji ogłoszenia 23-10-2018 Termin składania ofert 07-11-2018 Numer ogłoszenia 1143098 Status ogłoszenia Aktualne Miejsce i sposób składania ofert Ofertę należy przesłać
Bardziej szczegółowoMet Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 1 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Informacje wstępne Wykład 2h Laboratorium
Bardziej szczegółowoPREZENTACJA WŁAŚCIWOŚCI FILTRÓW WYGŁADZAJĄCYCH II RZĘDU W PROGAMIE MathCad
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 87 Electrical Engineering 2016 Jakub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* Janusz KOWALSKI** PREZENTACJA WŁAŚCIWOŚCI FILTRÓW WYGŁADZAJĄCYCH II RZĘDU W
Bardziej szczegółowoSTYCZEŃ 2017 Analiza wyników sprawdzianu na zakończenie nauki. w I semestrze drugiej klasy gimnazjum MATEMATYKA
STYCZEŃ 2017 Analiza wyników sprawdzianu na zakończenie nauki w I semestrze drugiej klasy gimnazjum MATEMATYKA Zestaw składał się z 21 zadań zamkniętych różnego typu i 3 zadań otwartych. Zadania sprawdzały
Bardziej szczegółowoEFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6
EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6 studia pierwszego stopnia o profilu ogólnoakademickim Symbol K_W01 Po ukończeniu studiów pierwszego stopnia
Bardziej szczegółowoLaboratorium 1b Operacje na macierzach oraz obliczenia symboliczne
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Metod Numerycznych Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne 1 Zadania 1. Obliczyć numerycznie
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Inżynieria oprogramowania, Sieci komputerowe Rodzaj zajęć: wykład, laboratorium MODELOWANIE I SYMULACJA Modelling
Bardziej szczegółowoWYKAZ KIERUNKOWYCH EFEKTÓW KSZTAŁCENIA KIERUNEK: MATEMATYKA, SPS WIEDZA
WYKAZ KIERUNKOWYCH EFEKTÓW KSZTAŁCENIA KIERUNEK: MATEMATYKA, SPS Symbol kierunkowego efektu kształcenia Efekty kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA K1_W01 K1_W02
Bardziej szczegółowoExcel w obliczeniach naukowych i inżynierskich. Wydanie II.
Excel w obliczeniach naukowych i inżynierskich. Wydanie II. Autor: Maciej Gonet Sprawdź, jak Excel może pomóc Ci w skomplikowanych obliczeniach! Jak za pomocą arkusza rozwiązywać zaawansowane zadania matematyczne?
Bardziej szczegółowoAutomatyka i Robotyka II Stopień ogólno akademicki studia niestacjonarne wszystkie Katedra Automatyki i Robotyki Prof. dr hab. inż.
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Bardziej szczegółowodr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska
Program wykładów z metod numerycznych na semestrze V stacjonarnych studiów stopnia I Podstawowe pojęcia metod numerycznych: zadanie numeryczne, algorytm. Analiza błędów: błąd bezwzględny i względny, przenoszenie
Bardziej szczegółowoRozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe
Zał. nr do ZW 33/01 WYDZIAŁ Informatyki i Zarządzania / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Modele systemów dynamicznych Nazwa w języku angielskim Dynamic Systems Models. Kierunek studiów (jeśli
Bardziej szczegółowoZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia
ZP/ITS/11/2012 Załącznik nr 1a do SIWZ ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych
Bardziej szczegółowoPREZENTACJA MODULACJI AM W PROGRAMIE MATHCAD
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Jakub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* PREZENTACJA MODULACJI W PROGRIE MATHCAD W artykule przedstawiono dydaktyczną
Bardziej szczegółowoPodstawy Informatyki Computer basics
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Bardziej szczegółowoZał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Obliczenia Naukowe Nazwa w języku angielskim : Scientific Computing. Kierunek studiów : Informatyka Specjalność
Bardziej szczegółowoEgzamin / zaliczenie na ocenę* 1,6 1,6
Zał. nr 4 do ZW 33/0 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Metody numeryczne Nazwa w języku angielskim Numerical methods Kierunek studiów (jeśli dotyczy): Inżynieria Systemów Specjalność
Bardziej szczegółowoOdniesienie symbol I [1] [2] [3] [4] [5] Efekt kształcenia
Efekty dla studiów pierwszego stopnia profil ogólnoakademicki, prowadzonych na kierunku Matematyka, na Wydziale Matematyki i Nauk Informacyjnych Użyte w poniższej tabeli: 1) w kolumnie 4 określenie Odniesienie
Bardziej szczegółowoProgramy wykorzystywane do obliczeń
Przykłady: Programy wykorzystywane do obliczeń. Arkusze kalkulacyjne do obliczeń numerycznych: a. LibreOffice CALC (wolny dostęp) b. Microsoft EXCEL (komercyjny). Pakiety typu CAS (ang. Computer Algebra
Bardziej szczegółowoECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures.
Algorytmy i struktury danych. Metody numeryczne ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. dzienne magisterskie Numerical methods. (Part 2. Numerical methods)
Bardziej szczegółowoMacierze Lekcja V: Wzory Cramera. Macierzowe układy równań.
Macierze Lekcja V: Wzory Cramera. Macierzowe układy równań. Wydział Matematyki Politechniki Wrocławskiej Układy Cramerowskie Układem Cramera nazywamy układ równań liniowych: AX = B, w którym A jest macierzą
Bardziej szczegółowoRok akademicki: 2016/2017 Kod: JIS s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Pakiety obliczeniowe Rok akademicki: 2016/2017 Kod: JIS-1-016-s Punkty ECTS: 6 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Informatyka Stosowana Specjalność: - Poziom studiów: Studia
Bardziej szczegółowoWykład 6. Pakiety oprogramowania analizy matematycznej. Interpretacja wyników
Wykład 6 Pakiety oprogramowania analizy matematycznej. Interpretacja wyników 1 System algebry komputerowej System algebry komputerowej lub komputerowy system obliczeń symbolicznych (ang. Computer Algebra
Bardziej szczegółowoOpisy przedmiotów do wyboru
Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 1 roku matematyki semestr letni, rok akademicki 2017/2018 Spis treści 1. Algebra i
Bardziej szczegółowoKrótka historia języków programowania
Krótka historia języków programowania Rok Język Twórca, wersje, dialekty, uwagi 1952 asemblery 1957 Fortran 1960 LISP 1960 Algol Algol 60, Algol 68 1960 COBOL 1962 APL 1962 SIMULA 1964 BASIC Do 1959 roku
Bardziej szczegółowoModelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd.
Modelowanie wybranych pojęć matematycznych semestr letni, 206/207 Wykład 0 Własności funkcji cd. Ciągłość funkcji zastosowania Przybliżone rozwiązywanie równań Znajdziemy przybliżone rozwiązanie równania
Bardziej szczegółowoGrupy pytań na egzamin inżynierski na kierunku Informatyka
Grupy pytań na egzamin inżynierski na kierunku Informatyka Dla studentów studiów dziennych Należy wybrać dwie grupy pytań. Na egzaminie zadane zostaną 3 pytania, każde z innego przedmiotu, pochodzącego
Bardziej szczegółowoWYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH
WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;
Bardziej szczegółowoMetody numeryczne w przykładach
Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach
Bardziej szczegółowoKIERUNKOWE EFEKTY KSZTAŁCENIA
KIERUNKOWE EFEKTY KSZTAŁCENIA Wydział: Matematyki Kierunek studiów: Matematyka i Statystyka (MiS) Studia w j. polskim Stopień studiów: Pierwszy (1) Profil: Ogólnoakademicki (A) Umiejscowienie kierunku
Bardziej szczegółowoMacierze Lekcja I: Wprowadzenie
Macierze Lekcja I: Wprowadzenie Wydział Matematyki Politechniki Wrocławskiej Definicja Niech dane będą dwie liczby naturalne dodatnie m i n. Układ m n liczb ułożonych w prostokątną tablicę złożoną z m
Bardziej szczegółowoWykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1
Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność
Bardziej szczegółowoMathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje
Bardziej szczegółowoautomatyka i robotyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Bardziej szczegółowoOdniesienie do kierunkowych efektów kształcenia Zna podstawowe możliwości pakietu Matlab
Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. Matlab, programowanie i zastosowania nazwa przedmiotu SYLABUS A. Informacje ogólne Tę część wypełnia koordynator przedmiotu (w porozumieniu
Bardziej szczegółowoPakiet webmathematica jako narzędzie wspomagające proces dydaktyczny przedmiotu mechanika. Łukasz Maciejewski, Wojciech Myszka, Stanisław Piesiak
Pakiet webmathematica jako narzędzie wspomagające proces dydaktyczny przedmiotu mechanika Łukasz Maciejewski, Wojciech Myszka, Stanisław Piesiak Mathematica Pakiet obliczeniowy do rozwiązywania zagadnień
Bardziej szczegółowoSpis treści. Przedmowa. Podstawy R
Spis treści Przedmowa Podstawy R 1. Środowisko R i program RStudio 1.1. Cechy języka R 1.2. Organizacja pracy w R i RStudio 1.2.1. Konsola R 1.2.2. Program RStudio 1.2.3. Pierwsze kroki w trybie interaktywnym
Bardziej szczegółowoSYLABUS/KARTA PRZEDMIOTU
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W GŁOGOWIE SYLABUS/KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU Wspomaganie komputerowe procesów projektowania. NAZWA JEDNOSTKI PROWADZĄCEJ PRZEDMIOT Instytut Politechniczny 3.
Bardziej szczegółowoWarsztaty z modelowania i symulacji procesów chemicznych w programie
Warsztaty z modelowania i symulacji procesów chemicznych w programie MATLAB/SIMULINK dla studentów wydziału chemicznego Goście specjalni Jadwiga Horoszkiewicz-Kurnyta Rafał Rabenda Przemysław Trzeciak
Bardziej szczegółowoKierunek: Matematyka, rok I specjalność: Informatyczna, Analiza danych, Nauczycielska
Kierunek: atematyka, rok I specjalność: Informatyczna, Analiza danych, Nauczycielska Przedmiot Kierunek Semestr Podstawy ekonomii 1 Podstawy prawa i ergonomii pracy 1 25 2 etody uczenia się i studiowania
Bardziej szczegółowoAnaliza Algebra Podstawy programowania strukturalnego. Podstawowe wiadomości o funkcjach Podstawowe wiadomości o macierzach Podstawy programowania
Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów
Bardziej szczegółowozna metody matematyczne w zakresie niezbędnym do formalnego i ilościowego opisu, zrozumienia i modelowania problemów z różnych
Grupa efektów kierunkowych: Matematyka stosowana I stopnia - profil praktyczny (od 17 października 2014) Matematyka Stosowana I stopień spec. Matematyka nowoczesnych technologii stacjonarne 2015/2016Z
Bardziej szczegółowoUniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII Kierunek Matematyka Studia stacjonarne i niestacjonarne I i II stopnia Organizacja roku akademickiego 2017/2018 Studia stacjonarne I
Bardziej szczegółowoWykład z okazji dnia liczby π
Wykład z okazji dnia liczby π O regresji symbolicznej Andrzej Odrzywołek Zakład Teorii Względności i Astrofizyki, Instytut Fizyki UJ 3.14 Czy potrafisz rozpoznać liczby? 3.141592653589793 2.718281828459045
Bardziej szczegółowoOPIS MODUŁ KSZTAŁCENIA (SYLABUS)
OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu Matematyka 2 2 Kod modułu 04-A-MAT2-60-1L 3 Rodzaj modułu obowiązkowy 4 Kierunek studiów astronomia 5 Poziom studiów I stopień 6 Rok
Bardziej szczegółowoZwięzły kurs analizy numerycznej
Spis treści Przedmowa... 7 1. Cyfry, liczby i błędy podstawy analizy numerycznej... 11 1.1. Systemy liczbowe... 11 1.2. Binarna reprezentacja zmiennoprzecinkowa... 16 1.3. Arytmetyka zmiennopozycyjna...
Bardziej szczegółowoKierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia
Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2015/2016 Język wykładowy:
Bardziej szczegółowo3-letnie (6-semestralne) stacjonarne studia licencjackie kier. matematyka stosowana profil: ogólnoakademicki. Semestr 1. Przedmioty wspólne
3-letnie (6-semestralne) stacjonarne studia licencjackie kier. matematyka stosowana profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Nazwa przedmiotu ECTS W Ć L P S Zal. Algebra liniowa z geometrią
Bardziej szczegółowoModelowanie rynków finansowych z wykorzystaniem pakietu R
Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie
Bardziej szczegółowoWykorzystanie wolnego oprogramowania w nauce
Wykorzystanie wolnego oprogramowania w nauce Piotr Gawron, Jarek Miszczak 24 stycznia 2007 Streszczenie Celem pracy jest porównanie komercyjnych pakietów służących do prac naukowych z ich wolnymi odpowiednikami.
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: MODELOWANIE PROCESÓW ENERGETYCZNYCH Kierunek: ENERGETYKA Rodzaj przedmiotu: specjalności obieralny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE
Bardziej szczegółowo