Wspomaganie obliczeń matematycznych. dr inż. Michał Michna

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wspomaganie obliczeń matematycznych. dr inż. Michał Michna"

Transkrypt

1 Wspomaganie obliczeń matematycznych dr inż. Michał Michna

2 Wspomaganie obliczeń matematycznych Potrzeby Projektowanie Modelowanie Symulacja Analiza wyników Narzędzia Obliczenia algebraiczne, optymalizacja Rozwiązywanie układów równań algebraicznych i różniczkowych Prezentacja wyników, interpolacja, aproksymacja Import / eksport danych 2

3 Wspomaganie obliczeń matematycznych Numeryczne obliczenia Matlab Scilab Octave obliczenia w dużej skali algorytmy numeryczne wizualizacja wyników Toolbox y Matlab Simulink 3

4 Wspomaganie obliczeń matematycznych computer algebra system Obliczenia symboliczne Maple Mathematica MathCad Maxima Algorytmy numeryczne, Wizualizacja wyników możliwości składu tekstów matematycznych 4

5 Wspomaganie obliczeń matematycznych Metoda rachunku numeryczny symboliczny Możliwość rozwiązywania trudnych zadań praktycznych Wielość metod o różnej skuteczności Wymaga wiedzy wykraczającej poza rozwiązywane zadanie Wynik zazwyczaj tak tak najczęściej tak skończony zestaw liczb lub rysunek zazwyczaj nie tak najczęściej nie wzór lub informacja o charakterze rozwiązania 5

6 Wspomaganie obliczeń matematycznych Metoda rachunku numeryczny symboliczny Potrafi działać na abstrakcyjnych obiektach Dobrze radzi sobie z nieskończonościami Dobrze radzi sobie z mnogością parametrów Precyzja wyniku Ostateczna jakość wyniku nie zazwyczaj nie tak ograniczona niepewna tak zazwyczaj tak nie teoretycznie nieskończona niepewna 6

7 Zestawienie programów Komercyjne: Algebrator ClassPad Manager LiveMath Magma Maple Mathcad Mathematica MuPAD TI InterActive! WIRIS Open source Axiom Cadabra CoCoA DoCon Eigenmath Fri GAP GiNaC Macaulay2 Mathomatic Maxima OpenAxiom PARI/GP Reduce Sage SINGULAR SymPy Xcas Octave Scilab Free/shareware Fermat Nierozwijane Derive D Macsyma mumath Yacas 7

8 Wspomaganie obliczeń matematycznych Środowiska zintegrowane/hybrydowe Matlab Simulink Symbolic Math Toolbox (MuPAD) 8

9 Obliczenie numeryczne - Scilab SCILAB I.N.R.I.A. (Institut National de Recherche en Informatique et Automatique) rozwiązywanie układów liniowych, wyznaczanie wartości własnych, wektorów własnych, szybka transformacja Fouriera, rozwiązywanie równań różniczkowych, algorytmy optymalizacji, rozwiązywanie równań nieliniowych, generowanie liczb losowych, 9

10 Scilab Operacje na macierzach dodawanie, odejmowanie, mnożenie macierze jednostkowe 10

11 Scilab Rysowanie przebiegów funkcji 2D 11

12 Scilab Rysowanie przebiegów funkcji 3D 12

13 Mathcad środowisko pracy Mathcad 15.0, Mathcad Prime 1.0 Parametric Technology Corporation's 13

14 Obliczenia symboliczne - Mathcad Rozwiązanie równania kwadratowego Język programowania LISP x = (-B+SQRT(B**2-4*A*C))/(2*A) Arkusz kalkulacyjny =(-B1+PIERWIASTEK(B1*B1-4*A1*C1))/(2*A1) Mathcad 14

15 PTC Mathcad Prime 1.0 Środowisko obliczeń Document-centric Zaawansowane odkrywanie matematyki Biblioteki numeryczne Dynamiczna kontrola jednostek Reverse compatibility Edytor równań WYSIWYG Design of Experiments (DoE) 15

16 Mathcad Prime

17 Mathcad Prime

18 Obliczenia symboliczne - WolframAlpha 18

19 WolframAlpha Rozwiązywanie równań liniowych 19

20 WolframAlpha Rozwiązywanie równań różniczkowych 20

21 WolframAlpha Regresja liniowa 21

22 WolframAlpha Regresja ekspotencjalna 22

23 WolframAlpha Wykresy funkcji 2D 3D 23

24 Wolfram Mathematica 24 dr inż. Michał Michna

25 Wolfram Mathematica 25 dr inż. Michał Michna

26 Maxima Różniczkowanie i całkowanie symboliczne Rozwiązywanie równań i układów równań algebraicznych Rozwiązywanie wybranych typów równań różniczkowych Upraszczanie wyrażeń algebraicznych Tworzenie wykresów 2D i 3D (za pośrednictwem Gnuplota) Szeregi Fouriera Operacje na macierzach Obliczenia dowolnej precyzji Eksport wyników do TeX a Strukturalny język programowania (+Lisp) Wybrane operacje numeryczne Wybrane operacje statystyczne 26

27 Maxima 1968 MIT Departamentu Energii USA programu Macsyma 1988 GPL 27

28 Maxima Rozwiązywanie równań 28

29 Maxima Wykresy 2D 29

30 Maxima Wykresy 3D 30

31 Maxima Rozwiązywanie równań liniowych 31

32 Maxima Pochodne 32

33 Maxima Funkcje 33

34 Maxima Funkcje 34

35 Maxima Web Maxima, a Computer Algebra System elearning.cerfacs.fr/miscellane ous/tools/maxima/index.p hp 35

36 Analiza i wizualizacja danych AutoSignal DADISP Grapher IRISExplorer MapViewer Origin PeakFit SigmaScan SigmaPlot SigmaStat 36

37 Modelowanie i symulacje Mechatronika SPICE PSpice, LTSpice MAST/VHDL SABER Grafy wiązań - 20-Sim Modelica - Dynasim 37

dr inż. Michał Michna WSPOMAGANIE OBLICZEŃ MATEMATYCZNYCH

dr inż. Michał Michna WSPOMAGANIE OBLICZEŃ MATEMATYCZNYCH dr inż. Michał Michna WSPOMAGANIE OBLICZEŃ MATEMATYCZNYCH Wspomaganie obliczeń matematycznych Potrzeby Projektowanie Modelowanie Symulacja Analiza wyników Narzędzia Obliczenia algebraiczne optymalizacja

Bardziej szczegółowo

Wspomaganie obliczeń matematycznych. dr inż. Michał Michna

Wspomaganie obliczeń matematycznych. dr inż. Michał Michna Wspomaganie obliczeń matematycznych dr inż. Michał Michna Wspomaganie obliczeń matematycznych Potrzeby Projektowanie Modelowanie Symulacja Analiza wyników Narzędzia Obliczenia algebraiczne, optymalizacja

Bardziej szczegółowo

Obliczenia inżynierskie. oprogramowanie matematyczne

Obliczenia inżynierskie. oprogramowanie matematyczne Obliczenia inżynierskie oprogramowanie matematyczne Mathcad środowisko pracy Mathcad 15.0, Mathcad Prime 1.0 Parametric Technology Corporation's 2 PTC Mathcad Prime 1.0 Środowisko obliczeń Document-centric

Bardziej szczegółowo

Komputerowe Wspomaganie Obliczeń. dr Robert Kowalczyk

Komputerowe Wspomaganie Obliczeń. dr Robert Kowalczyk Komputerowe Wspomaganie Obliczeń dr Robert Kowalczyk Komputerowe Wspomaganie Obliczeń Programy Komputerowego Wspomagania Obliczeń to programy komputerowe wspomagające obliczenia numeryczne lub symboliczne

Bardziej szczegółowo

PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika

PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika METODY NUMERYCZNE WYKŁAD Andrzej M. Dąbrowski amd@agh.edu.pl Paw.C p.100e Konsultacje: środa 14 45-15 30 czwartek 14 45 - Wykład 2 godz. lekcyjne.

Bardziej szczegółowo

Obliczenia Naukowe. Wykład 11:Pakiety do obliczeń: naukowych i inżynierskich Przegląd i porównanie. Bartek Wilczyński

Obliczenia Naukowe. Wykład 11:Pakiety do obliczeń: naukowych i inżynierskich Przegląd i porównanie. Bartek Wilczyński Obliczenia Naukowe Wykład 11:Pakiety do obliczeń: naukowych i inżynierskich Przegląd i porównanie Bartek Wilczyński 30.5.2016 Plan na dziś Pakiety do obliczeń: przegląd zastosowań różnice w zapotrzebowaniu:

Bardziej szczegółowo

Obliczenia inżynierskie. Liczby, Programy CAS, Arkusz kalkulacyjny

Obliczenia inżynierskie. Liczby, Programy CAS, Arkusz kalkulacyjny Obliczenia inżynierskie Liczby, Programy CAS, Arkusz kalkulacyjny Reprezentacja liczb w komputerze 2 Pozycyjne systemy liczbowe System dziesiętny ( decymalny, arabski) podstawą kolejnych potęg jest 10

Bardziej szczegółowo

Obliczenia inżynierskie. Liczby Programy CAS Arkusz kalkulacyjny

Obliczenia inżynierskie. Liczby Programy CAS Arkusz kalkulacyjny Obliczenia inżynierskie Liczby Programy CAS Arkusz kalkulacyjny 2 3 Pozycyjne systemy liczbowe System dziesiętny ( decymalny, arabski) podstawą kolejnych potęg jest 10 do zapisu potrzebnych 10 cyfr: 1,2,3,4,5,6,7,8,9,0

Bardziej szczegółowo

Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII

Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII Spis treści Od autora..................................................... Obliczenia inżynierskie i naukowe.................................. X XII Ostrzeżenia...................................................XVII

Bardziej szczegółowo

Architektura dużych projektów bioinformatycznych

Architektura dużych projektów bioinformatycznych Architektura dużych projektów bioinformatycznych Pakiety do obliczeń: naukowych, Inżynierskich i statystycznych Przegląd i porównanie Bartek Wilczyński 23.11.2014 Plan na dziś Pakiety do obliczeń: przegląd

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium 15 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium 15 30 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim PAKIETY MATEMATYCZNE Nazwa w języku angielskim Mathematical Programming Packages Kierunek studiów (jeśli

Bardziej szczegółowo

Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści

Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim PAKIETY MATEMATYCZNE Nazwa w języku angielskim Mathematical Programming Packages Kierunek studiów (jeśli

Bardziej szczegółowo

Dostawa oprogramowania. Nr sprawy: ZP /15

Dostawa oprogramowania. Nr sprawy: ZP /15 ........ (pieczątka adresowa Oferenta) Zamawiający: Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu, ul. Staszica,33-300 Nowy Sącz. Strona: z 5 Arkusz kalkulacyjny określający minimalne parametry techniczne

Bardziej szczegółowo

Pakiety matematyczne. Matematyka Stosowana. dr inż. Krzysztof Burnecki

Pakiety matematyczne. Matematyka Stosowana. dr inż. Krzysztof Burnecki Pakiety matematyczne Matematyka Stosowana dr inż. Krzysztof Burnecki 22.05.2013 Wykład 12 Mathematica. Wprowadzenie Obliczenia w Mathematice Wolfram Alpha Slajdy powstały na podstawie strony www.mathematica.pl

Bardziej szczegółowo

Architektura dużych projektów bioinformatycznych

Architektura dużych projektów bioinformatycznych Architektura dużych projektów bioinformatycznych Pakiety do obliczeń: naukowych, Inżynierskich i statystycznych Przegląd i porównanie Bartek Wilczyński 10.4.2019 Plan na przyszły tydzień: quiz Kto używał

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI I. KARTA PRZEDMIOTU. Nazwa przedmiotu: Matematyka III. Kod przedmiotu:. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego. Kierunek: Informatyka 5. Specjalność: Systemy wspomagania decyzji\technologie

Bardziej szczegółowo

Top 38 w roku GeoGebra

Top 38 w roku GeoGebra Top 38 w roku 2017 GeoGebra 6.0.379.0 GeoGebra to opensource'owy i wielokrotnie nagradzany program do nauki matematyki do zainstalowania na komputerach pracujących pod kontrolą systemów operacyjnych z

Bardziej szczegółowo

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26 Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne

Bardziej szczegółowo

Tworzenie macierzy pełnych Generowanie macierzy pełnych Funkcje przekształcające macierze pełne

Tworzenie macierzy pełnych Generowanie macierzy pełnych Funkcje przekształcające macierze pełne SPIS TREŚCI 1. WSTĘP 7 2. ŚRODOWISKO MATLABA 10 2.1. Charakterystyka 10 2.2. Budowa pakietu 11 2.2.1. Okno poleceń, katalogów i pamięci roboczej 12 2.2.2. Podstawowe zasady poruszania się w obrębie środowiska

Bardziej szczegółowo

KARTA MODUŁU (część I)

KARTA MODUŁU (część I) UNIWERSYTET ROLNICZY IM. HUGONA KOŁŁĄTAJA W KRAKOWIE KARTA MODUŁU () Moduł Informatyczne podstawy projektowania składa się z dwóch przedmiotów: Informatyczne podstawy projektowania (), Informatyczne podstawy

Bardziej szczegółowo

SymPy czyli matematyka w Pythonie

SymPy czyli matematyka w Pythonie SymPy czyli matematyka w Pythonie Mateusz Paprocki Wrocław University of Technology University of Nevada, Reno 8 października 2010 Plan prezentacji Matematyka w Pythonie Wprowadzenie

Bardziej szczegółowo

Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2

Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy

Bardziej szczegółowo

Wykorzystanie programów komputerowych do obliczeń matematycznych

Wykorzystanie programów komputerowych do obliczeń matematycznych Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy Przykłady: Programy wykorzystywane

Bardziej szczegółowo

KARTA MODUŁU (część I, 2013/2014)

KARTA MODUŁU (część I, 2013/2014) UNIWERSYTET ROLNICZY IM. HUGONA KOŁŁĄTAJA W KRAKOWIE KARTA MODUŁU (, 013/014) Moduł Informatyczne podstawy projektowania składa się z dwóch przedmiotów: Informatyczne podstawy projektowania (), Informatyczne

Bardziej szczegółowo

OPIS MODUŁU KSZTAŁCENIA (przedmiot lub grupa przedmiotów)

OPIS MODUŁU KSZTAŁCENIA (przedmiot lub grupa przedmiotów) OPIS MODUŁU KSZTAŁCENIA (przedmiot lub grupa przedmiotów) Nazwa modułu/ przedmiotu Narzędzia informatyczne w warsztacie inżyniera Nazwa jednostki prowadzącej przedmiot Instytut Matematyki, Fizyki Przedmioty:

Bardziej szczegółowo

SymPy matematyka symboliczna w Pythonie

SymPy matematyka symboliczna w Pythonie SymPy matematyka symboliczna w Pythonie Mateusz Paprocki Continuum Analytics, Inc. 30 listopada 2015 Co to jest matematyka symboliczna? Python operuje na liczbach zmiennoprzecinkowych

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Obliczenia symboliczne Symbolic computations Kierunek: Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Informatyka Rodzaj zajęć: wykład,

Bardziej szczegółowo

KARTA MODUŁU (część I)

KARTA MODUŁU (część I) UNIWERSYTET ROLNICZY IM. HUGONA KOŁŁĄTAJA W KRAKOWIE KARTA MODUŁU () Moduł Informatyczne podstawy projektowania składa się z dwóch przedmiotów: Informatyczne podstawy projektowania (), Informatyczne podstawy

Bardziej szczegółowo

Matlab - zastosowania Matlab - applications. Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Matlab - zastosowania Matlab - applications. Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Matlab - zastosowania Matlab - applications A. USYTUOWANIE MODUŁU W SYSTEMIE

Bardziej szczegółowo

PREZENTACJA MODULACJI FM W PROGRAMIE MATHCAD

PREZENTACJA MODULACJI FM W PROGRAMIE MATHCAD POZA UIVE RSITY OF TE CHOLOGY ACADE MIC JOURALS o 92 Electrical Engineering 2017 DOI 10.21008/j.1897-0737.2017.92.0034 Jakub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* Janusz KOWALSKI** PREZETACJA MODULACJI FM W

Bardziej szczegółowo

Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2

Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera

Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera Arkadiusz Syta A. Syta (Politechnika Lubelska) 1 / 19 Wstęp Przegląd wybranych pakietów oprogramowania i funkcji Rozwiązywanie równań

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań

Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: POZIOM KSZTAŁCENIA: PROFIL KSZTAŁCENIA:

Bardziej szczegółowo

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2016/2017 Język wykładowy: Polski

Bardziej szczegółowo

KARTA KURSU (realizowanego w module specjalności) Metody numeryczne

KARTA KURSU (realizowanego w module specjalności) Metody numeryczne KARTA KURSU (realizowanego w module ) Administracja systemami informatycznymi (nazwa ) Nazwa Nazwa w j. ang. Metody numeryczne Numerical methods Kod Punktacja ECTS* 3 Koordynator dr Kazimierz Rajchel Zespół

Bardziej szczegółowo

Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad

Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia

Bardziej szczegółowo

PRZETWARZANIE I ORGANIZOWANIE DANYCH: ARKUSZ KALKULACYJNY

PRZETWARZANIE I ORGANIZOWANIE DANYCH: ARKUSZ KALKULACYJNY PRZETWARZANIE I ORGANIZOWANIE DANYCH: ARKUSZ KALKULACYJNY Dr inż. Marcin Witczak Uniwersytet Zielonogórski Przetwarzanie i organizowanie danych: arkusz kalkulacyjny 1 PLAN WPROWADZENIA Profesjonalne systemy

Bardziej szczegółowo

Informatyka. Wykład 0. Witold Dyrka 13/2/2012

Informatyka. Wykład 0. Witold Dyrka 13/2/2012 Informatyka Wykład 0 Witold Dyrka witold.dyrka@pwr.wroc.pl 13/2/2012 Dzisiejszy wykład w oparciu o... J. Brucker, A Brief History of Matlab. http://www.cpe.ku.ac.th/~anan/courses/204111-matlab/document-2004/2004-01-2-history-matlab-jim.ppt

Bardziej szczegółowo

INFORMATYKA TECHNICZNA Komputerowe Wspomaganie Obliczeń Wykład 3. Komputerowe wspomaganie obliczeń w programie Mathcad. dr inż.

INFORMATYKA TECHNICZNA Komputerowe Wspomaganie Obliczeń Wykład 3. Komputerowe wspomaganie obliczeń w programie Mathcad. dr inż. INFORMATYKA TECHNICZNA Komputerowe Wspomaganie Obliczeń Wykład 3. Komputerowe wspomaganie obliczeń w programie Mathcad dr inż. Paweł Surdacki Instytut Podstaw Elektrotechniki i Elektrotechnologii Politechniki

Bardziej szczegółowo

E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu. Dynamicznych. Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy

E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu. Dynamicznych. Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu Dynamicznych Nazwa modułu w języku

Bardziej szczegółowo

Kierunek: Matematyka w technice

Kierunek: Matematyka w technice Kierunek: Matematyka w technice Wykaz modułów kształcenia z podziałem na semestry Forma zajęć: W wykład C ćwiczenia L laboratorium P projekt S searium E egza Semestr 1 Analiza matematyczna I Algebra liniowa

Bardziej szczegółowo

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa

Bardziej szczegółowo

Metody numeryczne. dr hab inż. Tomasz Chwiej. Syllabus:

Metody numeryczne. dr hab inż. Tomasz Chwiej. Syllabus: Metody numeryczne dr hab inż. Tomasz Chwiej Syllabus: https://syllabuskrk.agh.edu.pl/pl Plan wykładu 1. Arytmetyka komputerowa, błędy numeryczne 2. Rozwiązywanie układów algebraicznych równań liniowych

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Załącznik nr do Uchwały Senatu nr 0/01/015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 015-018 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Komputerowe wspomaganie nauczania

Bardziej szczegółowo

Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy. Obowiązkowy Polski VI semestr zimowy

Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy. Obowiązkowy Polski VI semestr zimowy KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

ECTS Razem 30 Godz. 330

ECTS Razem 30 Godz. 330 3-letnie stacjonarne studia licencjackie kier. Matematyka profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Algebra liniowa z geometrią analityczną I 7 30 30 E Analiza matematyczna I 13 60 60 E Technologie

Bardziej szczegółowo

Informacje o ogłoszeniu

Informacje o ogłoszeniu Informacje o ogłoszeniu Data publikacji ogłoszenia 23-10-2018 Termin składania ofert 07-11-2018 Numer ogłoszenia 1143098 Status ogłoszenia Aktualne Miejsce i sposób składania ofert Ofertę należy przesłać

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 1 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Informacje wstępne Wykład 2h Laboratorium

Bardziej szczegółowo

PREZENTACJA WŁAŚCIWOŚCI FILTRÓW WYGŁADZAJĄCYCH II RZĘDU W PROGAMIE MathCad

PREZENTACJA WŁAŚCIWOŚCI FILTRÓW WYGŁADZAJĄCYCH II RZĘDU W PROGAMIE MathCad POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 87 Electrical Engineering 2016 Jakub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* Janusz KOWALSKI** PREZENTACJA WŁAŚCIWOŚCI FILTRÓW WYGŁADZAJĄCYCH II RZĘDU W

Bardziej szczegółowo

STYCZEŃ 2017 Analiza wyników sprawdzianu na zakończenie nauki. w I semestrze drugiej klasy gimnazjum MATEMATYKA

STYCZEŃ 2017 Analiza wyników sprawdzianu na zakończenie nauki. w I semestrze drugiej klasy gimnazjum MATEMATYKA STYCZEŃ 2017 Analiza wyników sprawdzianu na zakończenie nauki w I semestrze drugiej klasy gimnazjum MATEMATYKA Zestaw składał się z 21 zadań zamkniętych różnego typu i 3 zadań otwartych. Zadania sprawdzały

Bardziej szczegółowo

EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6

EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6 EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6 studia pierwszego stopnia o profilu ogólnoakademickim Symbol K_W01 Po ukończeniu studiów pierwszego stopnia

Bardziej szczegółowo

Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne

Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Metod Numerycznych Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne 1 Zadania 1. Obliczyć numerycznie

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Inżynieria oprogramowania, Sieci komputerowe Rodzaj zajęć: wykład, laboratorium MODELOWANIE I SYMULACJA Modelling

Bardziej szczegółowo

WYKAZ KIERUNKOWYCH EFEKTÓW KSZTAŁCENIA KIERUNEK: MATEMATYKA, SPS WIEDZA

WYKAZ KIERUNKOWYCH EFEKTÓW KSZTAŁCENIA KIERUNEK: MATEMATYKA, SPS WIEDZA WYKAZ KIERUNKOWYCH EFEKTÓW KSZTAŁCENIA KIERUNEK: MATEMATYKA, SPS Symbol kierunkowego efektu kształcenia Efekty kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA K1_W01 K1_W02

Bardziej szczegółowo

Excel w obliczeniach naukowych i inżynierskich. Wydanie II.

Excel w obliczeniach naukowych i inżynierskich. Wydanie II. Excel w obliczeniach naukowych i inżynierskich. Wydanie II. Autor: Maciej Gonet Sprawdź, jak Excel może pomóc Ci w skomplikowanych obliczeniach! Jak za pomocą arkusza rozwiązywać zaawansowane zadania matematyczne?

Bardziej szczegółowo

Automatyka i Robotyka II Stopień ogólno akademicki studia niestacjonarne wszystkie Katedra Automatyki i Robotyki Prof. dr hab. inż.

Automatyka i Robotyka II Stopień ogólno akademicki studia niestacjonarne wszystkie Katedra Automatyki i Robotyki Prof. dr hab. inż. Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska

dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska Program wykładów z metod numerycznych na semestrze V stacjonarnych studiów stopnia I Podstawowe pojęcia metod numerycznych: zadanie numeryczne, algorytm. Analiza błędów: błąd bezwzględny i względny, przenoszenie

Bardziej szczegółowo

Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe

Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe Zał. nr do ZW 33/01 WYDZIAŁ Informatyki i Zarządzania / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Modele systemów dynamicznych Nazwa w języku angielskim Dynamic Systems Models. Kierunek studiów (jeśli

Bardziej szczegółowo

ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia

ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia ZP/ITS/11/2012 Załącznik nr 1a do SIWZ ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych

Bardziej szczegółowo

PREZENTACJA MODULACJI AM W PROGRAMIE MATHCAD

PREZENTACJA MODULACJI AM W PROGRAMIE MATHCAD POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Jakub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* PREZENTACJA MODULACJI W PROGRIE MATHCAD W artykule przedstawiono dydaktyczną

Bardziej szczegółowo

Podstawy Informatyki Computer basics

Podstawy Informatyki Computer basics Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P) Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Obliczenia Naukowe Nazwa w języku angielskim : Scientific Computing. Kierunek studiów : Informatyka Specjalność

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę* 1,6 1,6

Egzamin / zaliczenie na ocenę* 1,6 1,6 Zał. nr 4 do ZW 33/0 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Metody numeryczne Nazwa w języku angielskim Numerical methods Kierunek studiów (jeśli dotyczy): Inżynieria Systemów Specjalność

Bardziej szczegółowo

Odniesienie symbol I [1] [2] [3] [4] [5] Efekt kształcenia

Odniesienie symbol I [1] [2] [3] [4] [5] Efekt kształcenia Efekty dla studiów pierwszego stopnia profil ogólnoakademicki, prowadzonych na kierunku Matematyka, na Wydziale Matematyki i Nauk Informacyjnych Użyte w poniższej tabeli: 1) w kolumnie 4 określenie Odniesienie

Bardziej szczegółowo

Programy wykorzystywane do obliczeń

Programy wykorzystywane do obliczeń Przykłady: Programy wykorzystywane do obliczeń. Arkusze kalkulacyjne do obliczeń numerycznych: a. LibreOffice CALC (wolny dostęp) b. Microsoft EXCEL (komercyjny). Pakiety typu CAS (ang. Computer Algebra

Bardziej szczegółowo

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures.

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. Algorytmy i struktury danych. Metody numeryczne ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. dzienne magisterskie Numerical methods. (Part 2. Numerical methods)

Bardziej szczegółowo

Macierze Lekcja V: Wzory Cramera. Macierzowe układy równań.

Macierze Lekcja V: Wzory Cramera. Macierzowe układy równań. Macierze Lekcja V: Wzory Cramera. Macierzowe układy równań. Wydział Matematyki Politechniki Wrocławskiej Układy Cramerowskie Układem Cramera nazywamy układ równań liniowych: AX = B, w którym A jest macierzą

Bardziej szczegółowo

Rok akademicki: 2016/2017 Kod: JIS s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2016/2017 Kod: JIS s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Pakiety obliczeniowe Rok akademicki: 2016/2017 Kod: JIS-1-016-s Punkty ECTS: 6 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Informatyka Stosowana Specjalność: - Poziom studiów: Studia

Bardziej szczegółowo

Wykład 6. Pakiety oprogramowania analizy matematycznej. Interpretacja wyników

Wykład 6. Pakiety oprogramowania analizy matematycznej. Interpretacja wyników Wykład 6 Pakiety oprogramowania analizy matematycznej. Interpretacja wyników 1 System algebry komputerowej System algebry komputerowej lub komputerowy system obliczeń symbolicznych (ang. Computer Algebra

Bardziej szczegółowo

Opisy przedmiotów do wyboru

Opisy przedmiotów do wyboru Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 1 roku matematyki semestr letni, rok akademicki 2017/2018 Spis treści 1. Algebra i

Bardziej szczegółowo

Krótka historia języków programowania

Krótka historia języków programowania Krótka historia języków programowania Rok Język Twórca, wersje, dialekty, uwagi 1952 asemblery 1957 Fortran 1960 LISP 1960 Algol Algol 60, Algol 68 1960 COBOL 1962 APL 1962 SIMULA 1964 BASIC Do 1959 roku

Bardziej szczegółowo

Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd.

Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd. Modelowanie wybranych pojęć matematycznych semestr letni, 206/207 Wykład 0 Własności funkcji cd. Ciągłość funkcji zastosowania Przybliżone rozwiązywanie równań Znajdziemy przybliżone rozwiązanie równania

Bardziej szczegółowo

Grupy pytań na egzamin inżynierski na kierunku Informatyka

Grupy pytań na egzamin inżynierski na kierunku Informatyka Grupy pytań na egzamin inżynierski na kierunku Informatyka Dla studentów studiów dziennych Należy wybrać dwie grupy pytań. Na egzaminie zadane zostaną 3 pytania, każde z innego przedmiotu, pochodzącego

Bardziej szczegółowo

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach

Bardziej szczegółowo

KIERUNKOWE EFEKTY KSZTAŁCENIA

KIERUNKOWE EFEKTY KSZTAŁCENIA KIERUNKOWE EFEKTY KSZTAŁCENIA Wydział: Matematyki Kierunek studiów: Matematyka i Statystyka (MiS) Studia w j. polskim Stopień studiów: Pierwszy (1) Profil: Ogólnoakademicki (A) Umiejscowienie kierunku

Bardziej szczegółowo

Macierze Lekcja I: Wprowadzenie

Macierze Lekcja I: Wprowadzenie Macierze Lekcja I: Wprowadzenie Wydział Matematyki Politechniki Wrocławskiej Definicja Niech dane będą dwie liczby naturalne dodatnie m i n. Układ m n liczb ułożonych w prostokątną tablicę złożoną z m

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1 Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

automatyka i robotyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

automatyka i robotyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

Odniesienie do kierunkowych efektów kształcenia Zna podstawowe możliwości pakietu Matlab

Odniesienie do kierunkowych efektów kształcenia Zna podstawowe możliwości pakietu Matlab Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. Matlab, programowanie i zastosowania nazwa przedmiotu SYLABUS A. Informacje ogólne Tę część wypełnia koordynator przedmiotu (w porozumieniu

Bardziej szczegółowo

Pakiet webmathematica jako narzędzie wspomagające proces dydaktyczny przedmiotu mechanika. Łukasz Maciejewski, Wojciech Myszka, Stanisław Piesiak

Pakiet webmathematica jako narzędzie wspomagające proces dydaktyczny przedmiotu mechanika. Łukasz Maciejewski, Wojciech Myszka, Stanisław Piesiak Pakiet webmathematica jako narzędzie wspomagające proces dydaktyczny przedmiotu mechanika Łukasz Maciejewski, Wojciech Myszka, Stanisław Piesiak Mathematica Pakiet obliczeniowy do rozwiązywania zagadnień

Bardziej szczegółowo

Spis treści. Przedmowa. Podstawy R

Spis treści. Przedmowa. Podstawy R Spis treści Przedmowa Podstawy R 1. Środowisko R i program RStudio 1.1. Cechy języka R 1.2. Organizacja pracy w R i RStudio 1.2.1. Konsola R 1.2.2. Program RStudio 1.2.3. Pierwsze kroki w trybie interaktywnym

Bardziej szczegółowo

SYLABUS/KARTA PRZEDMIOTU

SYLABUS/KARTA PRZEDMIOTU PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W GŁOGOWIE SYLABUS/KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU Wspomaganie komputerowe procesów projektowania. NAZWA JEDNOSTKI PROWADZĄCEJ PRZEDMIOT Instytut Politechniczny 3.

Bardziej szczegółowo

Warsztaty z modelowania i symulacji procesów chemicznych w programie

Warsztaty z modelowania i symulacji procesów chemicznych w programie Warsztaty z modelowania i symulacji procesów chemicznych w programie MATLAB/SIMULINK dla studentów wydziału chemicznego Goście specjalni Jadwiga Horoszkiewicz-Kurnyta Rafał Rabenda Przemysław Trzeciak

Bardziej szczegółowo

Kierunek: Matematyka, rok I specjalność: Informatyczna, Analiza danych, Nauczycielska

Kierunek: Matematyka, rok I specjalność: Informatyczna, Analiza danych, Nauczycielska Kierunek: atematyka, rok I specjalność: Informatyczna, Analiza danych, Nauczycielska Przedmiot Kierunek Semestr Podstawy ekonomii 1 Podstawy prawa i ergonomii pracy 1 25 2 etody uczenia się i studiowania

Bardziej szczegółowo

Analiza Algebra Podstawy programowania strukturalnego. Podstawowe wiadomości o funkcjach Podstawowe wiadomości o macierzach Podstawy programowania

Analiza Algebra Podstawy programowania strukturalnego. Podstawowe wiadomości o funkcjach Podstawowe wiadomości o macierzach Podstawy programowania Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów

Bardziej szczegółowo

zna metody matematyczne w zakresie niezbędnym do formalnego i ilościowego opisu, zrozumienia i modelowania problemów z różnych

zna metody matematyczne w zakresie niezbędnym do formalnego i ilościowego opisu, zrozumienia i modelowania problemów z różnych Grupa efektów kierunkowych: Matematyka stosowana I stopnia - profil praktyczny (od 17 października 2014) Matematyka Stosowana I stopień spec. Matematyka nowoczesnych technologii stacjonarne 2015/2016Z

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia

Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII Kierunek Matematyka Studia stacjonarne i niestacjonarne I i II stopnia Organizacja roku akademickiego 2017/2018 Studia stacjonarne I

Bardziej szczegółowo

Wykład z okazji dnia liczby π

Wykład z okazji dnia liczby π Wykład z okazji dnia liczby π O regresji symbolicznej Andrzej Odrzywołek Zakład Teorii Względności i Astrofizyki, Instytut Fizyki UJ 3.14 Czy potrafisz rozpoznać liczby? 3.141592653589793 2.718281828459045

Bardziej szczegółowo

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

OPIS MODUŁ KSZTAŁCENIA (SYLABUS) OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu Matematyka 2 2 Kod modułu 04-A-MAT2-60-1L 3 Rodzaj modułu obowiązkowy 4 Kierunek studiów astronomia 5 Poziom studiów I stopień 6 Rok

Bardziej szczegółowo

Zwięzły kurs analizy numerycznej

Zwięzły kurs analizy numerycznej Spis treści Przedmowa... 7 1. Cyfry, liczby i błędy podstawy analizy numerycznej... 11 1.1. Systemy liczbowe... 11 1.2. Binarna reprezentacja zmiennoprzecinkowa... 16 1.3. Arytmetyka zmiennopozycyjna...

Bardziej szczegółowo

Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia

Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2015/2016 Język wykładowy:

Bardziej szczegółowo

3-letnie (6-semestralne) stacjonarne studia licencjackie kier. matematyka stosowana profil: ogólnoakademicki. Semestr 1. Przedmioty wspólne

3-letnie (6-semestralne) stacjonarne studia licencjackie kier. matematyka stosowana profil: ogólnoakademicki. Semestr 1. Przedmioty wspólne 3-letnie (6-semestralne) stacjonarne studia licencjackie kier. matematyka stosowana profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Nazwa przedmiotu ECTS W Ć L P S Zal. Algebra liniowa z geometrią

Bardziej szczegółowo

Modelowanie rynków finansowych z wykorzystaniem pakietu R

Modelowanie rynków finansowych z wykorzystaniem pakietu R Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie

Bardziej szczegółowo

Wykorzystanie wolnego oprogramowania w nauce

Wykorzystanie wolnego oprogramowania w nauce Wykorzystanie wolnego oprogramowania w nauce Piotr Gawron, Jarek Miszczak 24 stycznia 2007 Streszczenie Celem pracy jest porównanie komercyjnych pakietów służących do prac naukowych z ich wolnymi odpowiednikami.

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: MODELOWANIE PROCESÓW ENERGETYCZNYCH Kierunek: ENERGETYKA Rodzaj przedmiotu: specjalności obieralny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo