TWORZENIE I OBLICZANIE MODELI ELEKTRYCZNYCH PERKOLACJI W UKŁADZIE TRÓJWYMIAROWYM

Wielkość: px
Rozpocząć pokaz od strony:

Download "TWORZENIE I OBLICZANIE MODELI ELEKTRYCZNYCH PERKOLACJI W UKŁADZIE TRÓJWYMIAROWYM"

Transkrypt

1 POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 89 Eletrial Engineering 207 DOI /j Piotr FRĄCZAK* TWORZENIE I OBLICZANIE MODELI ELEKTRYCZNYCH PERKOLACJI W UKŁADZIE TRÓJWYMIAROWYM W pray przedstawiono opis próbek walowyh polimerowyh oraz budowę i oblizanie ih modeli elektryznyh perkolaji trójwymiarowyh (perkolaja dla gałęzi na siei). Modele elektryzne perkolaji trójwymiarowyh próbek polimerowyh stanowią obwody elektryzne. Obwody elektryzne składają się z pięiu siei kwadratowyh, usytuowanyh konentryznie i połązonyh ze sobą. Każda sieć ma gałęzie utworzone z rezystorów lub impedanji (odpowiednia kompilaja rezystorów i kondensatorów). Tak zdefiniowany model elektryzny perkolayjny trójwymiarowy przekształono w obwód elektryzny płaski i dostosowano do analizy w programie PSpie. W analizie obwodu elektryznego, zgodnie z teorią perkolaji, uwzględniono losowy sposób zwierania jego gałęzi. Oblizania symulayjnego wartośi natężenia prądu próbek polimerowyh wyznazono na podstawie ih modeli elektryznyh perkolaji trójwymiarowyh, napięia wymuszająego o określonej zęstotliwośi oraz zadeklarowania stosownyh analiz prądowyh w programie PSpie. SŁOWA KLUCZOWE: prąd perkolaji izolatora, symulaja prąd perkolaji izolatora. WSTĘP W pray opisano wybrane struktury materii w układzie trójwymiarowym oraz przedstawiono krytyzną zawartość objętośiową w układah trójwymiarowyh. Ponadto zaprezentowano model elektryzny próbek polimerowyh w układzie trójwymiarowym. Próbka ta składa się z pięiu siei kwadratowyh, usytuowanyh konentryznie i połązonyh ze sobą. Każda sieć ma gałęzie utworzone z rezystorów lub impedanji (odpowiednia kompilaja rezystorów i kondensatorów). Tak zdefiniowany model elektryzny perkolayjny trójwymiarowy przekształono w obwód elektryzny płaski i dostosowano do analizy w programie PSpie. W analizie obwodu elektryznego, zgodnie z teorią perkolaji, uwzględniono losowy sposób zwierania jego gałęzi. Oblizania symulayjnego wartośi natężenia prądu próbki polimerowej wyznazono na podstawie ih modeli elektryznyh perkolaji trójwymiarowyh, napięia siei oraz zadeklarowania stosownyh analiz prądowyh w programie PSpie. * Zahodniopomorskie Centrum Edukaji Morskiej i Politehniznej w Szzeinie.

2 88 Piotr Frązak 2. WYBRANE STRUKTURY MATERII W UKŁADZIE TRÓJWYMIAROWYM 2.. Budowa struktury polimerów Według de Gennesa podzas formowania się łańuhów polimerowyh przy śiankah uwzględnić należy zarówno wpływ sił przyiągająyh, jak i odpyhająyh []. na rysunku 2. przedstawiono profile zagęszzenia łańuhów polimerowyh przy śiankah przyiągająyh (a) i odpyhająyh (b). W pierwszym przypadku zagęszzania łańuhów polimerowyh można rozróżnić trzy obszary: bliski, wrażliwy na wzajemne oddziaływania, środkowy (ozka o podobnej wielkośi), daleki, określony przez kilka dużyh pętli i skrajnyh luźnyh łańuhów. Zagęszzenie (z) w regionie środkowym przedstawić można wzorem: a z (2.) z gdzie: a rozmiar jednego mera (odległość bliska), z odległość od śianki. Całkowita grubość powierzhni międzyfazowej, warunkowana rozmiarem łańuhów polimerowyh, może wynosić dziesiątki nm. W przypadku sił odpyhająyh (rys. 2.b) oddziaływania związane są ze wzajemną długośią łańuhów polimerowyh. Gdy łańuh znajduje się blisko śianki, entropia spada, a w obszarze sąsiadująym obeny jest prawie sam rozpuszzalnik (tzw. warstwa zubożona). W pewnyh zakresah stężenia polimerów połązenie wspomnianyh efektów prowadzi do powstania struktur grzybkowyh []. Środkowy region warstwy polimerowej zaadsorbowanej na powierzhni przyiągająej może zostać przedstawiony za pomoą modelu ukazanego na rys Rozmiar ozka siei, będąy malejąą funkją stężenia polimerów, ujmuje równanie []: z a z (2.2) W odległośi z od śianki polimeru rozmiar ozka obliza się w wyniku podstawienia zależnośi (2.) do wzoru (2.2): a a z z a a a z z z a (2.3)

3 Tworzenie i oblizanie modeli elektryznyh perkolaji w układzie Z równania (2.3) wynika, że rozmiar ozka siei polimerowej wzrasta w miarę zwiększania odległośi z od śianki polimeru. W odległośi z od śianki polimeru rozmiar ozka siei wynosi z. Wykorzystują długość danego łańuha polimerowego, który składa się z odpowiedniej lizby merów, rozmiar rzezywistego lub modelowego ozka siei polimerowej wyznaza się ze wzoru: A a (2.4) gdzie: A krotność wielkośi rzezywistego lub modelowego ozka siei, a rozmiar monomeru, długość łańuha polimerowego. a ) Ψ ( z ) B lis k a Zagęszzanie Ś r o d k o w a O d le g ło ś ć o d ś ia n k i z D a ls z a b ) Ψ ( z) K o n e n tr a ja p o lim e r ó w Zagęszzanie ξ ξ O d le g ło ś ć o d ś ia n k i z Rys. 2.. Profile zagęszzenia łańuhów polimerów przy śiankah warunkowane długośią łańuhów polimerowyh oraz rodzajem wiązania z powierzhnią: a) przyiągająą ; b) odpyhająą [7] A ξ(ψ) a Siatki: rzezywista i modelowa Rys Sieć polimerowa na powierzhni międzyfazowej: a wielkość monomeru w nm, ξ rozmiar ozka [7]

4 90 Piotr Frązak 2.2. Budowa krystalizna materii Ciasne upakowanie w trzeh wymiarah (3d) może być zrealizowane w następująy sposób. Nieskońzenie roziągła warstwa takih samyh kul, ze środkami leżąymi na jednej płaszzyźnie, jest ułożona tak, jak dla przypadku dwuwymiarowego (rys. 2.3). Następnie kolejna podobna warstwa ułożona jest na tej poprzedniej. Istnieją dwa sposoby osiągania najbliższej odległośi między tymi warstwami. Jeśli zaznazone na rysunku linią iągłą okręgi siei A są pierwszą warstwą, to druga warstwa będzie w najbliższej odległośi do pierwszej, jeśli środki należąyh do niej kul zajmą pozyje międzywęzłowe B lub C (międzywęzłowe dla A), pokazane na rys W obu przypadkah każda z kul jednej warstwy styka się z trzema kulami warstwy sąsiedniej. Gdy pierwsza warstwa tworzy sieć A, a druga sieć B, wówzas trzeia może być ułożona miejsu A lub C. Kontynuaja tej metody prowadzi do upakowania, w którym każda kula styka się dwunastoma innymi. Jest to najbardziej efektywne upakowanie w trzeh wymiarah. Współzynnik upakowania w 3d, zdefiniowany jako ta zęść przestrzeni, która zajmowana jest przez kule, wynosi 74,0% [8]. Rys Krystalizne iasne upakowanie kul. Na warstwie A kładzie się warstw B lub C, jak pokazano na rysunku. Ułożenie warstw w kolejnośi ABCABCABC odpowiada kubiznemu iasnemu upakowaniu, w którym środki sfer tworzą sieć kubizno powierzhniowo entrowaną [8] 2.3. Krytyzna zawartość objętośiową w układah trójwymiarowyh Krytyzną zawartość objętośiową w układah trójwymiarowyh można zilustrować doświadzalnie. Wyobraźmy sobie, że na dnie nazynia szklanego w kształie zlewki umieszzono folię aluminiową (rys. 2.4), która odgrywa rolę elektrody. Następnie w szklanym nazyniu wymieszano ze sobą kulki polimerowe (izolayjne) i metalowe (przewodząe) o tej samej średniy, zapewniają ih przypadkowy rozkład. Tak przygotowana konfiguraja kul znajdująyh się

5 Tworzenie i oblizanie modeli elektryznyh perkolaji w układzie... 9 w nazyniu zostaje przykryta elektrodą w kształie folii aluminiowej. Wymienione elektrody podłązono do źródła prądu E. Przez p oznazono stosunek lizby kulek metalowyh do lizby wszystkih kulek w nazyniu. Dla p (p = ) wartość natężenia prądu I (p ) płynąego w obwodzie jest maksymalna. W wyniku zmniejszania zawartośi kulek metalowyh w obwodzie wartość natężenia prądu maleje i przy p 2 (p = 0,75) wynosi I 2 (p 2 ). Z kolei gdy p osiągnie wartość krytyzną dla zawartośi kulek metalowyh p (p = 0,27), wartość natężenia prądu w obwodzie jest równa zeru. Analizują przejśie perkolayjne, można rozpatrywać dwa przypadki. Pierwszy polega na odzytaniu rosnąyh wartośi prądu perkolayjnego (od p do p ), odpowiadająyh zwiększaniu lizby kul metalowyh, a drugi na odzytaniu malejąyh wartośi, odpowiadająyh zmniejszaniu lizby tyh kul. Pojawienie się prądu bądź jego zanik w układzie jest związany z utworzeniem drogi perkolaji (lub klastra perkolayjnego) łąząej obie elektrody. Próg perkolaji p dla struktury dyskretnej w układzie trójwymiarowym oraz współzynnik wypełnienia υ określają krytyzną zawartość objętośiową. Jej wartość w d wymiarah dla prostej siei j (gdy połązenia istnieją tylko między najbliższymi sąsiadami) definiuje się następująym wzorem [, 2, 9]: j, d j, d p j, d gdzie: p j, d próg perkolayjny, j, d siei równymi i stykająymi się kulami (d wymiarowymi). (2.5) współzynnik wypełnienia Rys Struktura dyskretna stanowiąa model perkolaji: a) shemat zastępzy obwodu elektryznego:, 2 elektrody, 3 nazynie szklane, 4 kula polimerowa, 5 kula metalowa; b) zależność prądu I(p) od lizby kul metalowyh p

6 92 Piotr Frązak Środki kul stanowią węzły siei, w związku z tym próg perkolayjny p dla węzłów dowolnej siei można zastąpić wartośią krytyznej zawartośi objętośiowej. Ponadto stwierdzono, że wartość nie zależy od struktury siei w danym wymiarze d (tabela.). Wartość progu perkolayjnego p w przypadku wiązań dowolnej siei można zastąpić wartośią krytyznej zawartośi objętośiowej według wzoru: j, d z j, d p j, d (2.6) gdzie: p (j, d) próg perkolayjny dla wiązań siei, z (j, d) lizba koordynayjna dla siei w d wymiarah. Na podstawie wzorów (2.5) i (2.6) stwierdzono, że wartośi krytyzne zawartośi objętośiowej i nie zależą od struktury siei w danym wymiarze. Ponadto zauważono, że w przypadku dowolnej siei krytyzna zawartość objętośiowa dla węzłów wystąpi szybiej niż dla wiązań. Jest to sytuaja odwrotna niż w przypadku perkolaji dla wiązań p i węzłów p.. 3. OBLICZENIA SYMULACYJNE PRĄDU UPŁYWU PRÓBKI POLIMEROWEJ W UKŁADZIE TRÓJWWMIAROWYM 3. Model próbki polimerowej w układzie 3d W elu przeprowadzenia oblizeń symulayjnyh prądu upływu próbki polimerowej stworzono jej model. Z kolei model elektryzny perkolayjny próbki w 3d przekształono w obwód elektryzny płaski i dostosowano do analizy w programie PSpie. W analizie obwodu elektryznego, zgodnie z teorią perkolaji, uwzględniono losowy sposób zwierania jego gałęzi. Rys. 3.. Model próbki polimerowej w układzie 3d

7 Tworzenie i oblizanie modeli elektryznyh perkolaji w układzie Oblizania symulayjnego wartośi natężenia prądu upływu próbki polimerowej wyznazono na podstawie jej modelu, napięia siei oraz zadeklarowania stosownyh analiz prądowyh w programie PSpie. 3.2 Wyniki oblizeń symulayjnyh prądu upływu próbki polimerowej w układzie 3d Rys Wynik oblizeń symulayjnyh prądu upływu w układzie 3d 5. WNIOSKI W wyniku przeprowadzonyh oblizeń symulayjnyh wartośi natężenia prądu upływu próbki polimerowej w 3d za pomoą jej modelu elektryznego perkolaji stwierdzono: Teorię perkolaji (perkolaja dla gałęzi na siei) można zastosować do oblizeń symulayjnyh prądu upływu próbek polimerowyh. Na otrzymanyh harakterystykah symulayjnyh prądu upływu w funkji lizby zwieranyh gałęzi widać stopniowe narastanie wartośi natężenia prądu upływu i nagły wzrost o kilka rzędów wielkośi. Próg p [7]. (perkolaja dla gałęzi na siei) w rozpatrywanym modelu perkolaji próbki odpowiada jej napięiu. LITERATURA [] Chrzan K.L.: Prąd upływu na naturalnie zabrudzonyh izolatorah porelanowyh i silikonowyh, Przegląd Elektrotehnizny 2008, vol. 84, nr 0, s [2] Flisowski Z.: Tehnika wysokih napięć, wyd. 5, Warszawa, WNT 2005, ISBN

8 94 Piotr Frązak [3] Frązak P.: Creation and appliation of eletrial perolation models, Poznań University of Tehnology Aademi Journals, Computer Appliations in Eletrial Engineering, Volume 2, Publishing House of Poznan University of Tehnology, Poznań 204, ISSN , s [4] Frązak P.: Prąd upływnośiowy powierzhniowy izolatora eramiznego podzas eksploataji w ujęiu teorii perkolaji, Poznań University of Tehnology Aademi Journals, Eletrial Engineering Issue 78 Computer Appliations in Eletrial Engineering 204, Publishing House of Poznan University of Tehnology, Poznań, ISSN , s [5] Król A., Mozko J.: PSpie Symulaja i optymalizaja układów elektroniznyh, Wydawnitwo Nakom, Poznań 999, ISBN [6] Pilling J., Berndt L., Katib M., Seeling T., Der Fremdshihtuebershlag von Isolatoren mit gleihmaessinger Vershmutzung bei Wehselpannung. Wissenshaftlihe Berihte, Sonderheft der Sektion Elektroenergieversorgung und Automatisierung. Tehnishe Hohshule Zittau, Heft 23, Juli 990, S [7] Sperling L.H.: Introduktion to physial polymer siene, 3th ed., New York, Wiley 200, ISBN [8] Zallen R.: Fizyka iał amorfiznyh, Warszawa, WN PWN 994, ISBN CREATING AND CALCULATION OF PERCOLATION ELECTRIC MODELS IN THE THREE DIMENSIONAL SYSTEM The paper presents a desription of polymer ylindrial samples of polymer and the onstrution and alulation of their three dimensional perolation eletri models (perolation for the branh network). The three dimensional perolation eletri models of polymer samples are the eletrial iruits. The eletrial iruits are omposed of five square networks, arranged onentrially and onneted together. Eah network has branhes of resistors or impedane (appropriate ompilation of resistors and apaitors). The defined three dimensional perolation model eletri has been transformed into flat eletri iruit and then adapted to the analysis in the PSpie software. In the analysis of eletri iruit, aording to the perolation theory, the randomly way of losing its branhes has been applied. The simulation alulations of the polymer samples urrent were determined based on their three dimensional perolation eletrial models, the foring voltage of a speifi frequeny and delaring relevant urrent analyzes in PSpie software. (Reeived: , revised: )

WERYFIKACJA WARTOŚCI NATĘŻENIA PRĄDU UPŁYWU NA POWIERZCHNI IZOLATORA PRĘTOWEGO OBLICZONEGO ZA POMOCĄ TEORII PERKOLACJI

WERYFIKACJA WARTOŚCI NATĘŻENIA PRĄDU UPŁYWU NA POWIERZCHNI IZOLATORA PRĘTOWEGO OBLICZONEGO ZA POMOCĄ TEORII PERKOLACJI POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 86 Electrical Engineering 2016 Piotr FRĄCZAK* WERYFIKACJA WARTOŚCI NATĘŻENIA PRĄDU UPŁYWU NA POWIERZCHNI IZOLATORA PRĘTOWEGO OBLICZONEGO ZA POMOCĄ

Bardziej szczegółowo

OBLICZENIA SYMULACYJNE PRĄDU UPŁYWU POWIERZCHNI STARZONYCH IZOLATORÓW TRAKCYJNYCH W UJĘCIU TEORII PERKOLACJI

OBLICZENIA SYMULACYJNE PRĄDU UPŁYWU POWIERZCHNI STARZONYCH IZOLATORÓW TRAKCYJNYCH W UJĘCIU TEORII PERKOLACJI POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 90 Electrical Engineering 2017 DOI 10.21008/j.1897-0737.2017.90.0017 Piotr FRĄCZAK* Szymon BANASZAK** OBLICZENIA SYMULACYJNE PRĄDU UPŁYWU POWIERZCHNI

Bardziej szczegółowo

PROGRAM OBLICZENIOWY W ZAPISIE MACIERZOWYM UJMUJĄCY MODEL ELEKTRYCZNY PERKOLACJI

PROGRAM OBLICZENIOWY W ZAPISIE MACIERZOWYM UJMUJĄCY MODEL ELEKTRYCZNY PERKOLACJI POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 8 Electrical Engineering 205 Piotr FRĄCZAK* PROGRAM OBLICZENIOWY W ZAPISIE MACIERZOWYM UJMUJĄCY MODEL ELEKTRYCZNY PERKOLACJI W pracy przedstawiono

Bardziej szczegółowo

OBLICZENIA SYMULACYJNE MOCY TRACONEJ NA POWIERZCHNI IZOLATORA W UJĘCIU TEORII PERKOLACJI

OBLICZENIA SYMULACYJNE MOCY TRACONEJ NA POWIERZCHNI IZOLATORA W UJĘCIU TEORII PERKOLACJI POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 82 Electrical Engineering 2015 Piotr FRĄCZAK* OBLICZENIA SYMULACYJNE MOCY TRACONEJ NA POWIERZCHNI IZOLATORA W UJĘCIU TEORII PERKOLACJI W pracy przedstawiono

Bardziej szczegółowo

PRĄD UPŁYWU I PRZESKOK ZABRUDZENIOWY NA POWIERZCHNI IZOLATORA Z KLOSZAMI W UJĘCIU TEORII PERKOLACJI

PRĄD UPŁYWU I PRZESKOK ZABRUDZENIOWY NA POWIERZCHNI IZOLATORA Z KLOSZAMI W UJĘCIU TEORII PERKOLACJI POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 86 Electrical Engineering 2016 Piotr FRĄCZAK* PRĄD UPŁYWU I PRZESKOK ZABRUDZENIOWY NA POWIERZCHNI IZOLATORA Z KLOSZAMI W UJĘCIU TEORII PERKOLACJI

Bardziej szczegółowo

PRĄD UPŁYWNOŚCIOWY POWIERZCHNIOWY IZOLATORA CERAMICZNEGO PODCZAS EKSPLOATACJI W UJĘCIU TEORII PERKOLACJI

PRĄD UPŁYWNOŚCIOWY POWIERZCHNIOWY IZOLATORA CERAMICZNEGO PODCZAS EKSPLOATACJI W UJĘCIU TEORII PERKOLACJI POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 78 Electrical Engineering 204 Piotr FRĄCZAK* PRĄD UPŁYWNOŚCIOWY POWIERZCHNIOWY IZOLATORA CERAMICZNEGO PODCZAS EKSPLOATACJI W UJĘCIU TEORII PERKOLACJI

Bardziej szczegółowo

Dla powstania pola magnetycznego konieczny jest ruch ładunków elektrycznych, a więc przepływ prądu elektrycznego, natomiast pole elektryczne powstaje

Dla powstania pola magnetycznego konieczny jest ruch ładunków elektrycznych, a więc przepływ prądu elektrycznego, natomiast pole elektryczne powstaje Pole elektryzne Dla powstania pola magnetyznego koniezny jest ruh ładunków elektryznyh, a wię przepływ prądu elektryznego, natomiast pole elektryzne powstaje zawsze w przestrzeni otazająej ładunki elektryzne,

Bardziej szczegółowo

SYMULACJA ZAKŁÓCEŃ W UKŁADACH AUTOMATYKI UTWORZONYCH ZA POMOCĄ OBWODÓW ELEKTRYCZNYCH W PROGRAMACH MATHCAD I PSPICE

SYMULACJA ZAKŁÓCEŃ W UKŁADACH AUTOMATYKI UTWORZONYCH ZA POMOCĄ OBWODÓW ELEKTRYCZNYCH W PROGRAMACH MATHCAD I PSPICE POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 76 Electrical Engineering 2013 Piotr FRĄCZAK* SYMULACJA ZAKŁÓCEŃ W UKŁADACH AUTOMATYKI UTWORZONYCH ZA POMOCĄ OBWODÓW ELEKTRYCZNYCH W PROGRAMACH MATHCAD

Bardziej szczegółowo

METODA MACIERZOWA OBLICZANIA OBWODÓW PRĄDU PRZEMIENNEGO

METODA MACIERZOWA OBLICZANIA OBWODÓW PRĄDU PRZEMIENNEGO POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS No 93 Electrical Engineering 2018 DOI 10.21008/j.1897-0737.2018.93.0026 Piotr FRĄCZAK METODA MACIERZOWA OBLICZANIA OBWODÓW PRĄDU PRZEMIENNEGO W pracy przedstawiono

Bardziej szczegółowo

NATĘŻENIE POLA ELEKTRYCZNEGO PRZEWODU LINII NAPOWIETRZNEJ Z UWZGLĘDNIENIEM ZWISU

NATĘŻENIE POLA ELEKTRYCZNEGO PRZEWODU LINII NAPOWIETRZNEJ Z UWZGLĘDNIENIEM ZWISU POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 85 Electrical Engineering 016 Krzysztof KRÓL* NATĘŻENIE POLA ELEKTRYCZNEGO PRZEWODU LINII NAPOWIETRZNEJ Z UWZGLĘDNIENIEM ZWISU W artykule zaprezentowano

Bardziej szczegółowo

ANALIZA WPŁYWU NIESYMETRII NAPIĘCIA SIECI NA OBCIĄŻALNOŚĆ TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH

ANALIZA WPŁYWU NIESYMETRII NAPIĘCIA SIECI NA OBCIĄŻALNOŚĆ TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 8 Electrical Engineering 05 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* ANALIZA WPŁYWU NIESYMETRII NAPIĘCIA SIECI NA OBCIĄŻALNOŚĆ TRÓJFAZOWYCH

Bardziej szczegółowo

ANALIZA WŁAŚCIWOŚCI FILTRU PARAMETRYCZNEGO I RZĘDU

ANALIZA WŁAŚCIWOŚCI FILTRU PARAMETRYCZNEGO I RZĘDU POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 78 Electrical Engineering 2014 Seweryn MAZURKIEWICZ* Janusz WALCZAK* ANALIZA WŁAŚCIWOŚCI FILTRU PARAMETRYCZNEGO I RZĘDU W artykule rozpatrzono problem

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Poziom podstawowy

FUNKCJA KWADRATOWA. Poziom podstawowy FUNKCJA KWADRATOWA Poziom podstawowy Zadanie ( pkt) Wykres funkji y = ax + bx+ przehodzi przez punkty: A = (, ), B= (, ), C = (,) a) Wyznaz współzynniki a, b, (6 pkt) b) Zapisz wzór funkji w postai kanoniznej

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMU SMATH W ANALIZIE STANÓW USTALONYCH W OBWODACH ELEKTRYCZNYCH

ZASTOSOWANIE PROGRAMU SMATH W ANALIZIE STANÓW USTALONYCH W OBWODACH ELEKTRYCZNYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 85 Electrical Engineering 2016 Mirosław WOŁOSZYN* Joanna WOŁOSZYN* ZASTOSOWANIE PROGRAMU SMATH W ANALIZIE STANÓW USTALONYCH W OBWODACH ELEKTRYCZNYCH

Bardziej szczegółowo

WPŁYW GRUBOŚCI EKRANU NA CAŁKOWITE POLE MAGNETYCZNE DWUPRZEWODOWEGO BIFILARNEGO TORU WIELKOPRĄDOWEGO. CZĘŚĆ II EKRAN I OBSZAR WEWNĘTRZNY EKRANU

WPŁYW GRUBOŚCI EKRANU NA CAŁKOWITE POLE MAGNETYCZNE DWUPRZEWODOWEGO BIFILARNEGO TORU WIELKOPRĄDOWEGO. CZĘŚĆ II EKRAN I OBSZAR WEWNĘTRZNY EKRANU POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 73 Electrical Engineering 2013 Dariusz KUSIAK* Zygmunt PIĄTEK* Tomasz SZCZEGIELNIAK* WPŁYW GRUBOŚCI EKRANU NA CAŁKOWITE POLE MAGNETYCZNE DWUPRZEWODOWEGO

Bardziej szczegółowo

BADANIA MODELOWE OGNIW PALIWOWYCH TYPU PEM

BADANIA MODELOWE OGNIW PALIWOWYCH TYPU PEM POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Bartosz CERAN* BADANIA MODELOWE OGNIW PALIWOWYCH TYPU PEM W artykule przedstawiono badania przeprowadzone na modelu

Bardziej szczegółowo

Dyskretna transformata falkowa z wykorzystaniem falek Haara. Alfréd Haar

Dyskretna transformata falkowa z wykorzystaniem falek Haara. Alfréd Haar Dyskretna transformata falkowa z wykorzystaniem falek Haara Alfréd Haar 88-9 Przypomnijmy, że istotą DWT jest podział pierwotnego sygnału za pomoą pary filtrów (górnoprzepustowego i dolnoprzepustowego)

Bardziej szczegółowo

KOAKSJALNY MAGNETOKUMULACYJNY GENERATOR PRĄDU

KOAKSJALNY MAGNETOKUMULACYJNY GENERATOR PRĄDU POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 85 Electrical Engineering 2016 Mirosław WOŁOSZYN* Kazimierz JAKUBIUK* Paweł ZIMNY* KOAKSJALNY MAGNETOKUMULACYJNY GENERATOR PRĄDU W pracy przedstawiono

Bardziej szczegółowo

Ćwiczenie 362. Wyznaczanie ogniskowej soczewek metodą Bessela i pomiar promieni krzywizny za pomocą sferometru. Odległość przedmiotu od ekranu, [m] l

Ćwiczenie 362. Wyznaczanie ogniskowej soczewek metodą Bessela i pomiar promieni krzywizny za pomocą sferometru. Odległość przedmiotu od ekranu, [m] l Nazwisko Data Nr na liśie Imię Wydział Ćwizenie 36 Dzień tyg Godzina Wyznazanie ogniskowej sozewek metodą Bessela i pomiar promieni krzywizny za pomoą serometr I Wyznazanie ogniskowej sozewki skpiająej

Bardziej szczegółowo

APLIKACJA NAPISANA W ŚRODOWISKU LABVIEW SŁUŻĄCA DO WYZNACZANIA WSPÓŁCZYNNIKA UZWOJENIA MASZYNY INDUKCYJNEJ

APLIKACJA NAPISANA W ŚRODOWISKU LABVIEW SŁUŻĄCA DO WYZNACZANIA WSPÓŁCZYNNIKA UZWOJENIA MASZYNY INDUKCYJNEJ POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 83 Electrical Engineering 2015 Damian BURZYŃSKI* Leszek KASPRZYK* APLIKACJA NAPISANA W ŚRODOWISKU LABVIEW SŁUŻĄCA DO WYZNACZANIA WSPÓŁCZYNNIKA UZWOJENIA

Bardziej szczegółowo

ANALIZA TRÓJELEMENTOWEGO OBWODU MEMRYSTOROWEGO NIECAŁKOWITEGO RZĘDU

ANALIZA TRÓJELEMENTOWEGO OBWODU MEMRYSTOROWEGO NIECAŁKOWITEGO RZĘDU POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 77 Electrical Engineering 4 Mikołaj BUSŁOWICZ* ANALIZA TRÓJELEMENTOWEGO OBWODU MEMRYSTOROWEGO NIECAŁKOWITEGO RZĘDU W pracy rozpatrzono szeregowy

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY

MATEMATYKA POZIOM ROZSZERZONY EGZAMIN MATURALNY W ROKU SZKOLNYM 06/07 FORMUŁA OD 05 ( NOWA MATURA ) MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 07 Kluz punktowania zadań zamkniętyh Numer zadania

Bardziej szczegółowo

ANALIZA OBWODÓW ELEKTRYCZNYCH LINIOWYCH W PROGRAMACH MATHCAD I PSPICE W ASPEKCIE TWIERDZEŃ O WZAJEMNOŚCI

ANALIZA OBWODÓW ELEKTRYCZNYCH LINIOWYCH W PROGRAMACH MATHCAD I PSPICE W ASPEKCIE TWIERDZEŃ O WZAJEMNOŚCI POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS No 97 Electrical Engineering 2019 DOI 10.21008/j.1897-0737.2019.97.0013 Piotr FRĄCZAK * ANALIZA OBWODÓW ELEKTRYCZNYCH LINIOWYCH W PROGRAMACH MATHCAD I

Bardziej szczegółowo

PROPOZYCJA ZASTOSOWANIA WYMIARU PUDEŁKOWEGO DO OCENY ODKSZTAŁCEŃ PRZEBIEGÓW ELEKTROENERGETYCZNYCH

PROPOZYCJA ZASTOSOWANIA WYMIARU PUDEŁKOWEGO DO OCENY ODKSZTAŁCEŃ PRZEBIEGÓW ELEKTROENERGETYCZNYCH Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 56 Politechniki Wrocławskiej Nr 56 Studia i Materiały Nr 24 2004 Krzysztof PODLEJSKI *, Sławomir KUPRAS wymiar fraktalny, jakość energii

Bardziej szczegółowo

Przestrzenne układy oporników

Przestrzenne układy oporników Przestrzenne układy oporników Bartosz Marchlewicz Tomasz Sokołowski Mateusz Zych Pod opieką prof. dr. hab. Janusza Kempy Liceum Ogólnokształcące im. marsz. S. Małachowskiego w Płocku 2 Wstęp Do podjęcia

Bardziej szczegółowo

BADANIA MODELOWE OGNIW SŁONECZNYCH

BADANIA MODELOWE OGNIW SŁONECZNYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Bartosz CERAN* BADANIA MODELOWE OGNIW SŁONECZNYCH W artykule przedstawiono model matematyczny modułu fotowoltaicznego.

Bardziej szczegółowo

Cieplne Maszyny Przepływowe. Temat 6 Przepływ przez sprężarki osiowe. Część I Podstawy teorii Cieplnych Maszyn Przepływowych. 6.1.

Cieplne Maszyny Przepływowe. Temat 6 Przepływ przez sprężarki osiowe. Część I Podstawy teorii Cieplnych Maszyn Przepływowych. 6.1. 73 6.. Wstęp W sprężarkah pole przepływu jednowymiarowego rośnie tj. (α > α ) o prowadzi do: - oderwania warstwy przyśiennej - wzrostu strat i redukji odhylenia strugi - redukją przyrostu iśnienia statyznego.

Bardziej szczegółowo

4. WYZNACZANIE PARAMETRÓW HYDRAULICZNYCH STUDNI

4. WYZNACZANIE PARAMETRÓW HYDRAULICZNYCH STUDNI 4. WYZNACZANIE PARAMETRÓW HYDRAULICZNYCH STUDNI Na wielkość depresji zwieriadła wody w pompowanej studni wpływ mają zjawiska hydraulizne wywołane przepływem laminarnym, występująym w ujętej warstwie wodonośnej

Bardziej szczegółowo

WARUNKI ZWARCIOWE W ROZDZIELNI SPOWODOWANE ZAKŁÓCENIAMI NA RÓŻNYCH ELEMENTACH SIECI ELEKTROENERGETYCZNEJ

WARUNKI ZWARCIOWE W ROZDZIELNI SPOWODOWANE ZAKŁÓCENIAMI NA RÓŻNYCH ELEMENTACH SIECI ELEKTROENERGETYCZNEJ POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 86 Electrical Engineering 2016 Piotr PIECHOCKI* Ryszard FRĄCKOWIAK** WARUNKI ZWARCIOWE W ROZDZIELNI SPOWODOWANE ZAKŁÓCENIAMI NA RÓŻNYCH ELEMENTACH

Bardziej szczegółowo

HARMONICZNE W PRĄDZIE ZASILAJĄCYM WYBRANE URZĄDZENIA MAŁEJ MOCY I ICH WPŁYW NA STRATY MOCY

HARMONICZNE W PRĄDZIE ZASILAJĄCYM WYBRANE URZĄDZENIA MAŁEJ MOCY I ICH WPŁYW NA STRATY MOCY POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 86 Electrical Engineering 2016 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* HARMONICZNE W PRĄDZIE ZASILAJĄCYM WYBRANE URZĄDZENIA MAŁEJ MOCY

Bardziej szczegółowo

Pole magnetyczne ma tę własność, że jego dywergencja jest wszędzie równa zeru.

Pole magnetyczne ma tę własność, że jego dywergencja jest wszędzie równa zeru. Dywergenja i rotaja pola magnetyznego Linie wektora B nie mają pozątku, ani końa. tąd wynika twierdzenie Gaussa dla wektora B : Φ = B d = B trumień wektora indukji magnetyznej przez dowolną powierzhnię

Bardziej szczegółowo

ANALIZA ROZKŁADU POLA MAGNETYCZNEGO W KADŁUBIE OKRĘTU Z CEWKAMI UKŁADU DEMAGNETYZACYJNEGO

ANALIZA ROZKŁADU POLA MAGNETYCZNEGO W KADŁUBIE OKRĘTU Z CEWKAMI UKŁADU DEMAGNETYZACYJNEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 81 Electrical Engineering 2015 Mirosław WOŁOSZYN* Kazimierz JAKUBIUK* Mateusz FLIS* ANALIZA ROZKŁADU POLA MAGNETYCZNEGO W KADŁUBIE OKRĘTU Z CEWKAMI

Bardziej szczegółowo

BADANIA SYMULACYJNE PROSTOWNIKA PÓŁSTEROWANEGO

BADANIA SYMULACYJNE PROSTOWNIKA PÓŁSTEROWANEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 78 Electrical Engineering 2014 Mikołaj KSIĄŻKIEWICZ* BADANIA SYMULACYJNE PROSTOWNIKA W pracy przedstawiono wyniki badań symulacyjnych prostownika

Bardziej szczegółowo

ANALIZA SYMULACYJNA OBWODU PRĄDU PRZEMIENNEGO Z PROSTOWNIKIEM MOSTKOWYM

ANALIZA SYMULACYJNA OBWODU PRĄDU PRZEMIENNEGO Z PROSTOWNIKIEM MOSTKOWYM POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 88 Eletrial Engineering 6 Mirosław WCIŚLIK* Paweł STRZĄBAŁA* ANALIZA SYMULACYJNA OBWODU PRĄDU PRZEMIENNEGO Z PROSTOWNIKIEM MOSTKOWYM W pray zaprezentowano

Bardziej szczegółowo

ANALIZA PRACY TRANSFORMATORÓW SN/NN PODCZAS OBCIĄŻEŃ NIESYMETRYCZNYCH

ANALIZA PRACY TRANSFORMATORÓW SN/NN PODCZAS OBCIĄŻEŃ NIESYMETRYCZNYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 9 Electrical Engineering 07 DOI 0.008/j.897-077.07.9.009 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* ANALIZA PRACY TRANSFORMATORÓW SN/NN

Bardziej szczegółowo

Grupa. Nr ćwicz. Celem ćwiczenia jest poznanie wybranych metod pomiaru właściwości rezystorów, kondensatorów i cewek.

Grupa. Nr ćwicz. Celem ćwiczenia jest poznanie wybranych metod pomiaru właściwości rezystorów, kondensatorów i cewek. Politehnika zeszowska Katedra Metrologii i Systemów Diagnostyznyh aboratorim Metrologii POMAY MPEDANCJ Grpa Nr ćwiz. 9... kierownik...... 4... Data Oena. Cel ćwizenia Celem ćwizenia jest poznanie wybranyh

Bardziej szczegółowo

Wymagania edukacyjne: Elektrotechnika i elektronika. Klasa: 1Tc TECHNIK MECHATRONIK. Ilość godzin: 4. Wykonała: Beata Sedivy

Wymagania edukacyjne: Elektrotechnika i elektronika. Klasa: 1Tc TECHNIK MECHATRONIK. Ilość godzin: 4. Wykonała: Beata Sedivy Wymagania edukacyjne: Elektrotechnika i elektronika Klasa: 1Tc TECHNIK MECHATRONIK Ilość godzin: 4 Wykonała: Beata Sedivy Ocena Ocenę niedostateczną uczeń który Ocenę dopuszczającą Wymagania edukacyjne

Bardziej szczegółowo

PREZENTACJA MODULACJI AM W PROGRAMIE MATHCAD

PREZENTACJA MODULACJI AM W PROGRAMIE MATHCAD POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Jakub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* PREZENTACJA MODULACJI W PROGRIE MATHCAD W artykule przedstawiono dydaktyczną

Bardziej szczegółowo

12. PRZEWODNOŚĆ ELEKTROLITÓW

12. PRZEWODNOŚĆ ELEKTROLITÓW 12. PRZEWODNOŚĆ ELEKTROLITÓW Zagadnienia teoretyzne Przewodność i II prawo Ohma dla przewodników metalowyh. Właśiwośi elektrolitów, przepływ prądu elektryznego przez elektrolity słabe i mone; zjawiska

Bardziej szczegółowo

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)

Bardziej szczegółowo

OCENA DOKŁADNOŚCI FIRMOWYCH MODELI DIOD SCHOTTKY EGO Z WĘGLIKA KRZEMU

OCENA DOKŁADNOŚCI FIRMOWYCH MODELI DIOD SCHOTTKY EGO Z WĘGLIKA KRZEMU POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 84 Electrical Engineering 2015 Damian BISEWSKI* Janusz ZARĘBSKI* OCENA DOKŁADNOŚCI FIRMOWYCH MODELI DIOD SCHOTTKY EGO Z WĘGLIKA KRZEMU W pracy przedstawiono

Bardziej szczegółowo

PRACOWNIA ELEKTRYCZNA I ELEKTRONICZNA. Zespół Szkół Technicznych w Skarżysku-Kamiennej. Sprawozdanie

PRACOWNIA ELEKTRYCZNA I ELEKTRONICZNA. Zespół Szkół Technicznych w Skarżysku-Kamiennej. Sprawozdanie Zespół Szkół Tehizyh w Skarżysku-Kamieej Sprawozdaie PRCOWN ELEKTRYCZN ELEKTRONCZN imię i azwisko z ćwizeia r 1 Temat ćwizeia: UKŁDY REGULCJ NTĘŻEN PRĄDU rok szkoly klasa grupa data wykoaia. Cel ćwizeia:

Bardziej szczegółowo

CHARAKTERYSTYCZNE CECHY KRZYWYCH OBCIĄŻENIA ODBIORCÓW ZALICZANYCH DO GOSPODARSTW DOMOWYCH

CHARAKTERYSTYCZNE CECHY KRZYWYCH OBCIĄŻENIA ODBIORCÓW ZALICZANYCH DO GOSPODARSTW DOMOWYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Ryszard FRĄCKOWIAK* Tomasz GAŁAN** CHARAKTERYSTYCZNE CECHY KRZYWYCH OBCIĄŻENIA ODBIORCÓW ZALICZANYCH DO GOSPODARSTW

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryzność i magnetyzm W. Prąd elektryzny i pole magnetyzne.1. Prąd elektryzny. Pojęiem prądu elektryznego określamy zjawisko przemieszzania się ładunków elektryznyh. Najzęśiej nośnikami ładunku

Bardziej szczegółowo

WARTOŚCI CZASU TRWANIA ZWARCIA PODCZAS ZAKŁÓCEŃ W ROZDZIELNIACH NAJWYŻSZYCH NAPIĘĆ W ŚWIETLE BADAŃ SYMULACYJNYCH

WARTOŚCI CZASU TRWANIA ZWARCIA PODCZAS ZAKŁÓCEŃ W ROZDZIELNIACH NAJWYŻSZYCH NAPIĘĆ W ŚWIETLE BADAŃ SYMULACYJNYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 78 Electrical Engineering 2014 Ryszard FRĄCKOWIAK* Piotr PIECHOCKI** WARTOŚCI CZASU TRWANIA ZWARCIA PODCZAS ZAKŁÓCEŃ W ROZDZIELNIACH NAJWYŻSZYCH

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice

Metody Obliczeniowe w Nauce i Technice Metody Obliczeniowe w Nauce i Technice 15. Obliczanie całek metodami Monte Carlo Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl

Bardziej szczegółowo

PORÓWNANIE PROGRAMÓW MAXWELL ORAZ FEMM DO SYMULACJI ROZKŁADU NATĘŻENIA POLA ELEKTRYCZNEGO

PORÓWNANIE PROGRAMÓW MAXWELL ORAZ FEMM DO SYMULACJI ROZKŁADU NATĘŻENIA POLA ELEKTRYCZNEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 78 Electrical Engineering 2014 Grzegorz MALINOWSKI* Krzysztof SIODŁA* PORÓWNANIE PROGRAMÓW MAXWELL ORAZ FEMM DO SYMULACJI ROZKŁADU NATĘŻENIA POLA

Bardziej szczegółowo

Krzywe stożkowe. 1 Powinowactwo prostokątne. 2 Elipsa. Niech l będzie ustaloną prostą i k ustaloną liczbą dodatnią.

Krzywe stożkowe. 1 Powinowactwo prostokątne. 2 Elipsa. Niech l będzie ustaloną prostą i k ustaloną liczbą dodatnią. Krzywe stożkowe 1 Powinowatwo prostokątne Nieh l będzie ustaloną prostą i k ustaloną lizbą dodatnią. Definija 1.1. Powinowatwem prostokątnym o osi l i stosunku k nazywamy przekształenie płaszzyzny, które

Bardziej szczegółowo

Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu

Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu Prąd płynący w gałęzi obwodu jest wprost proporcjonalny do przyłożonej siły elektromotorycznej E, a odwrotnie proporcjonalne do rezystancji R umieszczonej

Bardziej szczegółowo

Skrypt 18. Trygonometria

Skrypt 18. Trygonometria Projekt Innowayjny program nauzania matematyki dla lieów ogólnokształąyh współfinansowany ze środków Unii Europejskiej w ramah Europejskiego Funduszu Społeznego Skrypt 18 Trygonometria 1. Definije i wartośi

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 1 Podstawowe prawa obwodów elektrycznych Prąd elektryczny definicja fizyczna Prąd elektryczny powstaje jako uporządkowany ruch

Bardziej szczegółowo

PODSTAWY ELEKTOTECHNIKI LABORATORIUM

PODSTAWY ELEKTOTECHNIKI LABORATORIUM PODSTAWY ELEKTOTECHNIKI LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 8 OBWODY PRĄDU STAŁEGO -PODSTAWOWE PRAWA 1. Cel ćwiczenia Doświadczalne zbadanie podstawowych praw teorii

Bardziej szczegółowo

Ćwiczenie. Wypienianie środka powierzchniowo aktywnego (śledzenie procesu poprzez pomiar zmian napięcia powierzchniowego dodecylosiarczanu sodu)

Ćwiczenie. Wypienianie środka powierzchniowo aktywnego (śledzenie procesu poprzez pomiar zmian napięcia powierzchniowego dodecylosiarczanu sodu) Ćwizenie 3 Wypienianie środka powierzhniowo aktywnego (śledzenie proesu poprzez pomiar zmian napięia powierzhniowego dodeylosiarzanu sodu) Zakład Radiohemii i Chemii Koloidów UMCS Wypienianie środka powierzhniowo

Bardziej szczegółowo

Procedura wyznaczania niepewności pomiarowych

Procedura wyznaczania niepewności pomiarowych Proedura wyznazania niepewnośi poiarowyh -0 Zakład Elektrostatyki i Elektroterii Dr inŝ Dorota Nowak-Woźny Proedura wyznazania niepewnośi poiarowyh Wstęp KaŜdy poiar lub obserwaja obarzona jest pewną niepewnośią

Bardziej szczegółowo

OPRACOWANIE WYNIKÓW POMIARU

OPRACOWANIE WYNIKÓW POMIARU OPRACOWANIE WYNIKÓW POMIARU 1. CEL ĆWICZENIA Celem ćwizenia jest poznanie podstawowyh zagadnień związanyh z opraowaniem wyników pomiaru.. WPROWADZENIE.1. Wstęp Umiejętność właśiwego opraowania wyników

Bardziej szczegółowo

12. PRZEWODNOŚĆ ELEKTROLITÓW

12. PRZEWODNOŚĆ ELEKTROLITÓW 1. PRZEWODNOŚĆ ELEKTROLITÓW Zagadnienia teoretyzne Przewodność i II prawo Ohma dla przewodników metalowyh. Właśiwośi elektrolitów, przepływ prądu elektryznego przez elektrolity słabe i mone; zjawiska wywołane

Bardziej szczegółowo

POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012

POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* PRÓBA ILOŚCIOWEGO PRZEDSTAWIENIA WPŁYWU CHARAKTERYSTYCZNYCH PARAMETRÓW

Bardziej szczegółowo

Przykład projektowania geotechnicznego pala prefabrykowanego wg PN-EN na podstawie wyników sondowania CPT metodą LCPC (francuską)

Przykład projektowania geotechnicznego pala prefabrykowanego wg PN-EN na podstawie wyników sondowania CPT metodą LCPC (francuską) Przykład projektowania geotehniznego pala prefabrykowanego wg PN-EN 1997-1 na podstawie wyników sondowania CPT metodą LCPC (franuską) Data: 2013-04-19 Opraował: Dariusz Sobala, dr inż. Lizba stron: 8 Zadanie

Bardziej szczegółowo

Lekcja 9. Pierwsze i drugie prawo Kirchhoffa. 1. I prawo Kirchhoffa

Lekcja 9. Pierwsze i drugie prawo Kirchhoffa. 1. I prawo Kirchhoffa Lekcja 9. Pierwsze i drugie prawo Kirchhoffa 1. I prawo Kirchhoffa Pierwsze prawo Kirchhoffa mówi, że dla każdego węzła obwodu elektrycznego suma algebraiczna prądów jest równa zeru. i 0 Symbol α odpowiada

Bardziej szczegółowo

Obwody rozgałęzione. Prawa Kirchhoffa

Obwody rozgałęzione. Prawa Kirchhoffa Obwody rozgałęzione. Prawa Kirchhoffa Węzeł Oczko - * - * * 4-4 * 4 Pierwsze prawo Kirchhoffa. Suma natęŝeń prądów wchodzących do węzła sieci elektrycznej jest równa sumie natęŝeń prądów wychodzących z

Bardziej szczegółowo

E4 - WYZNACZANIE STAŁEJ C 2 WE WZORZE PLANCKA l SPRAWDZANIE PRAWA STEFANA-BOLTZMANNA

E4 - WYZNACZANIE STAŁEJ C 2 WE WZORZE PLANCKA l SPRAWDZANIE PRAWA STEFANA-BOLTZMANNA E4 - WYZNACZANIE STAŁEJ C WE WZORZE PLANCKA l SPRAWDZANIE PRAWA STEFANA-OLTZMANNA Cel ćwizenia Celem ćwizenia jest poznanie praw opisująyh promieniowanie iała doskonale zarnego, oraz optyznyh metod pomiaru

Bardziej szczegółowo

ANALIZA WPŁYWU PRZEKRACZANIA DOPUSZCZALNYCH WARTOŚCI WSPÓŁCZYNNIKA MOCY W SIECI NN NA PRACĘ SYSTEMU ELEKTROENERGETYCZNEGO

ANALIZA WPŁYWU PRZEKRACZANIA DOPUSZCZALNYCH WARTOŚCI WSPÓŁCZYNNIKA MOCY W SIECI NN NA PRACĘ SYSTEMU ELEKTROENERGETYCZNEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 74 Electrical Engineering 213 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* ANALIZA WPŁYWU PRZEKRACZANIA DOPUSZCZALNYCH WARTOŚCI WSPÓŁCZYNNIKA

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 2. Analiza obwodów liniowych przy wymuszeniach stałych

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 2. Analiza obwodów liniowych przy wymuszeniach stałych Pracownia Automatyki i lektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWCZN Analiza obwodów liniowych przy wymuszeniach stałych. CL ĆWCZNA Celem ćwiczenia jest praktyczno-analityczna ocena złożonych

Bardziej szczegółowo

KOMPUTEROWE PROJEKTOWANIE I OBLICZANIE REZYSTANCJI UZIOMÓW W STREFACH ZAGROŻONYCH WYBUCHEM

KOMPUTEROWE PROJEKTOWANIE I OBLICZANIE REZYSTANCJI UZIOMÓW W STREFACH ZAGROŻONYCH WYBUCHEM POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 81 Electrical Engineering 2015 Krzysztof KRÓL* KOMPUTEROWE PROJEKTOWANIE I OBLICZANIE REZYSTANCJI UZIOMÓW W STREFACH ZAGROŻONYCH WYBUCHEM Opisane

Bardziej szczegółowo

ZAGADNIENIA STANÓW DYNAMICZNYCH TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH W WYBRANYCH NIESYMETRYCZNYCH UKŁADACH POŁĄCZEŃ

ZAGADNIENIA STANÓW DYNAMICZNYCH TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH W WYBRANYCH NIESYMETRYCZNYCH UKŁADACH POŁĄCZEŃ POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 7 Electrical Engineering 01 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* ZAGADNIENIA STANÓW DYNAMICZNYCH TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH

Bardziej szczegółowo

BADANIA EKSPERYMENTALNE HYBRYDOWEGO UKŁADU PV-TEG

BADANIA EKSPERYMENTALNE HYBRYDOWEGO UKŁADU PV-TEG POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 89 Electrical Engineering 2017 DOI 10.21008/j.1897-0737.2017.89.0034 Dominik MATECKI* BADANIA EKSPERYMENTALNE HYBRYDOWEGO UKŁADU PV-TEG Niniejsza

Bardziej szczegółowo

Poziom wymagań. Dział programowy: DZIAŁANIA NA LICZBACH NATURALNYCH

Poziom wymagań. Dział programowy: DZIAŁANIA NA LICZBACH NATURALNYCH Kryteria oeniania z matematyki Zakres wymagań na poszzególne oeny szkolne dla klas IV V do programu nauzania Matematyka wokół nas nr KOS 5002 02/08 WYMGNI PROGRMOWE N POSZZEGÓLNE STOPNIE SZKOLNE KLS 4

Bardziej szczegółowo

Analiza zderzeń dwóch ciał sprężystych

Analiza zderzeń dwóch ciał sprężystych Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

ALGORYTM OBLICZANIA SIŁ LOKALNYCH W KONSTRUKCJACH Z MAGNESAMI TRWAŁYMI

ALGORYTM OBLICZANIA SIŁ LOKALNYCH W KONSTRUKCJACH Z MAGNESAMI TRWAŁYMI POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 72 Electrical Engineering 2012 Piotr ŁUKASZEWICZ* ALGORYTM OBLICZANIA SIŁ LOKALNYCH W KONSTRUKCJACH Z MAGNESAMI TRWAŁYMI W pracy przedstawiono algorytm

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIŁ INŻYNIERII MECHNICZNEJ INSTYTUT EKSPLOTCJI MSZYN I TRNSPORTU ZKŁD STEROWNI ELEKTROTECHNIK I ELEKTRONIK ĆWICZENIE: E2 POMIRY PRĄDÓW I NPIĘĆ W

Bardziej szczegółowo

dr inż. Łukasz Kolimas Politechnika Warszawska, Instytut Elektroenergetyki

dr inż. Łukasz Kolimas Politechnika Warszawska, Instytut Elektroenergetyki dr inż. Łukasz Kolimas Politechnika Warszawska, Instytut Elektroenergetyki lukaszpw@o2.pl równoległych torów wielkoprądowych i szynoprzewodów Streszczenie. Zestyki aparatów elektrycznych należą do najbardziej

Bardziej szczegółowo

XXXIII OOWEE 2010 Grupa Elektryczna

XXXIII OOWEE 2010 Grupa Elektryczna 1. W jakich jednostkach mierzymy natężenie pola magnetycznego: a) w amperach na metr b) w woltach na metr c) w henrach d) w teslach 2. W przedstawionym na rysunku układzie trzech rezystorów R 1 = 8 Ω,

Bardziej szczegółowo

Analiza zderzeń dwóch ciał sprężystych

Analiza zderzeń dwóch ciał sprężystych Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.

Bardziej szczegółowo

BADANIA SYMULACYJNE STABILIZATORA PRĄDU

BADANIA SYMULACYJNE STABILIZATORA PRĄDU POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 78 Electrical Engineering 2014 Mikołaj KSIĄŻKIEWICZ* BADANIA SYMULACYJNE STABILIZATORA PRĄDU Praca przedstawia wyniki badań symulacyjnych stabilizatora

Bardziej szczegółowo

OSŁONA OCHRONNA PRZEKAŹNIKÓW TERMICZNYCH

OSŁONA OCHRONNA PRZEKAŹNIKÓW TERMICZNYCH Str. -2 Str. -4 Str. -8 DO MINISTYCZNIKÓW SERII BG Typ RF9: z wykrywaniem błędu fazy i kasowaniem ręznym. Typ RFA9: z wykrywaniem błędu fazy i kasowaniem automatyznym. Typ RFN9: bez wykrywania błędu fazy

Bardziej szczegółowo

MODEL MATEMATYCZNY ZAGREGOWANEGO ELEMENTU UKŁADU ELEKTRYCZNEGO W CYFROWYCH SYMULATORACH PRACUJĄCYCH W CZASIE RZECZYWISTYM

MODEL MATEMATYCZNY ZAGREGOWANEGO ELEMENTU UKŁADU ELEKTRYCZNEGO W CYFROWYCH SYMULATORACH PRACUJĄCYCH W CZASIE RZECZYWISTYM POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 7 Electrical Engineering 20 Sławomir CIEŚLIK* MODEL MATEMATYCZNY ZAGREGOWANEGO ELEMENTU UKŁADU ELEKTRYCZNEGO W CYFROWYCH SYMULATORACH PRACUJĄCYCH

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Podstawy elektrotechniki Odpowiedzialny za przedmiot (wykłady): dr hab. inż. Tomasz Chady prof. ZUT Ćwiczenia: dr inż. Krzysztof Stawicki ks@zut.edu.pl e-mail: w temacie wiadomości proszę wpisywać STUDENT

Bardziej szczegółowo

Ćwiczenie 12 Temat: Prawa Kirchhoffa w obwodach prądu stałego. Cel ćwiczenia

Ćwiczenie 12 Temat: Prawa Kirchhoffa w obwodach prądu stałego. Cel ćwiczenia Ćwiczenie 12 Temat: Prawa Kirchhoffa w obwodach prądu stałego. Cel ćwiczenia Wyrobienie umiejętności łączenia obwodów elektrycznych rozgałęzionych oraz sprawdzenie praw prądu stałego. Czytanie schematów

Bardziej szczegółowo

XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D

XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D KOOF Szczecin: www.of.szc.pl XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej; Fizyka w Szkole Nr 1, 1998 Autor: Nazwa zadania: Działy:

Bardziej szczegółowo

Podstawowe prawa elektrotechniki. Prawo Ohma i prawa Kirchhoffa.

Podstawowe prawa elektrotechniki. Prawo Ohma i prawa Kirchhoffa. Podstawowe prawa elektrotechniki. Prawo Ohma i prawa Kirchhoffa. Materiały dydaktyczne dla kierunku Technik Optyk (W) Kwalifikacyjnego kursu zawodowego. Prawo Ohma NatęŜenie prądu zaleŝy wprost proporcjonalnie

Bardziej szczegółowo

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych Wydział Elektryzny, Katedra Maszyn, Napędów i Pomiarów Elektryznyh Laboratorium Przetwarzania i Analizy Sygnałów Elektryznyh (bud A5, sala 310) Wydział/Kierunek Nazwa zajęć laboratoryjnyh Nr zajęć Elektryzny/

Bardziej szczegółowo

POLITECHNIKA OPOLSKA Wydział Mechaniczny. Praca Przejściowa Symulacyjna. Projekt nr : Tytuł projektu. Kierunek studiów: Mechatronika

POLITECHNIKA OPOLSKA Wydział Mechaniczny. Praca Przejściowa Symulacyjna. Projekt nr : Tytuł projektu. Kierunek studiów: Mechatronika POLITECHNIKA OPOLSKA Wydział Mechaniczny Praca Przejściowa Symulacyjna Projekt nr : Tytuł projektu. Kierunek studiów: Mechatronika Imię i Nazwisko:... Grupa: MTR 1st ST sem.6 Pnumer_grupy Data złożenia

Bardziej szczegółowo

Obliczanie charakterystyk geometrycznych przekrojów poprzecznych pręta

Obliczanie charakterystyk geometrycznych przekrojów poprzecznych pręta 5 Oblizanie harakterystyk geometryznyh przekrojów poprzeznyh pręta Zadanie 5.. Wyznazyć główne entralne momenty bezwładnośi przekroju poprzeznego dwuteownika o wymiarah 9 6 m (rys. 5.. Rozpatrywany przekrój

Bardziej szczegółowo

KOMPUTEROWO WSPOMAGANA ANALIZA PRACY UKŁADÓW CZWÓRNIKOWYCH

KOMPUTEROWO WSPOMAGANA ANALIZA PRACY UKŁADÓW CZWÓRNIKOWYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 89 Electrical Engineering 2017 DOI 10.21008/j.1897-0737.2017.89.0014 Arkadiusz DOBRZYCKI* Michał FILIPIAK* KOMPUTEROWO WSPOMAGANA ANALIZA PRACY UKŁADÓW

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Podstawy elektrotechniki Odpowiedzialny za przedmiot (wykłady): dr hab. inż. Tomasz Chady prof. ZUT Ćwiczenia: dr inż. Krzysztof Stawicki ks@zut.edu.pl e-mail: w temacie wiadomości proszę wpisywać STUDENT

Bardziej szczegółowo

Procesy Chemiczne. Ćw. W4 Adsorpcja z roztworów na węglu aktywnym. Nadmiarowe izotermy adsorpcji. Politechnika Wrocławska

Procesy Chemiczne. Ćw. W4 Adsorpcja z roztworów na węglu aktywnym. Nadmiarowe izotermy adsorpcji. Politechnika Wrocławska Politehnika Wroławska Proesy Chemizne Ćw. W4 Adsorpja z roztworów na węglu aktywnym. Nadmiarowe izotermy adsorpji Opraowane przez: Ewa Loren-Grabowska Wroław 2011 I. ADSORPCJA Równowagowe izotermy adsorpji

Bardziej szczegółowo

Entropia i druga zasada termodynamiki

Entropia i druga zasada termodynamiki Entroia-drga zasada- Entroia i drga zasada termodynamiki.9.6 :5: Entroia-drga zasada- Przemiana realizowana w kładzie rzedstawionym na rys. 3.7 jest równowagową rzemianą beztariową. Jest ona wię odwraalna.

Bardziej szczegółowo

2.Rezonans w obwodach elektrycznych

2.Rezonans w obwodach elektrycznych 2.Rezonans w obwodach elektrycznych Celem ćwiczenia jest doświadczalne sprawdzenie podstawowych właściwości szeregowych i równoległych rezonansowych obwodów elektrycznych. 2.1. Wiadomości ogólne 2.1.1

Bardziej szczegółowo

Metody rozwiązywania ob o w b o w d o ów ó w e l e ek e t k r t yc y zny n c y h

Metody rozwiązywania ob o w b o w d o ów ó w e l e ek e t k r t yc y zny n c y h Metody rozwiązywania obwodów elektrycznych ozwiązaniem obwodu elektrycznego - określa się wyznaczenie wartości wszystkich prądów płynących w rozpatrywanym obwodzie bądź wartości wszystkich napięć panujących

Bardziej szczegółowo

MODEL SYMULACYJNY ENERGOELEKTRONICZNEGO STEROWANEGO ŹRÓDŁA PRĄDOWEGO PRĄDU STAŁEGO BAZUJĄCEGO NA STRUKTURZE BUCK-BOOST CZĘŚĆ 2

MODEL SYMULACYJNY ENERGOELEKTRONICZNEGO STEROWANEGO ŹRÓDŁA PRĄDOWEGO PRĄDU STAŁEGO BAZUJĄCEGO NA STRUKTURZE BUCK-BOOST CZĘŚĆ 2 POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 87 Electrical Engineering 2016 Michał KRYSTKOWIAK* Dominik MATECKI* MODEL SYMULACYJNY ENERGOELEKTRONICZNEGO STEROWANEGO ŹRÓDŁA PRĄDOWEGO PRĄDU STAŁEGO

Bardziej szczegółowo

INŻYNIERII LABORATORIUM ELEKTROTECHNIKI. kierunek: Automatyka i Robotyka. Lab: Twierdzenie Thevenina

INŻYNIERII LABORATORIUM ELEKTROTECHNIKI. kierunek: Automatyka i Robotyka. Lab: Twierdzenie Thevenina Twierdzenie Thevenina można sformułować w następujący cytując: "Podstawy Elektrotechniki", R.Kurdziel, wyd II, WNT Warszawa 1972: Prąd płynący przez odbiornik rezystancyjny R, przyłączony do dwóch zacisków

Bardziej szczegółowo

Prawdopodobieństwo i statystyka Wykład I: Nieco historii

Prawdopodobieństwo i statystyka Wykład I: Nieco historii Prawdopodobieństwo i statystyka Wykład I: Nieco historii 6 października 2015 Prawdopodobieństwo i statystyka Wykład I: Nieco historii Zasady zaliczenia przedmiotu: Zaliczenie ćwiczeń rachunkowych. Zdanie

Bardziej szczegółowo

PRAKTYCZNE OKREŚLANIE PARAMETRÓW BALISTYCZNYCH SILNIKA RAKIETOWEGO NA PALIWO STAŁE

PRAKTYCZNE OKREŚLANIE PARAMETRÓW BALISTYCZNYCH SILNIKA RAKIETOWEGO NA PALIWO STAŁE mgr inż. Jerzy NOWICKI Wojskowy Instytut Tehnizny Uzbrojenia PRAKTYCZNE OKREŚLANIE PARAMETRÓW BALISTYCZNYCH SILNIKA RAKIETOWEGO NA PALIWO STAŁE Streszzenie: W artykule przedstawiono metodę praktyznego

Bardziej szczegółowo

5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY

5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY Część 2. METODA PRZEMIESZCZEŃ PRZYKŁAD LICZBOWY.. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY.. Działanie sił zewnętrznych Znaleźć wykresy rzeczywistych sił wewnętrznych w ramie o schemacie i obciążeniu podanym

Bardziej szczegółowo

MONITOROWANIE PARAMETRÓW PRACY HYBRYDOWEGO ODNAWIALNEGO ŹRÓDŁA ENERGII ELEKTRYCZNEJ

MONITOROWANIE PARAMETRÓW PRACY HYBRYDOWEGO ODNAWIALNEGO ŹRÓDŁA ENERGII ELEKTRYCZNEJ POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 74 Electrical Engineering 2013 Marek PALUSZCZAK* Wojciech TWARDOSZ** Grzegorz TWARDOSZ*** MONITOROWANIE PARAMETRÓW PRACY HYBRYDOWEGO ODNAWIALNEGO

Bardziej szczegółowo

Prawa Kirchhoffa. I k =0. u k =0. Suma algebraiczna natężeń prądów dopływających(+) do danego węzła i odpływających(-) z danego węzła jest równa 0.

Prawa Kirchhoffa. I k =0. u k =0. Suma algebraiczna natężeń prądów dopływających(+) do danego węzła i odpływających(-) z danego węzła jest równa 0. Prawa Kirchhoffa Suma algebraiczna natężeń prądów dopływających(+) do danego węzła i odpływających(-) z danego węzła jest równa 0. k=1,2... I k =0 Suma napięć w oczku jest równa zeru: k u k =0 Elektrotechnika,

Bardziej szczegółowo

Ćwiczenie nr 31: Modelowanie pola elektrycznego

Ćwiczenie nr 31: Modelowanie pola elektrycznego Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko.. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr : Modelowanie pola

Bardziej szczegółowo

ZESTAW BEZPRZEWODOWYCH CZUJNIKÓW MAGNETYCZNYCH DO DETEKCJI I IDENTYFIKACJI POJAZDÓW FERROMAGNETYCZNYCH

ZESTAW BEZPRZEWODOWYCH CZUJNIKÓW MAGNETYCZNYCH DO DETEKCJI I IDENTYFIKACJI POJAZDÓW FERROMAGNETYCZNYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 73 Electrical Engineering 2013 Kazimierz JAKUBIUK* Mirosław WOŁOSZYN* ZESTAW BEZPRZEWODOWYCH CZUJNIKÓW MAGNETYCZNYCH DO DETEKCJI I IDENTYFIKACJI

Bardziej szczegółowo

NOŚNOŚĆ FUNDAMENTU BEZPOŚREDNIEGO WEDŁUG EUROKODU 7

NOŚNOŚĆ FUNDAMENTU BEZPOŚREDNIEGO WEDŁUG EUROKODU 7 Geotehnizne zagadnienia realizaji budowli drogowyh projekt, dr inż. Ireneusz Dyka Kierunek studiów: Budownitwo, studia I stopnia Rok IV, sem.vii 19 NOŚNOŚĆ FUNDAMENTU BEZPOŚREDNIEGO WEDŁUG EUROKODU 7 Według

Bardziej szczegółowo