ZASTOSOWANIE MIKROSYSTEMÓW W MEDYCYNIE LABORATORIUM. Ćwiczenie nr 1 PRZEPŁYW I MIESZANIE CIECZY W MIKROKANAŁACH
|
|
- Iwona Janowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 ZASTOSOWANIE MIKROSYSTEMÓW W MEDYCYNIE LABORATORIUM Ćwiczenie nr 1 PRZEPŁYW I MIESZANIE CIECZY W MIKROKANAŁACH Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z budową i warunkami poprawnego działania mikromieszalników cieczowych. W ćwiczeniu badane będą dwa mieszalniki: typu Y oraz tzw. mieszalnik palczasty. Pierwszy mieszalnik powstał na potrzeby laboratorium studenckiego. Na jego przykładzie będzie można zapoznać się ze specyfiką przepływu cieczy przez mikrokanały. Drugi z mieszalników jest częścią mikroreaktora opracowanego do prowadzenia reakcji nitracji w projekcie europejskim NEPUMUC (New Eco-efficient Industrial Process Using Microstructured Unit Components). Umożliwia on poprawne mieszanie dwóch cieczy w mikroskali. Wprowadzenie: Mikromieszalniki stosowane są w analityce chemicznej i biochemicznej, w farmakologii przy opracowywaniu nowych leków, a także w chemii przy przeprowadzaniu reakcji chemicznych. Mieszanie substancji w mikroskali jest zagadnieniem dużo bardziej skomplikowanym niż w skali makro. O charakterze przepływu cieczy w kanałach decyduje liczba Reynoldsa. Wyraża się ona wzorem: v d Re, gdzie ρ to gęstość płynu, v - prędkość przepływu, μ - lepkość cieczy, d - wymiar charakterystyczny kanału (np. średnica). Jeżeli: Re > , to występuje przepływ turbulentny, 2300 < Re < przepływ przejściowy, Re < 2300 przepływ laminarny (uporządkowany, warstwowy, stabilny). Rys. 1. Ilustracja laminarnego przepływu dwóch cieczy przez mieszalnik pasywny 1
2 W mikrokanałach ciecze płyną w sposób laminarny, ponieważ średnica d jest bardzo mała (kilkadziesiąt kilkaset mikrometrów), a liczba Reynoldsa jest dużo mniejsza od Przy braku turbulencji jedynym mechanizmem decydującym o mieszaniu się cieczy jest zjawisko dyfuzji. W temperaturze pokojowej jest to proces bardzo wolny i potrzebne są bardzo długie kanały, żeby doszło do całkowitego wymieszania cieczy. Problem jest szczególnie istotny dla roztworów zawierających duże cząsteczki: DNA, proteiny, dla których współczynnik dyfuzji jest bardzo mały i wynosi ok m/s 2. Aby zwiększyć tempo mieszania cieczy w mikroskali, opracowuje się różne konstrukcje mikromieszalników. Można je podzielić na dwie zasadnicze grupy: pasywne i aktywne. W mieszalnikach pasywnych nie stosuje się ruchomych elementów, a jedynie odpowiednio kształtuje topologię kanałów, tak aby dochodziło do zwiększenia powierzchni kontaktu między mieszanymi strumieniami cieczy. Można to osiągnąć wprowadzając do mikrokanału przeszkody generujące zaburzenia przepływu, zmieniające kierunek i szybkość przepływu strug cieczy. Istnieją konstrukcje złożone, które rozdzielają ciecz na wiele strug, a następnie łączą te strugi wprowadzając jedne w drugie. W mikromieszalnikach aktywnych do mieszania dochodzi w wyniku działania siły zewnętrznej. Odpowiada ona za efektywne wprowadzanie turbulencji do układu kanałów. Wykorzystuje się w tym celu rożnego rodzaju pobudzenia: pulsacyjne pompowanie cieczy, załączanie i wyłączanie mikrozaworów, chwilowe podgrzanie mieszanych cieczy (wytwarzanie pęcherzyków gazu), generację ultradźwięków, przykładanie zmiennego pola magnetycznego lub elektrycznego. Wadą mieszalników pasywnych jest ograniczenie prędkości przepływu substancji, natomiast mieszalniki aktywne wymagają dostarczania energii. Niektóre mechanizmy aktywacji mogą również negatywnie wpływać na reagenty (substancje biologiczne lub odczynniki chemiczne). Mikromieszalniki badane w ćwiczeniu są mieszalnikami pasywnymi. Mieszalnik typu Y jest najprostszą ze znanych konstrukcji mieszalników (rys. 2a). Dwie ciecze płynące osobnymi kanałami spotykają się w jednym miejscu (na skrzyżowaniu). Chip został wykonany z podłoży szklanych (Borofloat 3.3, Schott, Niemcy) o wymiarach mm 2. Kanały mikrofluidyczne mają szerokość 400 μm i głębokość 50 μm. Wytrawiono je w szkle przez maskę polimerową w 40% roztworze kwasy fluorowodorowego z dodatkiem kwasu solnego (1:10). Podłoże z wytrawionymi kanałami i wykonanymi mechanicznie otworami (średnica 0,7 mm) połączono z gładkim podłożem szklanym (pokrywka) metodą bondingu fuzyjnego. a) b) Rys. 2. Mikromieszalniki pasywne: a) typu Y, b) typu palczasty 2
3 Drugi mieszalnik palczasty ma bardziej złożoną konstrukcję (rys. 2b). Aby zwiększyć tempo mieszania cieczy, zastosowano w nim rozdzielanie na wiele wąskich strug i wprowadzanie jednych między drugie. Zwiększono tym samym powierzchnię kontaktu między cieczami i możliwość dyfuzji. W mieszalniku zastosowano również długi kanał z licznymi zakrętami, dzięki czemu wydłużono drogę dyfuzji. Wykonano do z dwóch podłoży: krzemowego z wytrawionym układem kanałów i otworów oraz ze szklanego z otworami doprowadzającymi. Opis stanowiska: Do obserwacji procesu mieszania się różnych cieczy w mikrokanałach służą dwa mikromieszalniki: krzemowo-szklany i szklany, zamocowane w specjalnych obudowach z poliwęglanu. W skład układu pomiarowego wchodzą dwa zbiorniki z różnokolorowymi cieczami oraz dwie pompy perystaltyczne) sterujące ich przepływem (rys. 3). Do obserwacji procesu mieszania wykorzystuje się cyfrowy mikroskop Bresser podłączony do komputera, który należy umieścić bezpośrednio nad obserwowanym mikrokanałem mieszalnika. Na stanowisku znajdują się zbiorniki z wodą dejonizowaną (DI) i z wodą DI zabarwioną błękitem metylowym (kolor niebieski). Dodatkowy trzeci zbiornik zawiera wodny roztwór detergentu, który służy do przemycia mikrokanałów chipów po przeprowadzeniu pomiarów. Rys. 3. Schemat układu pomiarowego Przyrządy: Pompy perystaltyczne MASTERFLEX C/L 1-6 RPM, mikroskop Bresser 2MP-USB Handy. 3
4 Przebieg ćwiczenia: 1. Zaznajomienie się z układem pomiarowym 2. Przeprowadzenie pomiarów (obserwacji): Mikromieszalnik typu Y : a. Zmieniaj wartość ciśnienia w układzie sterującym przepływem cieczy 1 i 2 od 1 do 6 RPM tak, aby suma prędkości obrotowych obu pomp perystaltycznych pozostawała niezmieniona (ustal odpowiednio 1 i 6 RPM; 2 i 5; 3 i 4; 4 i 3, 5 i 2 oraz 6 i 1): - określ jaki procent szerokości kanału zajmuje każda z cieczy w odległości 3 mm od skrzyżowania kanałów, - określ jaki procent szerokości kanału zajmuje każda z cieczy z osobna a jaką mieszanina cieczy przy wylocie mieszalnika. b. Utrzymuj równą prędkość dozowania cieczy 1 i 2, zmieniaj prędkość od 1 do 6 RPM na obu pompach jednocześnie: - określ jaki procent szerokości kanału na wylocie mieszalnika zajmuje ciecz dobrze wymieszana. Mikromieszanik palczasty: a. Ustal stałą wartość przypływu cieczy 1 (np. 3 RPM), zmieniaj wartość przepływu cieczy 2 od 1 do 6 RPM: - obserwuj jaki procent szerokości kanału zajmują strugi cieczy 2 na początku kanału mieszalnika, - w którym miejscu (nr zakrętu) dochodzi do całkowitego wymieszania b. Ustal stałą wartość przypływu cieczy 2 (np. 3 RPM), zmieniaj wartość przepływu substancji 1 od 6 do RPM: - obserwuj jaki procent szerokości kanału zajmują strugi cieczy 1 na początku kanału mieszalnika, - w którym miejscu (nr zakrętu) dochodzi do całkowitego wymieszania c. Utrzymuj równą wartość prędkość dozowania cieczy 1 i 2, zmieniaj tę prędkość od 1 do 6 RPM na obu pompach jednocześnie: - określ, jak zmienia się stosunek szerokości kanału zajmowanego przez ciecz 2 do szerokości cieczy 1 wzdłuż kanału mieszalnika, - określ miejsce, w którym dochodzi do całkowitego wymieszania się 3. Analiza wyników pomiarów: Analizę wyników wykonuje się na podstawie obrazów graficznych zarejestrowanych kamerą cyfrową Bresser. Pomiaru objętości kanałów zajmowanych przez różne substancje i ich mieszaninę można dokonać przy użyciu dowolnego programu graficznego znajdującego się na komputerze umożliwiającego pomiar szerokości strug (względem całkowitej szerokości kanału). 4
5 Mieszalnik Y : a. Dla punktu a) sporządź wykres pokazujący, jaki procent szerokości kanału zajmuje każda z substancji 1 i 2 oraz ich mieszanina w dwóch miejscach: na początku i na końcu mikromieszalnika dla różnych parametrów przepływu, b. Dla punktu b) Sporządź wykres pokazujący, jaki procent szerokości kanału mikromieszalnika zajmuje mieszanina substancji 1 i 2 na końcu mikromieszalnika dla różnych parametrów przepływu, c. Czy mieszalnik typu Y umożliwia efektywne mieszanie dwóch różnych cieczy? Mieszalnik palczasty: a. Dla punktów a) i b) sporządź odpowiednio wykresy: - prezentujące jaki procent szerokości kanału zajmowany jest przez substancję 2 (1) na początku kanału mieszalnika dla różnych parametrów przepływu, - pokazujące, jak zmienia się procent zajmowany przez mieszaninę substancji 1 i 2 wzdłuż długości kanału (wyrażona w liczbie zakrętów) dla różnych parametrów przepływu, b. Określ, czy mikromieszalnik pracuje symetrycznie, c. Dla punktu c. porządź wykres pokazujący, jak zmienia się odległość na której dochodzi do całkowitego wymieszania się cieczy w zależności od prędkości obrotowej pomp perystaltycznych. UWAGA!!! Po przeprowadzeniu serii pomiarów dla każdego z mikromieszalników należy mikromieszalnik umyć. W tym celu proszę przełożyć kapilary doprowadzające ciecze 1 i 2 do pojemnika z roztworem detergentu i odczekać aż detergent wypłucze całkowicie mikrokanały. Przykładowe pytania: Na czym polega specyfika przepływu i mieszania się cieczy w mikrokanałach? Wymień i narysuj schematy różnego typu mieszalników pasywnych. Wymień różne typy mieszalników aktywnych. Porównaj mieszalniki pasywne z aktywnymi, podaj wady i zalety. Przed wykonaniem ćwiczenia proszę zapoznać się z materiałami pomocniczymi przygotowanymi do ćwiczenia. Literatura: 1. Jan A. Dziuban, Technologia i zastosowanie mikromechanicznych struktur krzemowych i krzemowo-szklanych w technice mikrosystemów, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław Z. Brzózka, Mikrobioanalityka, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa Wybrane artykuły na temat mikromieszalników (micromixers): a) Y. Wang, J. Zhe, B. T. F. Chung, P. Dutta, A rapid magnetic particle driven micromixer, Microfluid Nanofluid (2008) 4: , b) Ajay A. Deshmukh, Dorian Liepmann, and Albert P. Pisano, Continuous micromixer with pulsatile micropumps 5
ZASTOSOWANIE MIKROSYSTEMÓW W MEDYCYNIE LABORATORIUM. Ćwiczenie nr 1 PRZEPŁYW I MIESZANIE CIECZY W MIKROKANAŁACH
ZASTOSOWANIE MIKROSYSTEMÓW W MEDYCYNIE LABORATORIUM Ćwiczenie nr 1 PRZEPŁYW I MIESZANIE CIECZY W MIKROKANAŁACH Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z budową i warunkami poprawnego działania
ZASTOSOWANIE MIKROSYSTEMÓW W MEDYCYNIE LABORATORIUM. Ćwiczenie nr 1 PRZEPŁYW I MIESZANIE CIECZY W MIKROKANAŁACH
ZASTOSOWANIE MIKROSYSTEMÓW W MEDYCYNIE LABORATORIUM Ćwiczenie nr 1 PRZEPŁYW I MIESZANIE CIECZY W MIKROKANAŁACH Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z budową i warunkami poprawnego działania
ZASTOSOWANIE MIKROSYSTEMÓW W MEDYCYNIE LABORATORIUM. Ćwiczenie nr 4 MIKROCYTOMETR DO BADANIA KOMÓREK BIOLOGICZNYCH
ZASTOSOWANIE MIKROSYSTEMÓW W MEDYCYNIE LABORATORIUM Ćwiczenie nr 4 MIKROCYTOMETR DO BADANIA KOMÓREK BIOLOGICZNYCH Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z budową i warunkami działania mikrocytometru
Odporny na korozję czujnik ciśnienia dla mikroreaktorów chemicznych
MIROSYSTEMY - LABRATORIUM Ćwiczenie nr 2 Odporny na korozję czujnik ciśnienia dla mikroreaktorów chemicznych Charakterystyka badanego elementu: Odporny na korozję czujnik ciśnienia został opracowany w
Odporny na korozję czujnik ciśnienia dla mikroreaktorów chemicznych
MIKROMASZYNY I MIKRONAPĘDY DETEKCJA W MIKRO- I NANOOBJĘTOŚCIACH Laboratorium nr 1 Odporny na korozję czujnik ciśnienia dla mikroreaktorów chemicznych Charakterystyka badanego elementu: Odporny na korozję
ZASTOSOWANIE MIKROSYSTEMÓW W MEDYCYNIE LABORATORIUM. Ćwiczenie nr 2 DOZOWANIE MIKRO- I NANOOBJĘTOŚCI Z DETEKCJĄ KONDUKTOMETRYCZNĄ
ZASTOSOWANIE MIKROSYSTEMÓW W MEDYCYNIE LABORATORIUM Ćwiczenie nr 2 DOZOWANIE MIKRO- I NANOOBJĘTOŚCI Z DETEKCJĄ KONDUKTOMETRYCZNĄ Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z budową i warunkami
ZASTOSOWANIE MIKROSYSTEMÓW W MEDYCYNIE LABORATORIUM. Ćwiczenie nr 2 DOZOWANIE MIKRO- I NANOOBJĘTOŚCI Z DETEKCJĄ KONDUKTOMETRYCZNĄ
ZASTOSOWANIE MIKROSYSTEMÓW W MEDYCYNIE LABORATORIUM Ćwiczenie nr 2 DOZOWANIE MIKRO- I NANOOBJĘTOŚCI Z DETEKCJĄ KONDUKTOMETRYCZNĄ Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z budową i warunkami
ZASTOSOWANIE MIKROSYSTEMÓW W MEDYCYNIE LABORATORIUM. Ćwiczenie nr 2 DOZOWANIE MIKRO- I NANOOBJĘTOŚCI Z DETEKCJĄ KONDUKTOMETRYCZNĄ
ZASTOSOWANIE MIKROSYSTEMÓW W MEDYCYNIE LABORATORIUM Ćwiczenie nr 2 DOZOWANIE MIKRO- I NANOOBJĘTOŚCI Z DETEKCJĄ KONDUKTOMETRYCZNĄ Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z budową i warunkami
POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA
POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika
INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH
INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechaniki płynów ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH . Cel ćwiczenia Celem ćwiczenia jest doświadczalne
Laboratorium. Hydrostatyczne Układy Napędowe
Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracowanie: Z.Kudżma, P. Osiński J. Rutański,
MECHANIKA PŁYNÓW LABORATORIUM
MECANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 4 Współpraca pompy z układem przewodów. Celem ćwiczenia jest sporządzenie charakterystyki pojedynczej pompy wirowej współpracującej z układem przewodów, przy różnych
POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU
POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU WISKOZYMETRU KAPILARNEGO I. WSTĘP TEORETYCZNY Ciecze pod względem struktury
OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH
ĆWICZENIE II OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z metodą określania oporów przepływu w przewodach. 2. LITERATURA 1. Informacje z wykładów i ćwiczeń
LABORATORIUM MECHANIKI PŁYNÓW
Ćwiczenie numer 3 Pomiar współczynnika oporu lokalnego 1 Wprowadzenie Stanowisko umożliwia wykonanie szeregu eksperymentów związanych z pomiarami oporów przepływu w różnych elementach rzeczywistych układów
. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz
ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem
ZASTOSOWANIE MIKROSYSTEMÓW W MEDYCYNIE LABORATORIUM. Ćwiczenie nr 3. Kropelkowy system mikrofluidyczny
ZASTOSOWANIE MIKROSYSTEMÓW W MEDYCYNIE LABORATORIUM Ćwiczenie nr 3 Kropelkowy system mikrofluidyczny Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z budową i warunkami poprawnego działania kropelkowego
OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH
ĆWICZENIE II OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z metodą określania oporów przepływu w przewodach. 2. LITERATURA 1. Informacje z wykładów i ćwiczęń
LABORATORIUM SPALANIA I PALIW
1. Wprowadzenie 1.1.Podstawowe definicje Spalanie egzotermiczna reakcja chemiczna przebiegająca między paliwem a utleniaczem. Mieszanina palna mieszanina paliwa i utleniacza w której płomień rozprzestrzenia
LABORATORIUM MECHANIKI PŁYNÓW
Ćwiczenie numer 2 Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny
LABORATORIUM MECHANIKI PŁYNÓW
Ćwiczenie numer Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny o
LABORATORIUM MECHANIKI PŁYNÓW
Ćwiczenie numer 3 Pomiar współczynnika oporu lokalnego 1 Wprowadzenie Stanowisko umożliwia wykonanie szeregu eksperymentów związanych z pomiarami oporów przepływu w różnych elementach rzeczywistych układów
Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki.
Spis treści 1 Podstawowe definicje 11 Równanie ciągłości 12 Równanie Bernoulliego 13 Lepkość 131 Definicje 2 Roztwory wodne makrocząsteczek biologicznych 3 Rodzaje przepływów 4 Wyznaczania lepkości i oznaczanie
Wojskowa Akademia Techniczna Katedra Pojazdów Mechanicznych i Transportu
Wojskowa Akademia Techniczna Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-05 Temat: Pomiar parametrów przepływu gazu. Opracował: dr inż.
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie lepkości wodnych roztworów sacharozy. opracowała dr A. Kacperska
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie lepkości wodnych roztworów sacharozy opracowała dr A. Kacperska ćwiczenie nr 20 Zakres zagadnień obowiązujących do ćwiczenia 1. Oddziaływania
WYZNACZENIE WSPÓŁCZYNNIKA OPORU LINIOWEGO PRZEPŁYWU LAMINARNEGO
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 WYZNACZENIE WSPÓŁCZYNNIKA OPORU LINIOWEGO PRZEPŁYWU LAMINARNEGO 1. Cel ćwiczenia Doświadczalne wyznaczenie zaleŝności współczynnika oporu linioweo przepływu
Zadanie 1. Zadanie 2.
Zadanie 1. Określić nadciśnienie powietrza panujące w rurociągu R za pomocą U-rurki, w której znajduje się woda. Różnica poziomów wody w U-rurce wynosi h = 100 cm. Zadanie 2. Określić podciśnienie i ciśnienie
PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:
Badanie współczynników lepkości cieczy przy pomocy wiskozymetru rotacyjnego Rheotest 2.1
Badanie współczynników lepkości cieczy przy pomocy wiskozymetru rotacyjnego Rheotest 2.1 Joanna Janik-Kokoszka Zagadnienia kontrolne 1. Definicja współczynnika lepkości. 2. Zależność współczynnika lepkości
INSTRUKCJA LABORATORYJNA NR 4-EW ELEKTROWNIA WIATROWA
LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR 4-EW ELEKTROWNIA WIATROWA ELEKTROWNIA WIATROWA
POLITECHNIKA BIAŁOSTOCKA
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 1 WYZNACZANIE GĘSTOSCI CIECZY Autorzy:
Ćwiczenie laboratoryjne Parcie wody na stopę fundamentu
Ćwiczenie laboratoryjne Parcie na stopę fundamentu. Cel ćwiczenia i wprowadzenie Celem ćwiczenia jest wyznaczenie parcia na stopę fundamentu. Natężenie przepływu w ośrodku porowatym zależy od współczynnika
Płyny newtonowskie (1.1.1) RYS. 1.1
Miniskrypt: Płyny newtonowskie Analizujemy cienką warstwę płynu zawartą pomiędzy dwoma równoległymi płaszczyznami, które są odległe o siebie o Y (rys. 1.1). W warunkach ustalonych następuje ścinanie w
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 13: Współczynnik lepkości
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 13: Współczynnik lepkości Cel ćwiczenia: Wyznaczenie współczynnika lepkości gliceryny metodą Stokesa, zapoznanie się z własnościami cieczy lepkiej. Literatura
LABORATORIUM Z PROEKOLOGICZNYCH ŹRÓDEŁ ENERGII ODNAWIALNEJ
VIII-EW ELEKTROWNIA WIATROWA LABORATORIUM Z PROEKOLOGICZNYCH ŹRÓDEŁ ENERGII ODNAWIALNEJ Katedra Aparatury i Maszynoznawstwa Chemicznego Instrukcja ćwiczenia nr 8. EW 1 8 EW WYZNACZENIE ZAKRESU PRACY I
LABORATORIUM - TRANSPORT CIEPŁA I MASY II
Ćwiczenie numer 4 Transport ciepła za pośrednictwem konwekcji 1. Wprowadzenie Jednostka eksperymentalna WL 352 Heat Transfer by Convection umożliwia analizę transportu ciepła za pośrednictwem konwekcji
Modele matematyczne procesów, podobieństwo i zmiana skali
Modele matematyczne procesów, podobieństwo i zmiana skali 20 kwietnia 2015 Zadanie 1 konstrukcji balonu o zadanej sile oporu w ruchu. Obiekt do konstrukcji (Rysunek 1) opisany jest następującą F = Φ(d,
POLITECHNIKA BIAŁOSTOCKA
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr
POLITECHNIKA BIAŁOSTOCKA
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr
Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości
LABORATORIUM MECHANIKI PŁYNÓW Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości dr inż. Jerzy Wiejacha ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA, WYDZ. BMiP, PŁOCK
MECHANIKA PŁYNÓW Płyn
MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać
K05 Instrukcja wykonania ćwiczenia
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego K05 Instrukcja wykonania ćwiczenia Wyznaczanie punktu izoelektrycznego żelatyny metodą wiskozymetryczną Zakres zagadnień obowiązujących do ćwiczenia 1. Układy
Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia
MIKROSYSTEMY - laboratorium Ćwiczenie 3 Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia Zadania i cel ćwiczenia. W ćwiczeniu zostaną
Hydrostatyczne Układy Napędowe Laboratorium
Hydrostatyczne Układy Napędowe Laboratorium Temat: Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracował: Z. Kudźma, P. Osiński, J. Rutański, M. Stosiak CEL
WYKONUJEMY POMIARY. Ocenę DOSTATECZNĄ otrzymuje uczeń, który :
WYKONUJEMY POMIARY Ocenę DOPUSZCZAJĄCĄ otrzymuje uczeń, który : wie, w jakich jednostkach mierzy się masę, długość, czas, temperaturę wie, do pomiaru jakich wielkości służy barometr, menzurka i siłomierz
Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia
Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia III Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia Sonda poboru ciśnienia Sonda poboru ciśnienia (Rys. ) jest to urządzenie
T E C H N I K I L AS E R OWE W I N Ż Y N I E R I I W Y T W AR Z AN IA
: Studium: stacjonarne, I st. : : MiBM, Rok akad.: 2016/1 Liczba godzin - 15 T E C H N I K I L AS E R OWE W I N Ż Y N I E R I I W Y T W AR Z AN IA L a b o r a t o r i u m ( h a l a 2 0 Z O S ) Prowadzący:
Sprawozdanie. z ćwiczeń laboratoryjnych z przedmiotu: Współczesne Materiały Inżynierskie. Temat ćwiczenia
Sprawozdanie z ćwiczeń laboratoryjnych z przedmiotu: Współczesne Materiały Inżynierskie Temat ćwiczenia Badanie właściwości reologicznych cieczy magnetycznych Prowadzący: mgr inż. Marcin Szczęch Wykonawcy
Ćwiczenie N 13 ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO . Cel ćwiczenia Doświadczalne wyznaczenie rozkładu ciśnienia piezometrycznego w zwęŝce Venturiego i porównanie go z
Rys.1. Zwężki znormalizowane: a) kryza, b) dysza, c) dysza Venturiego [2].
WYZNACZANIE WSPÓŁCZYNNIKA PRZEPŁYWU W ZWĘŻKACH POMIAROWYCH DLA GAZÓW 1. Wprowadzenie Najbardziej rozpowszechnioną metodą pomiaru natężenia przepływu jest użycie elementów dławiących płyn. Stanowią one
Techniki immunochemiczne. opierają się na specyficznych oddziaływaniach między antygenami a przeciwciałami
Techniki immunochemiczne opierają się na specyficznych oddziaływaniach między antygenami a przeciwciałami Oznaczanie immunochemiczne RIA - ( ang. Radio Immuno Assay) techniki radioimmunologiczne EIA -
dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B
Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A, p 2, S E C B, p 1, S C [W] wydajność pompowania C= d ( pv ) = d dt dt (nrt )= kt dn dt dn / dt - ilość cząstek przepływających w ciągu
WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH
WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH Pomiar strumienia masy i strumienia objętości metoda objętościowa, (1) q v V metoda masowa. (2) Obiekt badań Pomiar
Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)
OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu
NAGRZEWANIE ELEKTRODOWE
INSTYTUT INFORMATYKI STOSOWANEJ POLITECHNIKI ŁÓDZKIEJ Ćwiczenia Nr 7 NAGRZEWANIE ELEKTRODOWE 1.WPROWADZENIE. Nagrzewanie elektrodowe jest to nagrzewanie elektryczne oparte na wydzielaniu, ciepła przy przepływie
Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza
Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 (EZ1C500 055) BADANIE DIOD I TRANZYSTORÓW Białystok 2006
Instrukcja stanowiskowa
POLITECHNIKA WARSZAWSKA Wydział Budownictwa, Mechaniki i Petrochemii Instytut Inżynierii Mechanicznej w Płocku Zakład Aparatury Przemysłowej LABORATORIUM WYMIANY CIEPŁA I MASY Instrukcja stanowiskowa Temat:
Eksperymentalnie wyznacz bilans energii oraz wydajność turbiny wiatrowej, przy obciążeniu stałą rezystancją..
Eksperyment 1.2 1.2 Bilans energii oraz wydajność turbiny wiatrowej Zadanie Eksperymentalnie wyznacz bilans energii oraz wydajność turbiny wiatrowej, przy obciążeniu stałą rezystancją.. Układ połączeń
J. Szantyr Wykład nr 20 Warstwy przyścienne i ślady 2
J. Szantyr Wykład nr 0 Warstwy przyścienne i ślady W turbulentnej warstwie przyściennej można wydzielić kilka stref różniących się dominującymi mechanizmami kształtującymi przepływ. Ogólnie warstwę można
Ćwiczenie 3: Wyznaczanie gęstości pozornej i porowatości złoża, przepływ gazu przez złoże suche, opory przepływu.
1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,
Podstawowe narzędzia do pomiaru prędkości przepływu metodami ciśnieniowymi
Ć w i c z e n i e 5a Podstawowe narzędzia do pomiaru prędkości przepływu metodami ciśnieniowymi 1. Wprowadzenie Celem ćwiczenia jest zapoznanie się z przyrządami stosowanymi do pomiarów prędkości w przepływie
Metoda Elementów Skończonych
Metoda Elementów Skończonych 2013/2014 Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Rok III, Semestr V, Grupa M-3 Michał Kąkalec Hubert Pucała Dominik Kurczewski Prowadzący: prof. dr hab.
1. Nadajnik światłowodowy
1. Nadajnik światłowodowy Nadajnik światłowodowy jest jednym z bloków światłowodowego systemu transmisyjnego. Przetwarza sygnał elektryczny na sygnał optyczny. Jakość transmisji w dużej mierze zależy od
J. Szantyr Wyklad nr 6 Przepływy laminarne i turbulentne
J. Szantyr Wyklad nr 6 Przepływy laminarne i turbulentne Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i turbulentnego, odkrył Osborne Reynolds (1842 1912) w swoim znanym eksperymencie
AKADEMIA GÓRNICZO HUTNICZA INSTRUKCJE DO ĆWICZEŃ LABORATORYJNYCH: TECHNIKA PROCESÓW SPALANIA
AKADEMIA GÓRNICZO HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE WYDZIAŁ INŻYNIERII METALI I INFORMATYKI PRZEMYSŁOWEJ KATEDRA TECHNIKI CIEPLNEJ I OCHRONY ŚRODOWISKA INSTRUKCJE DO ĆWICZEŃ LABORATORYJNYCH:
ZAAWANSOWANE TECHNIKI WYTWARZANIA W MECHATRONICE
: Studium: niestacjonarne, II st. : : MCH Rok akad.: 207/8 Liczba godzin - 0 ZAAWANSOWANE TECHNIKI WYTWARZANIA W MECHATRONICE L a b o r a torium(hala 20 ZOS) Prowadzący: dr inż. Marek Rybicki pok. 605,
1. Część teoretyczna. Przepływ jednofazowy przez złoże nieruchome i ruchome
1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,
A4.06 Instrukcja wykonania ćwiczenia
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego A4.06 Instrukcja wykonania ćwiczenia Lepkościowo średnia masa cząsteczkowa polimeru Zakres zagadnień obowiązujących do ćwiczenia 1. Związki wielkocząsteczkowe
Standardowe pompy perystaltyczne BT100N, BT300N, BT600N
Standardowe perystaltyczne BT100N, BT300N, BT600N Standardowe perystaltyczne to urządzenia proste w obsłudze o zwartej i solidnej konstrukcji, charakteryzujące się wysoką niezawodnością. Przeznaczone do
POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21
POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21 Ćwiczenie nr 5. POMIARY NATĘŻENIA PRZEPŁYWU GAZÓW METODĄ ZWĘŻOWĄ 1. Cel ćwiczenia
SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie
DEFINICJE OGÓLNE I WIELKOŚCI CHARAKTERYSTYCZNE WENTYLATORA WENTYLATOR maszyna wirnikowa, która otrzymuje energię mechaniczną za pomocą jednego wirnika lub kilku wirników zaopatrzonych w łopatki, użytkuje
Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów nieniutonowskich
Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką zajmuje: Gęstość wyrażana jest w jednostkach układu SI. Gęstość cieczy
METODYKA WYBRANYCH POMIARÓW. w inżynierii rolniczej i agrofizyce. pod redakcją AGNIESZKI KALETY
METODYKA WYBRANYCH POMIARÓW w inżynierii rolniczej i agrofizyce pod redakcją AGNIESZKI KALETY Wydawnictwo SGGW Warszawa 2013 SPIS TREŚCI Przedmowa... 7 Wykaz ważniejszych oznaczeń... 11 1. Techniki pomiarowe
Awarie. 4 awarie do wyboru objawy, możliwe przyczyny, sposoby usunięcia. (źle dobrana pompa nie jest awarią)
Awarie 4 awarie do wyboru objawy możliwe przyczyny sposoby usunięcia (źle dobrana pompa nie jest awarią) Natężenie przepływu DANE OBLICZENIA WYNIKI Qś r d M k q j m d 3 Mk- ilość mieszkańców równoważnych
Badania efektywności pracy wywietrzników systemowych Zefir w układach na pustaku wentylacyjnym w czterorzędowym wariancie montażowym
Badania efektywności pracy wywietrzników systemowych Zefir - 150 w układach na pustaku wentylacyjnym w czterorzędowym wariancie montażowym wywietrzniki ZEFIR-150 Środkowe wywietrzniki z podniesioną częścią
LABORATORIUM NAUKI O MATERIAŁACH
Politechnika Łódzka Wydział Mechaniczny Instytut Inżynierii Materiałowej LABORATORIUM NAUKI O MATERIAŁACH Blok nr 1 Badania Własności Mechanicznych L.p. Nazwisko i imię Nr indeksu Wydział Semestr Grupa
Zajęcia laboratoryjne
Zajęcia laboratoryjne Napęd Hydrauliczny Instrukcja do ćwiczenia nr 3 Metody ograniczenia strat mocy w układach hydraulicznych Opracowanie: Z. Kudźma, P. Osiński, U. Radziwanowska, J. Rutański, M. Stosiak
1. Zaproponuj doświadczenie pozwalające oszacować szybkość reakcji hydrolizy octanu etylu w środowisku obojętnym
1. Zaproponuj doświadczenie pozwalające oszacować szybkość reakcji hydrolizy octanu etylu w środowisku obojętnym 2. W pewnej chwili szybkość powstawania produktu C w reakcji: 2A + B 4C wynosiła 6 [mol/dm
LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH
LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH Temat: Badanie cyklonu ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA WYDZIAŁ BMiP 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie
Mechanika płynów : laboratorium / Jerzy Sawicki. Bydgoszcz, Spis treści. Wykaz waŝniejszych oznaczeń 8 Przedmowa
Mechanika płynów : laboratorium / Jerzy Sawicki. Bydgoszcz, 2010 Spis treści Wykaz waŝniejszych oznaczeń 8 Przedmowa 1. POMIAR CIŚNIENIA ZA POMOCĄ MANOMETRÓW HYDROSTATYCZNYCH 11 1.1. Wprowadzenie 11 1.2.
J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1
J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 Warstwa przyścienna jest to część obszaru przepływu bezpośrednio sąsiadująca z powierzchnią opływanego ciała. W warstwie przyściennej znaczącą rolę
Cel i zakres ćwiczenia
MIKROMECHANIZMY I MIKRONAPĘDY 2 - laboratorium Ćwiczenie nr 5 Druk 3D oraz charakteryzacja mikrosystemu Cel i zakres ćwiczenia Celem ćwiczenia jest charakteryzacja geometryczna wykonanego w ćwiczeniu 1
WIROWANIE. 1. Wprowadzenie
WIROWANIE 1. Wprowadzenie Rozdzielanie układów heterogonicznych w polu sił grawitacyjnych może być procesem długotrwałym i mało wydajnym. Sedymentacja może zostać znacznie przyspieszona, kiedy pole sił
Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda.
Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda. Zagadnienia: Oddziaływania międzycząsteczkowe. Ciecze idealne i rzeczywiste. Zjawisko lepkości. Równanie
Modelowanie i symulacja zagadnień biomedycznych PROJEKT BARTŁOMIEJ GRZEBYTA, JAKUB OTWOROWSKI
Modelowanie i symulacja zagadnień biomedycznych PROJEKT BARTŁOMIEJ GRZEBYTA, JAKUB OTWOROWSKI Spis treści Wstęp... 2 Opis problemu... 3 Metoda... 3 Opis modelu... 4 Warunki brzegowe... 5 Wyniki symulacji...
Pomiar siły parcie na powierzchnie płaską
Pomiar siły parcie na powierzchnie płaską Wydawać by się mogło, że pomiar wartości parcia na powierzchnie płaską jest technicznie trudne. Tak jest jeżeli wyobrazimy sobie pomiar na ściankę boczną naczynia
POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
ZALEŻNOŚĆ STAŁEJ SZYBKOŚCI REAKCJI OD TEMPERATURY WSTĘP Szybkość reakcji drugiego rzędu: A + B C (1) zależy od stężenia substratów A oraz B v = k [A][B] (2) Gdy jednym z reagentów jest rozpuszczalnik (np.
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Adsorpcja kwasu octowego na węglu aktywnym. opracowała dr hab. Małgorzata Jóźwiak
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Adsorpcja kwasu octowego na węglu aktywnym opracowała dr hab. Małgorzata Jóźwiak ćwiczenie nr Zakres zagadnień obowiązujących do ćwiczenia 1. Charakterystyka
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Lepkościowo średnia masa cząsteczkowa polimeru. opiekun ćwiczenia: dr A.
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Lepkościowo średnia masa cząsteczkowa polimeru ćwiczenie nr 21 opiekun ćwiczenia: dr A. Kacperska Zakres zagadnień obowiązujących do ćwiczenia 1. Związki
ĆWICZENIE I WYZNACZENIE ROZKŁADU PRĘDKOŚCI STRUGI W KANALE
ĆWICZENIE I WYZNACZENIE ROZKŁADU PRĘDKOŚCI STRUGI W KANALE 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z metodą pomiaru prędkości płynu przy pomocy rurki Prandtla oraz określenie rozkładu prędkości
WIROWANIE. 1. Wprowadzenie
WIROWANIE 1. Wprowadzenie Rozdzielanie układów heterogonicznych w polu sił grawitacyjnych może być procesem długotrwałym i mało wydajnym. Sedymentacja może zostać znacznie przyspieszona, kiedy pole sił
1.Wstęp. Prąd elektryczny
1.Wstęp. Celem ćwiczenia pierwszego jest zapoznanie się z metodą wyznaczania charakterystyki regulacyjnej silnika prądu stałego n=f(u), jako zależności prędkości obrotowej n od wartości napięcia zasilania
INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 5
INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKUTYWACJI aboratorium z mechaniki płynów ĆWICZENIE NR 5 POMIAR WSPÓŁCZYNNIKA STRAT PRZEPŁYWU NA DŁUGOŚCI. ZASTOSOWANIE PRAWA HAGENA POISEU A 1. Cel
PRZEPŁYW CIECZY W KORYCIE VENTURIEGO
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 9 PRZEPŁYW CIECZY W KORYCIE VENTURIEGO . Cel ćwiczenia Sporządzenie carakterystyki koryta Venturiego o przepływie rwącym i wyznaczenie średniej wartości współczynnika
ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA
ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA POLITECHNIKA RZESZOWSKA im. IGNACEGO ŁUKASIEWICZA Al. Powstańców Warszawy 8, 35-959 Rzeszów, Tel: 854-31-1,
ZASTOSOWANIE MIKROSYSTEMÓW W MEDYCYNIE LABORATORIUM. Ćwiczenie nr 5 INSTRUMENT LAB-ON-A-CHIP DO ELEKTROFORETYCZNEJ ANALIZY MATERIAŁU GENETYCZNEGO
ZASTOSOWANIE MIKROSYSTEMÓW W MEDYCYNIE LABORATORIUM Ćwiczenie nr 5 INSTRUMENT LAB-ON-A-CHIP DO ELEKTROFORETYCZNEJ ANALIZY MATERIAŁU GENETYCZNEGO Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową
Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA
Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA Cel ćwiczenia: dobór nastaw regulatora, analiza układu regulacji trójpołożeniowej, określenie jakości regulacji trójpołożeniowej w układzie bez zakłóceń
KOLOKWIUM w piątek 8 grudnia
izyka 1 KOLOKWIUM w piątek 8 grudnia Na kolokwium obowiązują Państwa zagadnienia omawiane na wykładach 1 7 zgodnie z prezentacjami zamieszczonymi na stronie. Przypominam, że dostępne na stronie prezentacje
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES