Logika 2 Logiki temporalne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Logika 2 Logiki temporalne"

Transkrypt

1 Logika 2 Logiki temporalne Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl Dzisiejsze zajęcia wiele zawdzięczają wykładom A. Indrzejczaka z logik nieklasycznych

2 Czym jest czas? św. Augustyn Gdy nikt mnie nie pyta wiem. Gdy chcę to wyjasnić pytającemu nie potrafię Platon Poruszający sie obraz wieczności Arystoteles Miara ruchu z uwagi na to, co wcześniejsze i późniejsze Doświadczanie czasu: kwantytatywne (przeszłość teraźniejszość przyszłość); kwalitatywne (pamięć, doświadczenie, obserwacja, przewidywanie, nadzieja współistnienie przeszłości i przyszłości). kognitywistyka, rok II (IP UAM) Logika 2 2 / 32

3 O czym to będzie? 1 Po co to komu? 2 Jak zbudować logikę temporalną? 3 Semantyka relacyjna i modalne logiki temporalne 4 Logiki temporalne w programowaniu 5 Logiki czasu interwałowego kognitywistyka, rok II (IP UAM) Logika 2 3 / 32

4 O czym to będzie? 1 Po co to komu? 2 Jak zbudować logikę temporalną? 3 Semantyka relacyjna i modalne logiki temporalne 4 Logiki temporalne w programowaniu 5 Logiki czasu interwałowego kognitywistyka, rok II (IP UAM) Logika 2 4 / 32

5 Do czego służą logiki temporalne? Zadaniem logiki temporalnej jest studiowanie tej milczącej augustyńskiej wiedzy o czasie budowanie modeli. Filozofia: problemy dotyczące natury czasu (zmiana a tożsamość, determinizm). Językoznawstwo: analiza czasów gramatycznych. Fizyka: czas a zmiana, czas jako wymiar. Informatyka: analiza realizacji programów, ich poprawności itp. AI: planowanie, kolejność akcji, przetwarzanie wiedzy zmieniającej się w czasie itp. kognitywistyka, rok II (IP UAM) Logika 2 5 / 32

6 Elementy historii 1 Paradoksy Zenona. 2 Arystoteles: bitwa morska. 3 Wieki średnie: logika języka naturalnego i uwikłanie teologiczne. 1 Ryszard z Lavenham: zdania o przyszłości nie sa ani prawdziwe, ani fałszywe. 2 Piotr Abelard: a i owszem są, ale czym innym jest wartość logiczna, a czym innym wiedza o niej. 3 Tomasz z Akwinu: przedmiot wiary można rozważać albo z punktu widzenia przedmiotu (Chrystus: narodzi się, jest narodzony, narodził się), albo wiary. 4 Jan Buridan: ile trwa teraz? 5 Anzelm: necessitas sequens vs necessitas praecedens. 4 Kant: czas jako aprioryczna forma naoczności. 5 Prior: standardowe logiki temporalne. 6 Pnueli: logiki programów. kognitywistyka, rok II (IP UAM) Logika 2 6 / 32

7 Kontrowersje co do natury czasu 1 subiektywny/obiektywny 2 względny/absolutny 3 punkty/interwały/zdarzenia 4 skończony/nieskończony 5 liniowy/rozgałęziony 6 dyskretny/ciągły/gęsty (dziedzina: liczby naturalne? całkowite? wymierne? rzeczywiste?) względny i subiektywny: Augustyn względny i obiektywny: Einstein absolutny i subiektywny: Kant absolutny i obiektywny: Newton kognitywistyka, rok II (IP UAM) Logika 2 7 / 32

8 O czym to będzie? 1 Po co to komu? 2 Jak zbudować logikę temporalną? 3 Semantyka relacyjna i modalne logiki temporalne 4 Logiki temporalne w programowaniu 5 Logiki czasu interwałowego kognitywistyka, rok II (IP UAM) Logika 2 8 / 32

9 Logiki temporalne 1 Bazujące na logice predykatów: dodatkowe zmienne (indeksy temporalne) dla predykatów wrażliwych na czas. 2 Bazujące na logikach modalnych (tense logic): twórcza reinterpretacja operatorów modalnych. kognitywistyka, rok II (IP UAM) Logika 2 9 / 32

10 Standardowe operatory temporalne (model punktowy) P zdarzyło się tak, że... ( nastąpiło... ) F zdarzy się tak, że... ( nastąpi... ) H zawsze było tak, że... ( dotąd zawsze... ) G zawsze będzie tak, że... ( odtąd zawsze... ) GA = df F A FA = df G A HA = df P A PA = df H A kognitywistyka, rok II (IP UAM) Logika 2 10 / 32

11 Standardowe operatory temporalne przykłady 1 Małgorzata kocha Mistrza: p 2 Małgorzata zawsze kochała Mistrza: Hp 3 Małgorzata zawsze kochała i zawsze będzie kochać Mistrza: Hp Gp 4 Małgorzata zawsze kochała, kocha i zawsze będzie kochać Mistrza: Hp p Gp 5 Małgorzata nie kochała, ale pokochała Mistrza: P( p Fp) 6 Małgorzata zawsze kochała Mistrza, ale przestała: Hp p 7 Jeśli Małgorzata pokocha Mistrza, to będzie kochać go zawsze: F (p Gp) kognitywistyka, rok II (IP UAM) Logika 2 11 / 32

12 Logiki temporalne bazujące na logice predykatów interpretacja operatorów t n teraz Pp: t(t < t n p(t)) Fp: t(t n < t p(t)) Hp: t(t < t n p(t)) Gp: t(t n < t p(t)) kognitywistyka, rok II (IP UAM) Logika 2 12 / 32

13 Logiki temporalne bazujące na logikach modalnych Modalności temporalne a modalności aletyczne: 1 Diodor Kronos: A = df A FA A = df A GA 2 Arystoteles: A = df PA A FA A = df HA A GA kognitywistyka, rok II (IP UAM) Logika 2 13 / 32

14 O czym to będzie? 1 Po co to komu? 2 Jak zbudować logikę temporalną? 3 Semantyka relacyjna i modalne logiki temporalne 4 Logiki temporalne w programowaniu 5 Logiki czasu interwałowego kognitywistyka, rok II (IP UAM) Logika 2 14 / 32

15 Semantyka relacyjna Struktura modelowa < W, R > i model M =< W, R, V > jak zwykle (W interpretowany jako zbiór momentów punktów czasowych, R interpretowane jako relacja następstwa/poprzedzania czasowego) Semantyka operatorów temporalnych: V (FA, t j ) = 1 wtw istnieje t i W taki, że t j Rt i oraz V (A, t i ) = 1 V (PA, t j ) = 1 wtw istnieje t i W taki, że t i Rt j oraz V (A, t i ) = 1 V (GA, t j ) = 1 wtw dla każdego t i W : jeśli t j Rt i, to V (A, t i ) = 1 V (HA, t j ) = 1 wtw dla każdego t i W : jeśli t i Rt j, to V (A, t i ) = 1 Prawdziwość w modelu i w strukturze modelowej jak zwykle. kognitywistyka, rok II (IP UAM) Logika 2 15 / 32

16 Policzmy M =< W, R, V > taki że: W = {t 1, t 2, t 3, t 4, t 5, t 6 }, R = {< t 1, t 2 >, < t 1, t 3 >, < t 2, t 4 >, < t 3, t 5 >, < t 3, t 6 >}, p jest prawdziwe w t 1, t 2, t 3, t 6, q jest prawdziwe w t 2, t 4, t 5, t V (Gp, t 1 ) = 2. V (Gq, t 1 ) = 3. V (Fq, t 1 ) = 4. V (Gq, t 3 ) = 5. V (FGq, t 1 ) = 6. V (PGp, t 2 ) = 7. V (HGp, t 2 ) = 8. V (PFGq, t 2 ) = 9. V (PGp, t 5 ) = 10. V (PFp, t 5 ) = 11. V (HGq, t 5 ) = 12. V (PGq, t 5 ) = 13. V (q Fq, t 1 ) = 14. V (q Gq, t 1 ) = 15. V (Pp Fq, t 2 ) = 16. V (P(p q), t 2 ) = 17. V (G(p q), t 1 ) = 18. V (GG(p q), t 1 ) = kognitywistyka, rok II (IP UAM) Logika 2 16 / 32

17 Najsłabsza logika temporalna: K t Aksjomaty: aksjomaty rachunkowozdaniowe Fp G p Pp H p G(p q) Gp Gq H(p q) Hp Hq p HFp p GPp Reguły pierwotne: RO, RP, RG dla G, RG dla H Dowód, teza jak zwykle. kognitywistyka, rok II (IP UAM) Logika 2 17 / 32

18 Inne S4 w interpretacji temporalnej logika czasu rozgałęzionego (Istnieją przyszłe stany rzeczy dostępne dla mnie teraz, które mogą wskutek pewnych zdarzeń pośrednich stać się dla mnie niedostępne w przyszłości). S4.3 (R zwrotna, przechodnia i spójna porządek liniowy): S4 + G(Gp q) G(Gq p) S4.2 (R zwrotna, przechodnia i zbieżna): S4 + FGp GFp S4.4 (logika końca świata): FGp (p Gp) S4F (GA A jest i zawsze będzie; czas się kończy): (GFp GFq) F (p q) kognitywistyka, rok II (IP UAM) Logika 2 18 / 32

19 O czym to będzie? 1 Po co to komu? 2 Jak zbudować logikę temporalną? 3 Semantyka relacyjna i modalne logiki temporalne 4 Logiki temporalne w programowaniu 5 Logiki czasu interwałowego kognitywistyka, rok II (IP UAM) Logika 2 19 / 32

20 Temporal logic of programs: PLTL, Propositional Linear Time Logic Rozszerzenie języka: p: nexttime p (w następnym momencie p); podobnie p previously p, w poprzednim momencie p pss: p since q (zachodziło p odkąd zaszło q) puq: p until q (będzie zachodzić p aż zajdzie q) W klasie liniowych i ciągłych struktur każdy funktor temporalny może być zdefiniowany za pomocą S i U, np: Hp = df ( S p), Pp = df Sp, Gp = df ( U p), Fp = df Up kognitywistyka, rok II (IP UAM) Logika 2 20 / 32

21 Semantyka PLTL Oparta na strukturze N, < klasa modeli postaci S, σ, V : S niepusty zbiór stanów progr, σ : N S przebieg progr, V wartościowanie. V ( p, i) = 1 wtw V (p, i + 1) = 1 V (psq, i) = 1 wtw dla pewnego 0 d i: V (q, d) = 1 oraz dla każdego h takiego że d < h i: V (p, h) = 1 V (puq, i) = 1 wtw dla pewnego d i: V (q, d) = 1 oraz dla każdego h takiego że i h < d: V (p, h) = 1 V (Gp, i) = 1 wtw dla każdego j i: V (p, j) = 1 V (Fp, i) = 1 wtw dla pewnego j i: V (p, j) = 1 V (Hp, i) = 1 wtw dla każdego j i: V (p, j) = 1 V (Pp, i) = 1 wtw dla pewnego j i: V (p, j) = 1 (Używa się też oznaczeń: G: [F ], F : F, H: [P], P: P ) kognitywistyka, rok II (IP UAM) Logika 2 21 / 32

22 PLTL tautologiczność lokalna Formuła A jest prawdziwa w modelu M = S, σv wtw V (A, 0) = 1. Formuła A jest tautologią wtw jest prawdziwa w każdym modelu. Tautologiczność globalna ze standardowej definicji prawdziwości (we wszystkich stanach). Formuła A jest globalnie tautologiczna wtw formuła GA jest lokalnie tautologiczna. kognitywistyka, rok II (IP UAM) Logika 2 22 / 32

23 PLTL aksjomatyka dla przyszłości A A G(A B) (GA GB) (A B) ( A B) GA A GA A G(A A) G(A GA) AUB FB AUB B (A (AUB)) Wśród aksjomatów przeszłości jest aksjomat Start: Reguły: RO, RG dla G, RG dla H kognitywistyka, rok II (IP UAM) Logika 2 23 / 32

24 PLTL zastosowania specyfikacja i weryfikacja programów; programowanie logiczne; dynamiczne bazy danych; Klasy wyrażalnych własności: bezpieczeństwo (pewna sytuacja nigdy nie zajdzie, np. samochód nie ruszy bez kierowcy: GA, B GA) żywotność (pewna sytuacja kiedyś zajdzie, np. każde żądanie dostępu zostanie kiedyś spełnione: FA, B GA) brak zakleszczeń (zawsze można wykonać kolejny krok) sprawiedliwość (pewna sytuacja zdarza się nieskończenie często, np. jeżeli żądanie dostępu będzie zgłaszane nieskończenie wiele razy, to dostęp zostanie udzielony nieskończenie wiele razy) kognitywistyka, rok II (IP UAM) Logika 2 24 / 32

25 CTL, Computational Tree Logic Logika czasu rozgałęzionego w przyszłość GA: A jest spełnione w każdym stanie każdej możliwej przyszłości (na każdej gałęzi; jest uniwersalnie prawdziwe). FA: A jest spełnione w pewnym stanie każdej możliwej przyszłości (na każdej gałęzi; jest nieuniknione). GA: A jest spełnione w każdym stanie pewnej możliwej przyszłości (na każdej gałęzi; jest uniwersalnie prawdziwe w pewnym wariancie przyszłości). FA: A jest spełnione w pewnym stanie pewnej możliwej przyszłości (na każdej gałęzi; jest potencjalnie prawdziwe). kognitywistyka, rok II (IP UAM) Logika 2 25 / 32

26 CTL, Computational Tree Logic A: A jest spełnione w następnym stanie każdej możliwej przyszłości. A: A jest spełnione w następnym stanie pewnej możliwej przyszłości. AUB: w każdej możliwej przyszłości A zachodzi aż zajdzie B. AUB: w pewnej możliwej przyszłości A zachodzi aż zajdzie B. Wszystkie funktory temporalne definiowalne są za pomocą, U, U kognitywistyka, rok II (IP UAM) Logika 2 26 / 32

27 O czym to będzie? 1 Po co to komu? 2 Jak zbudować logikę temporalną? 3 Semantyka relacyjna i modalne logiki temporalne 4 Logiki temporalne w programowaniu 5 Logiki czasu interwałowego kognitywistyka, rok II (IP UAM) Logika 2 27 / 32

28 Jan Buridan: ile trwa teraźniejszość? Teraźniejszość nie jest momentem; obecny teraźniejszy dzień, rok, era... Wartość logiczna zdania zależy między innymi od założonego czasu trwania teraźniejszości: zdanie p jest prawdziwe w teraźniejszości wtw gdy istnieje taka część teraźniejszości, w której jest tak, że p. A dokładniej: T (In, A) = df I (I In T C (I, A)) ( A jest prawdziwe w interwale In znaczy tyle, że istnieje interwał I, zawierający się w In, taki że A jest prawdziwe w całym I ). kognitywistyka, rok II (IP UAM) Logika 2 28 / 32

29 Negacja de re i de dicto Rozważmy interwał r. p.n.e. i zdania o Sokratesie ( r. p.n.e.): (1) Sokrates jest żywy, (2) Sokrates jest martwy, (3) Sokrates nie jest żywy. Czy (2) i (3) maja te same warunki prawdziwości? Buridan wyróżnia negację predykatów (de re: nie-żywy = martwy ) i zdań (de dicto: Sokrates nie jest żywy = Nieprawda, że Sokrates jest żywy ). (2) i (3) T (In, p) T (In, p) zdanie sprzeczne (1) i (3) T (In, p) T (In, p) p, p prawdziwe w różnych fragmentach In Wniosek: T (In, p q) T (In, p) T (In, q) nie może być tautologią, zdanie Jeśli Sokrates jest żywy, to nie jest martwy nie musi być prawdziwe a semantyka interwałów jest stanowczo bardziej skomplikowana, niż semantyka momentów czasowych. kognitywistyka, rok II (IP UAM) Logika 2 29 / 32

30 Logiki czasu interwałowego 1 Dziedzina: przedziały jako obiekty pierwotne lub definiowane na bazie punktów. 2 Struktura: wybór relacji na przedziałach i ustalenie ich własności. 3 Modele: co to znaczy być prawdziwym w odcinku czasu? 4 Język: z jakich funktorów korzystać? kognitywistyka, rok II (IP UAM) Logika 2 30 / 32

31 Relacje między dwoma odcinkami na tej samej osi kognitywistyka, rok II (IP UAM) Logika 2 31 / 32

32 Źródła E. Allen Emerson, Temporal and modal logic. P. Blackburn et al. (red.), Handbook of Modal Logic. D. M. Gabbay i F. Guenther (red.), Handbook of Philosophical Logic, t. 7. A. Pnueli, The temporal logic of programs. P. Øhrstrøm, P. Hasle, Temporal Logic: From Ancient Ideas to Artificial Intelligence. J. Pogonowski, Wybrane logiki nieklasyczne. kognitywistyka, rok II (IP UAM) Logika 2 32 / 32

Logika Temporalna i Automaty Czasowe

Logika Temporalna i Automaty Czasowe Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (2) Logika LTL Paweł Głuchowski, Politechnika Wrocławska wersja 2.1 Treść wykładu Charakterystyka logiki LTL Czas w Linear

Bardziej szczegółowo

Logika Temporalna i Automaty Czasowe

Logika Temporalna i Automaty Czasowe Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (1) Wprowadzenie do logiki temporalnej Paweł Głuchowski, Politechnika Wrocławska wersja 2.2 Program wykładów 1. Wprowadzenie

Bardziej szczegółowo

Wprowadzenie Logiki temporalne Przykłady użycia Bibliografia. Logiki temporalne. Andrzej Oszer. Seminarium Protokoły Komunikacyjne

Wprowadzenie Logiki temporalne Przykłady użycia Bibliografia. Logiki temporalne. Andrzej Oszer. Seminarium Protokoły Komunikacyjne Seminarium Protokoły Komunikacyjne Spis treści 1 2 PLTL - Propositional Linear Temporal Logic CTL - Computation Tree Logic CTL* - uogólnienie 3 4 rozszerzaja logikę pierwszego rzędu o symbole określajace

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 8. Modalności i intensjonalność

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 8. Modalności i intensjonalność Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 8. Modalności i intensjonalność 1 Coś na kształt ostrzeżenia Ta prezentacja jest nieco odmienna od poprzednich. To,

Bardziej szczegółowo

Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I

Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl OSTRZEŻENIE Niniejszy plik nie zawiera wykładu z Metod dowodzenia...

Bardziej szczegółowo

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl Metoda tabel syntetycznych (MTS) MTS

Bardziej szczegółowo

Logika Temporalna i Automaty Czasowe

Logika Temporalna i Automaty Czasowe Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (4) Modelowa weryfikacja systemu Paweł Głuchowski, Politechnika Wrocławska wersja 2.1 Treść wykładu Własności współbieżnych

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań

Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań 1 Struktury modelowe Przedstawimy teraz pewien

Bardziej szczegółowo

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 2 - Logika modalna Część 2 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 27 Plan wykładu

Bardziej szczegółowo

Logika Temporalna i Automaty Czasowe

Logika Temporalna i Automaty Czasowe Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (3) Logika CTL Paweł Głuchowski, Politechnika Wrocławska wersja 2.2 Treść wykładu Charakterystyka logiki CTL Czas w Computation

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 5. Wprowadzenie do semantyki teoriomodelowej cz.5. Wynikanie logiczne 1 Na poprzednim wykładzie udowodniliśmy m.in.:

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 15. Trójwartościowa logika zdań Łukasiewicza 1 Wprowadzenie W logice trójwartościowej, obok tradycyjnych wartości logicznych,

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 14. Wprowadzenie do logiki intuicjonistycznej 1 Przedstawione na poprzednich wykładach logiki modalne możemy uznać

Bardziej szczegółowo

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język

Bardziej szczegółowo

Por. T. Jarmużek, Jutrzejsza bitwa morska. Rozumowanie Diodora Kronosa, Wydawnictwo. Naukowe UMK, Toruń 2013, s. 154.

Por. T. Jarmużek, Jutrzejsza bitwa morska. Rozumowanie Diodora Kronosa, Wydawnictwo. Naukowe UMK, Toruń 2013, s. 154. Tomasz Jarmużek, Jutrzejsza bitwa morska. Rozumowanie Diodora Kronosa, Wydawnictwo Naukowe UMK, Toruń 2013, ss. 268. DOI: http://dx.doi.org/10.12775/rf.2016.018 Omawiana książka jest systematycznym ujęciem

Bardziej szczegółowo

Zastosowanie systemów pośrednich między S4 a S5 w kontekstach epistemicznych

Zastosowanie systemów pośrednich między S4 a S5 w kontekstach epistemicznych Zastosowanie systemów pośrednich między S4 a S5 w kontekstach epistemicznych Zastosowania logiki modalnej Lublin, 17 listopada 2009 Aksjomaty i semantyka Uwagi historyczne 1939 - W. T. Parry: system pośredni

Bardziej szczegółowo

Logika Temporalna i Automaty Czasowe

Logika Temporalna i Automaty Czasowe Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (10) Logika temporalna i temporalne bazy danych Paweł Głuchowski, Politechnika Wrocławska wersja 2.3 Treść wykładu Temporalna

Bardziej szczegółowo

Paradoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania

Paradoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania Logika w zastosowaniach kognitywistycznych Paradoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania (notatki do wykładów) Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl

Bardziej szczegółowo

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa.

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa. Logika obliczeniowa Instytut Informatyki 1 Interpretacja i wartościowanie Dziedzina interpretacji Interpretacja Wartościowanie 2 Wartość formuły Wartość termu Wartość logiczna formuły Własności 3 Logiczna

Bardziej szczegółowo

Semantyka rachunku predykatów

Semantyka rachunku predykatów Relacje Interpretacja Wartość Spełnialność Logika obliczeniowa Instytut Informatyki Relacje Interpretacja Wartość Plan Plan Relacje O co chodzi? Znaczenie w logice Relacje 3 Interpretacja i wartościowanie

Bardziej szczegółowo

Logika Temporalna i Automaty Czasowe

Logika Temporalna i Automaty Czasowe Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (10) Logika temporalna i temporalne bazy danych Paweł Głuchowski, Politechnika Wrocławska wersja 2.2 Treść wykładu Temporalna

Bardziej szczegółowo

O RODZAJACH LOGIK TEMPORALNYCH

O RODZAJACH LOGIK TEMPORALNYCH ROCZNIKI FILOZOFICZNE Tom LV, numer 1 2007 ANNA KOZANECKA * O RODZAJACH LOGIK TEMPORALNYCH Problematyka formalnego ujęcia czasu interesowała filozofów już od starożytności. Zagadnienie to było jednak dość

Bardziej szczegółowo

Klasyczny rachunek predykatów

Klasyczny rachunek predykatów Kultura logiczna Klasyczny rachunek predykatów Bartosz Gostkowski bgostkowski@gmail.com Alfabet klasycznego rachunku zdań reguły konsytutywne języka Alfabet klasycznego rachunku predykatów (KRP Do alfabetu

Bardziej szczegółowo

Elementy logiki matematycznej

Elementy logiki matematycznej Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w

Bardziej szczegółowo

Mieczysław Omyła Logika a czas i zmiana. Filozofia Nauki 5/3,

Mieczysław Omyła Logika a czas i zmiana. Filozofia Nauki 5/3, Mieczysław Omyła Logika a czas i zmiana Filozofia Nauki 5/3, 131-134 1997 Filozofia Nauki RECENZJE Rok V, 1997, N r 3(19) Mieczysław Omyła Logika a czas i zmiana Józef Wajszczyk, Logika a czas i zmiana,

Bardziej szczegółowo

LOGIKA Klasyczny Rachunek Zdań

LOGIKA Klasyczny Rachunek Zdań LOGIKA Klasyczny Rachunek Zdań Robert Trypuz trypuz@kul.pl 5 listopada 2013 Robert Trypuz (trypuz@kul.pl) Klasyczny Rachunek Zdań 5 listopada 2013 1 / 24 PLAN WYKŁADU 1 Alfabet i formuła KRZ 2 Zrozumieć

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Wykłady 12 i 13. Metoda tabel analitycznych dla normalnych modalnych rachunków zdań

Andrzej Wiśniewski Logika II. Wykłady 12 i 13. Metoda tabel analitycznych dla normalnych modalnych rachunków zdań Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykłady 12 i 13. Metoda tabel analitycznych dla normalnych modalnych rachunków zdań 1 Wprowadzenie Podobnie jak w przypadku

Bardziej szczegółowo

Logiki modalne. notatki z seminarium. Piotr Polesiuk

Logiki modalne. notatki z seminarium. Piotr Polesiuk Logiki modalne notatki z seminarium Piotr Polesiuk 1 Motywacja i historia Logika modalna rozszerza logikę klasyczną o modalności takie jak φ jest możliwe, φ jest konieczne, zawsze φ, itp. i jak wiele innych

Bardziej szczegółowo

Wprowadzenie do logiki Klasyczny Rachunek Zdań część 3

Wprowadzenie do logiki Klasyczny Rachunek Zdań część 3 Wprowadzenie do logiki Klasyczny Rachunek Zdań część 3 Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Plan gry: 1 Czym są zdania? 2 Język Klasycznego Rachunku Zdań syntaktyka 3 Język

Bardziej szczegółowo

Adam Meissner.

Adam Meissner. Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu

Bardziej szczegółowo

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań. Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek

Bardziej szczegółowo

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie.

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. Logika formalna wprowadzenie Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. 1. Zdanie logicznie prawdziwe (Prawda logiczna) Zdanie, którego analityczność

Bardziej szczegółowo

Mateusz Klonowski Rozumowanie Mistrza a determinizm. Analiza i Egzystencja 33,

Mateusz Klonowski Rozumowanie Mistrza a determinizm. Analiza i Egzystencja 33, Mateusz Klonowski Rozumowanie Mistrza a determinizm Analiza i Egzystencja 33, 109-116 2016 Analiza i Egzystencja 33 (2016) ISSN 1734-9923 DOI: 10.18276/aie.2016.33-06 RECENZJE Mateusz Klonowski Rozumowanie

Bardziej szczegółowo

Wprowadzenie do logiki Wyrażenia jako ciągi słów. Automaty skończone

Wprowadzenie do logiki Wyrażenia jako ciągi słów. Automaty skończone Wprowadzenie do logiki Wyrażenia jako ciągi słów. Automaty skończone Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl Dzisiejsza opowieść pochodzi z Wykładów z logiki Marka Tokarza. kognitywistyka,

Bardziej szczegółowo

Rachunek logiczny. 1. Język rachunku logicznego.

Rachunek logiczny. 1. Język rachunku logicznego. Rachunek logiczny. Podstawową własnością rozumowania poprawnego jest zachowanie prawdy: rozumowanie poprawne musi się kończyć prawdziwą konkluzją, o ile wszystkie przesłanki leżące u jego podstaw były

Bardziej szczegółowo

Podstawy Sztucznej Inteligencji (PSZT)

Podstawy Sztucznej Inteligencji (PSZT) Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Wnioskowanie logiczne i systemy eksperckie Systemy posługujące się logiką predykatów: część 3/3 Dzisiaj Uogólnienie Poprawność i pełność wnioskowania

Bardziej szczegółowo

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne Istnieje wiele systemów aksjomatycznych

Bardziej szczegółowo

Internet Semantyczny i Logika I

Internet Semantyczny i Logika I Internet Semantyczny i Logika I Warstwy Internetu Semantycznego Dowód Zaufanie Logika OWL, Ontologie Podpis cyfrowy RDF, schematy RDF XML, schematy XML przestrzenie nazw URI Po co nam logika? Potrzebujemy

Bardziej szczegółowo

Logika pragmatyczna dla inżynierów

Logika pragmatyczna dla inżynierów Logika pragmatyczna Logika pragmatyczna dla inżynierów Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.edu.pl materiały + literatura + informacje na stronie www. Zaliczenie: Test pisemny

Bardziej szczegółowo

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa. Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna

Bardziej szczegółowo

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca Imię i Nazwisko:... FIGLARNE POZNANIANKI

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca Imię i Nazwisko:... FIGLARNE POZNANIANKI JEZYKOZNAWSTWO I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca 2012 Imię i Nazwisko:........................................................... FIGLARNE POZNANIANKI Wybierz

Bardziej szczegółowo

Wstęp do Matematyki (2)

Wstęp do Matematyki (2) Wstęp do Matematyki (2) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Własności relacji Jerzy Pogonowski (MEG) Wstęp do Matematyki (2) Własności relacji 1 / 24 Wprowadzenie

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony

Bardziej szczegółowo

Pytania i polecenia podstawowe

Pytania i polecenia podstawowe Pytania i polecenia podstawowe Liczby zespolone a) 2 i 1 + 2i 1 + 2i 3 + 4i, c) 1 i 2 + i a) 4 + 3i (2 i) 2, c) 1 3i a) i 111 (1 + i) 100, c) ( 3 i) 100 Czy dla dowolnych liczb z 1, z 2 C zachodzi równość:

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ 1 Inferencyjna równoważność formuł Definicja 9.1. Formuła A jest

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

Programowanie deklaratywne i logika obliczeniowa

Programowanie deklaratywne i logika obliczeniowa Programowanie deklaratywne i logika obliczeniowa Programowanie deklaratywne i logika obliczeniowa Wykład logika 12 godzin Dr hab. inż. Joanna Józefowska, prof. PP dyżur: poniedziałek 9.30-11.00 p. 10,

Bardziej szczegółowo

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"

Bardziej szczegółowo

Logika Matematyczna (1)

Logika Matematyczna (1) Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 4 X 2007 Jerzy Pogonowski (MEG) Logika Matematyczna (1) 4 X 2007 1 / 18 Plan konwersatorium Dzisiaj:

Bardziej szczegółowo

Logika Matematyczna. Zadania Egzaminacyjne, 2007

Logika Matematyczna. Zadania Egzaminacyjne, 2007 Logika Matematyczna Zadania Egzaminacyjne, 2007 I Rok Językoznawstwa i Informacji Naukowej UAM Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl Podajemy rozwiązania zadań egzaminacyjnych.

Bardziej szczegółowo

Wprowadzenie do logiki epistemicznej. Przekonania i wiedza

Wprowadzenie do logiki epistemicznej. Przekonania i wiedza Logika w zastosowaniach kognitywistycznych Wprowadzenie do logiki epistemicznej. Przekonania i wiedza (notatki do wykładów) Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl wersja beta 1.1 (na podstawie:

Bardziej szczegółowo

Logika dla archeologów Część 5: Zaprzeczenie i negacja

Logika dla archeologów Część 5: Zaprzeczenie i negacja Logika dla archeologów Część 5: Zaprzeczenie i negacja Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Zaprzeczenie 2 Negacja 3 Negacja w logice Sprzeczne grupy

Bardziej szczegółowo

Wprowadzenie do logiki O czym to będzie?

Wprowadzenie do logiki O czym to będzie? Wprowadzenie do logiki O czym to będzie? Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl Dwa fundamentalne pytania: Czym zajmuje się logika? Czym my się zajmować będziemy? I póki co

Bardziej szczegółowo

Elementy logiki i teorii mnogości

Elementy logiki i teorii mnogości Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Wykłady 9 i 10a. Wybrane modalne rachunki zdań. Ujęcie aksjomatyczne

Andrzej Wiśniewski Logika II. Wykłady 9 i 10a. Wybrane modalne rachunki zdań. Ujęcie aksjomatyczne Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki rok akademicki 2007/2008 Wykłady 9 i 10a. Wybrane modalne rachunki zdań. Ujęcie aksjomatyczne 1 Język aletycznych modalnych

Bardziej szczegółowo

Logiki wielowartościowe

Logiki wielowartościowe Logiki wielowartościowe Bartosz Piotrowski IV 05 Logika wielowartościowa logika nieklasyczna więcej niż dwie wartości logiczne podobna do klasycznego rachunku zdań Rys historyczny już Arystoteles nie akceptował

Bardziej szczegółowo

Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW

Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW Logika Stosowana Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika

Bardziej szczegółowo

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest

Bardziej szczegółowo

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 18 czerwca Imię i Nazwisko:... I

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 18 czerwca Imię i Nazwisko:... I JEZYKOZNAWSTWO I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 18 czerwca 2013 Imię i Nazwisko:.................................................................................. I Wybierz

Bardziej szczegółowo

Filozofia z elementami logiki Język jako system znaków słownych część 2

Filozofia z elementami logiki Język jako system znaków słownych część 2 Filozofia z elementami logiki Język jako system znaków słownych część 2 Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl Rozkład jazdy 1 Pojęcie znaku 2 Funkcje wypowiedzi językowych

Bardziej szczegółowo

Wprowadzenie do logiki Pojęcie wynikania

Wprowadzenie do logiki Pojęcie wynikania Wprowadzenie do logiki Pojęcie wynikania Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Gry plan: jak używamy terminu wynikanie w potocznych kontekstach? racja, następstwo i związki

Bardziej szczegółowo

Metody dowodzenia twierdzeń i automatyzacja rozumowań Na początek: teoria dowodu, Hilbert, Gödel

Metody dowodzenia twierdzeń i automatyzacja rozumowań Na początek: teoria dowodu, Hilbert, Gödel Metody dowodzenia twierdzeń i automatyzacja rozumowań Na początek: teoria dowodu, Hilbert, Gödel Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl OSTRZEŻENIE Niniejszy plik nie zawiera

Bardziej szczegółowo

Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do

Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do testu z filozofii jest zaliczenie testu z logiki i zaliczenie

Bardziej szczegółowo

Rachunek zdań - semantyka. Wartościowanie. ezyków formalnych. Semantyka j. Logika obliczeniowa. Joanna Józefowska. Poznań, rok akademicki 2009/2010

Rachunek zdań - semantyka. Wartościowanie. ezyków formalnych. Semantyka j. Logika obliczeniowa. Joanna Józefowska. Poznań, rok akademicki 2009/2010 Logika obliczeniowa Instytut Informatyki Poznań, rok akademicki 2009/2010 1 formu l rachunku zdań Wartościowanie i sta le logiczne Logiczna równoważność 2 Model formu ly Formu la spe lniona Formu la spe

Bardziej szczegółowo

Rachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty

Rachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty Rachunek predykatów Wykład 4 Plan wykładu Relacje i predykaty Formuły rachunku predykatów Interpretacje Logiczna równoważność Metoda tabel Modele skończone i nieskończone Rozstrzygalność Relacje i predykaty

Bardziej szczegółowo

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM Metalogika (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (1) Uniwersytet Opolski 1 / 21 Wstęp Cel: wprowadzenie

Bardziej szczegółowo

Zasady krytycznego myślenia (1)

Zasady krytycznego myślenia (1) Zasady krytycznego myślenia (1) Andrzej Kisielewicz Wydział Matematyki i Informatyki 2017 Przedmiot wykładu krytyczne myślenie vs logika praktyczna (vs logika formalna) myślenie jasne, bezstronne, oparte

Bardziej szczegółowo

Metoda Tablic Semantycznych

Metoda Tablic Semantycznych Procedura Plan Reguły Algorytm Logika obliczeniowa Instytut Informatyki Plan Procedura Reguły 1 Procedura decyzyjna Logiczna równoważność formuł Logiczna konsekwencja Procedura decyzyjna 2 Reguły α, β,

Bardziej szczegółowo

Dlaczego matematyka jest wszędzie?

Dlaczego matematyka jest wszędzie? Festiwal Nauki. Wydział MiNI PW. 27 września 2014 Dlaczego matematyka jest wszędzie? Dlaczego świat jest matematyczny? Autor: Paweł Stacewicz (PW) Czy matematyka jest WSZĘDZIE? w życiu praktycznym nie

Bardziej szczegółowo

ANNA KOZANECKA-DYMEK

ANNA KOZANECKA-DYMEK KWARTALNIK FILOZOFICZNY T. XLIII, Z. 2, 2015 PL ISSN 1230-4050 ANNA KOZANECKA-DYMEK (Lublin) Stosowalność niektórych rozszerzeń tense logic w logicznej analizie rozumowań prawniczych W artykule O możliwości

Bardziej szczegółowo

Drzewa Semantyczne w KRZ

Drzewa Semantyczne w KRZ Drzewa Semantyczne w KRZ Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 7 XII 2006, 13:30 15:00 Jerzy Pogonowski (MEG) Drzewa Semantyczne w KRZ 7 XII 2006, 13:30 15:00

Bardziej szczegółowo

Programowanie deklaratywne

Programowanie deklaratywne Programowanie deklaratywne Artur Michalski Informatyka II rok Plan wykładu Wprowadzenie do języka Prolog Budowa składniowa i interpretacja programów prologowych Listy, operatory i operacje arytmetyczne

Bardziej szczegółowo

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań System aksjomatyczny logiki Budując logikę

Bardziej szczegółowo

LOGIKA I CZAS; WPROWADZENIE DO LOGIK TEMPORALNYCH. Wykład monograficzny dla studentów filozofii w semestrze letnim Łódź 2005/2006

LOGIKA I CZAS; WPROWADZENIE DO LOGIK TEMPORALNYCH. Wykład monograficzny dla studentów filozofii w semestrze letnim Łódź 2005/2006 LOGIKA I CZAS; WPROWADZENIE DO LOGIK TEMPORALNYCH Wykład monograficzny dla studentów filozofii w semestrze letnim Łódź 2005/2006 (wykłady 1-12) Andrzej Indrzejczak Spis zawartości wykładów 1. Wstęp historyczno-systematyczny

Bardziej szczegółowo

Logika Stosowana. Wykład 2 - Logika modalna Część 3. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2017/2018

Logika Stosowana. Wykład 2 - Logika modalna Część 3. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2017/2018 Logika Stosowana Wykład 2 - Logika modalna Część 3 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2017/2018 Marcin Szczuka (MIMUW) Logika Stosowana 2018 1 / 36 Plan wykładu

Bardziej szczegółowo

LOGIKA Dedukcja Naturalna

LOGIKA Dedukcja Naturalna LOGIKA Dedukcja Naturalna Robert Trypuz Katedra Logiki KUL 7 stycznia 2014 Robert Trypuz (Katedra Logiki) Założeniowy system klasycznego rachunku zdań 7 stycznia 2014 1 / 42 PLAN WYKŁADU 1 Przykład dowodów

Bardziej szczegółowo

ROCZNIKI FILOZOFICZNE Tom LVII, numer

ROCZNIKI FILOZOFICZNE Tom LVII, numer R E C E N Z J E ROCZNIKI FILOZOFICZNE Tom LVII, numer 2 2009 Kazimierz T r z ę sicki, Logika temporalna. Wybrane zagadnienia, Białystok: Wydawnictwo Uniwersytetu w Białymstoku 2008, ss. 443. ISBN 978-

Bardziej szczegółowo

Rachunek zdań i predykatów

Rachunek zdań i predykatów Rachunek zdań i predykatów Agnieszka Nowak 14 czerwca 2008 1 Rachunek zdań Do nauczenia :! 1. ((p q) p) q - reguła odrywania RO 2. reguła modus tollens MT: ((p q) q) p ((p q) q) p (( p q) q) p (( p q)

Bardziej szczegółowo

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne

Bardziej szczegółowo

domykanie relacji, relacja równoważności, rozkłady zbiorów

domykanie relacji, relacja równoważności, rozkłady zbiorów 1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i

Bardziej szczegółowo

Programowanie deklaratywne

Programowanie deklaratywne Programowanie deklaratywne Artur Michalski Informatyka II rok Plan wykładu Wprowadzenie do języka Prolog Budowa składniowa i interpretacja programów prologowych Listy, operatory i operacje arytmetyczne

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Logika Stosowana. Wykład 2 - Logika modalna Część 1. Marcin Szczuka. Instytut Matematyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 2 - Logika modalna Część 1. Marcin Szczuka. Instytut Matematyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 2 - Logika modalna Część 1 Marcin Szczuka Instytut Matematyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 28 Plan wykładu 1

Bardziej szczegółowo

Internet Semantyczny i Logika II

Internet Semantyczny i Logika II Internet Semantyczny i Logika II Ontologie Definicja Grubera: Ontologia to formalna specyfikacja konceptualizacji pewnego obszaru wiedzy czy opisu elementów rzeczywistości. W Internecie Semantycznym językiem

Bardziej szczegółowo

Predykat. Matematyka Dyskretna, Podstawy Logiki i Teorii Mnogości Barbara Głut

Predykat. Matematyka Dyskretna, Podstawy Logiki i Teorii Mnogości Barbara Głut Predykat Weźmy pod uwagę następujące wypowiedzi: (1) Afryka jest kontynentem. (2) 7 jest liczbą naturalną. (3) Europa jest mniejsza niż Afryka. (4) 153 jest podzielne przez 3. Są to zdania jednostkowe,

Bardziej szczegółowo

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie), Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości

Bardziej szczegółowo

Wykład ze Wstępu do Logiki i Teorii Mnogości

Wykład ze Wstępu do Logiki i Teorii Mnogości Wykład ze Wstępu do Logiki i Teorii Mnogości rok ak. 2016/2017, semestr zimowy Wykład 1 1 Wstęp do Logiki 1.1 Rachunek zdań, podstawowe funktory logiczne 1.1.1 Formuła atomowa; zdanie logiczne definicje

Bardziej szczegółowo

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się 1 Logika Zdanie w sensie logicznym, to zdanie oznajmujące, o którym da się jednoznacznie powiedzieć, czy jest fałszywe, czy prawdziwe. Zmienna zdaniowa- to symbol, którym zastępujemy dowolne zdanie. Zdania

Bardziej szczegółowo

Weryfikacja modelowa. Protokoły komunikacyjne 2006/2007. Paweł Kaczan

Weryfikacja modelowa. Protokoły komunikacyjne 2006/2007. Paweł Kaczan Weryfikacja modelowa Protokoły komunikacyjne 2006/2007 Paweł Kaczan pk209469@students.mimuw.edu.pl Plan Wstęp Trzy kroki do weryfikacji modelowej Problemy Podsumowanie Dziedziny zastosowań Weryfikacja

Bardziej szczegółowo

Rozstrzygalność logiki modalnej

Rozstrzygalność logiki modalnej , a FO, a Guarded fragment Rozstrzygalność logiki modalnej, a logika pierwszego rzędu 13.05.2009 / , a FO, a Guarded fragment Spis treści 1 Definicja Model Checking Spełnialność 2, a FO Zamiana na FO Złożoność

Bardziej szczegółowo

Logika Matematyczna 16 17

Logika Matematyczna 16 17 Logika Matematyczna 16 17 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Semantyka KRP (3) Jerzy Pogonowski (MEG) Logika Matematyczna 16 17 Semantyka KRP (3) 1 / 24

Bardziej szczegółowo

PROLOG WSTĘP DO INFORMATYKI. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej.

PROLOG WSTĘP DO INFORMATYKI. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej. Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk PROLOG www.agh.edu.pl Pewnego dnia przyszedł na świat komputer Komputery

Bardziej szczegółowo

Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie:

Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie: Logika pragmatyczna Logika pragmatyczna Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + literatura + informacje na stronie www. Zaliczenie: Kolokwium pisemne na

Bardziej szczegółowo

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka

Bardziej szczegółowo

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 4. Semantyka Klasycznego Rachunku Zdań 1 Skróty: Język Klasycznego Rachunku Zdań zamiast Klasyczny Rachunek Zdań piszę

Bardziej szczegółowo

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Definicja 1: Tautologia jest to takie wyrażenie, którego wartość logiczna jest prawdą przy wszystkich możliwych wartościowaniach zmiennych

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność

Andrzej Wiśniewski Logika II. Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność 1 Modele Jak zwykle zakładam, że pojęcia wprowadzone

Bardziej szczegółowo

Tomasz Jarmużek. Jutrzejsza bitwa morska Rozumowanie Diodora Kronosa

Tomasz Jarmużek. Jutrzejsza bitwa morska Rozumowanie Diodora Kronosa Tomasz Jarmużek Jutrzejsza bitwa morska Rozumowanie Diodora Kronosa Toruń 2013 Recenzenci prof. dr hab. Elżbieta Kałuszyńska prof. dr hab. Jacek Malinowski Projekt okładki dr Maciej Nowicki Korekta Katarzyna

Bardziej szczegółowo

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI Program wykładów: dr inż. Barbara GŁUT Wstęp do logiki klasycznej: rachunek zdań, rachunek predykatów. Elementy semantyki. Podstawy teorii mnogości

Bardziej szczegółowo

Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie

Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie 3. Wykłady 5 i 6: Semantyka klasycznego rachunku zdań. Dotychczas rozwinęliśmy klasyczny rachunek na gruncie czysto syntaktycznym, a więc badaliśmy metodę sprawdzania, czy dana formuła B jest dowodliwa

Bardziej szczegółowo