Dynamika pomiaru temperatury termoparą

Wielkość: px
Rozpocząć pokaz od strony:

Download "Dynamika pomiaru temperatury termoparą"

Transkrypt

1 175 Prace Instytutu Mechaniki Górotoru PAN Tom 1, nr 1-4, (1), s Instytut Mechaniki Górotoru PAN Dynamika pomiaru temperatury termoparą WŁADYSŁAW CIERNIAK Instytut Mechaniki Górotoru PAN, ul. Reymonta 7; 3-59 Krakó Streszczenie Termopary składają się z dóch przeodó o różnych gęstościach. przeodnościach cieplnych i ciepłach łaściych. Pooduje to znaczną komplikację opisu temperatury złącza podczas szybkozmiennych pomiaró temperatury. W artykule rozpatrzono model ymiany ciepła przez nieskończenie długie przeody. Wyznaczono transmitancję temperatura-napięcie termopary. Dokonano przeliczeń transmitancji dla trzech różnych termopar (Rys. 1). Aproksymoano uzyskane transmitancje członami inercyjnymi pierszego rzędu uzyskując bardzo dobre rezultaty z yjątkiem termopary chromel-konstantan, które mają dużą różnicę pojemności cieplnych. Słoa kluczoe: pomiary temperatury, termopara 1. Wstęp Termoparą nazya się da przeody, których jedno złącze jest umieszczane miejscu pomiaru temperatury. Drugie końce znajdujące się innej temperaturze o znanej artości i tej temperaturze połączone są z doma przeodnikami ykonanymi z jednakoego materiału. Pomiędzy złączem i końcami przeodó termopary ystępuje mała różnica napięć (zjaisko Sebecka) [11]. Jeśli brak przepłyu prądu przeodnikach termopary to różnica napięć jest funkcją różnicy temperatury. Gdy przez przeody przepłya prąd następuje nich spadek napięcia (prao Ohma), ydziela się nich ciepło Joule a- Lenza proporcjonalnie do kadratu prądu. Przy ystępoaniu gradientu temperatury przeodnikach ydzielane jest ciepło proporcjonalne do płynącego prądu (zjaisko Thompsona) [11]. Gdy prąd płynie kierunku gradientu temperatury ciepło jest ydzielane a gdy prąd płynie kierunku przecinym ciepło jest pochłaniane. Przy przepłyie prądu przez złącze termoparoe następuje ydzielanie lub pochłanianie ciepła (zjaisko Peltiera) [11]. W stanie ustalonym gdy przez przeody termopary nie płynie prąd zjaiska Peltiera i Thompsona nie odgryają żadnej roli podczas pomiaru temperatury. W stanie nieustalonym gdy poprzek przeodó ystępują gradienty temperatury przeodach otoczeniu złącza termopary będą płynąć prądy co implikuje ystępoanie szystkich ymienionych zjaisk. Dokładne rozpatrzenie szystkich ymienionych zjaisk jest bardzo trudne. Wymaga roziązania rónań mechaniki płynó do opisu ymiany ciepła z poierzchnią przeodnikó termopary oraz rónań opisujących trójymiaroo zjaiska przepłyu prądu i ciepła toczeniu złącza termopary z uzględnieniem szystkich spomnianych zjaisk. W niniejszej pracy zostanie rozpatrzony najprostszy przypadek gdy ymianę ciepła z otoczeniem można opisać jednoymiaroym rónaniem różniczkoym z pominięciem szystkich ymienionych zjaisk z yjątkiem zjaiska Sebecka.. Termiczny model złącza Jak już spomniano termopara jest zbudoana z dóch przeodnikó o różnych łaściościach. Istotnymi łaściościami dla badania dynamiki złącza termopar są: przeodności cieplne, gęstości i ciepła łaście obu metali. Metale stosoane na termopary różnią się tymi łaściościami. Z tego zglądu przy zmianie temperatury płynu otoczeniu złącza, temperatury obu metali muszą się różnić.

2 176 Władysła Cierniak Aby otrzymać prosty ynik przyjmuje się, że oba przeody mają nieskończoną długość oraz że przepły płynu jest do nich poprzeczny, a temperatura otaczającego je płynu na całej ich długości jest jednakoa. Zakłada się rónież, że przejmoanie ciepła przez oba przeody jest identyczne. Przyjęcie założenia o nieskończonej długości jest uzasadnione tym, że zykle stosunek średnicy przeodó termopar do ich długości jest bardzo mały i przyjęte uproszczenie spooduje nieduże błędy. Ponad to przyjmuje się, że przeodności cieplne, gęstości i ciepła łaście dla bu przeodó są niezależne od temperatury. Podobne założenia przyjmuje się dla płynu otaczającego przeody. Rónanie opisujące ymianę ciepła przez prosty drut jest często spotykane odpoiedniej literaturze i nie ma potrzeby go yproadzać [1]. Ma ono postać: d D T ( x, t) d cp T( x, t) (, ) ( ) 4 mnu T x t Tp t x 4 t (1) gdzie: c p ciepło łaście, J/kgK, d średnica przeodu, m, Nu liczba Nusselta, -, T p temperatura płynu, K, T temperatura przeodu, K, λ D spółczynnik przeodności cieplnej przeodu, W/Km, λ m spółczynnik przeodności cieplnej płynu, W/Km, ρ gęstość przeodu, kg/m 3. Wproadzając oznaczenia: M 4 m Nu () d D cp n (3) D Rónanie (1) można przedstaić postaci: T ( x, t) T( x, t) M T (, ) ( ) x t Tp t n x t (4) Ponieaż przeodniki termopary mają różne parametry to miejscu stąpienia spoiny ystępuje skokoa zmiana spółczynnikó M i n. Z tego zględu ygodnie jest umieścić spoinę zerze układu spółrzędnych oraz rozpatryać roziązanie zagadnienia oddzielnie dla dodatnich i ujemnych spółrzędnych. Do roziązania zagadnienia potrzebne są arunki brzegoe i początkoe. W początku układu spółrzędnych gdzie jest umieszczona spoina przyjmuje się, że po jej obu stronach temperatura termopary ma tę samą artość. W dużej odległości od spoiny zdłuż przeodó temperatura ulega tylko bardzo nieielkim zmianom. Wobec tego formalnie arunki brzegoe można przyjąć nieskończoności. Zapis ma postać: Dla x T (, t) T ( t) (5) Dla x T ( x, t) x (6) Dla x T ( x, t) x (7) Warunek początkoy przyjmuje się postaci: T ( x,) T ( ) (8) p

3 Dynamika pomiaru temperatury termoparą 177 Przedstaione arunki brzegoe nie pozalają yznaczyć temperatury złącza. Do yznaczenia temperatury złącza zostanie ykorzystana róność strumieni ciepła po jego du stronach. Zgodnie z praem Fouriera można napisać: d T (, )) 1 t T (, t) D d D ) 4 x 4 x (9) gdzie: λ D1 i λ D oznaczają spółczynniki przeodności cieplnej odpoiednio pierszego i drugiego przeodnika, W/Km Poddając przekształceniu Laplace a rónanie (4) dla arunkó brzegoych (5) do (8), po przekształceniach otrzymuje się rónanie: T ( x, s) ( M ns) T (, ) ( ) (,) ( ) ( ) x s MTp s nt x MTp s ntp x (1) Jego ogólne roziązanie jest postaci: MTp ( s) ntp( ) T( x, s) cosh( x M ns) 1 acosh( x M ns) M ns b sinh M ns ( x M ns ) (11) Pochodna tego roziązania o zmiennej x yraża się zorem: T ( x, s) 1 MTp() s ntp() a( M ns) bexp( x M ns) x M ns 1 MTp() s ntp() b a M ns exp x M ns M ns ( ) ( ) (1) Dla leej części termopary x <, dla której: M = M 1, n = n 1, a = a 1, b = b 1 dla x = z arunku (7) i zoru (1) nika, że musi zachodzić: MT 1 p () s nt 1 p() b1 a1( M1 n1s) M1 n1s (13) Dla praej części termopary x >, dla której: M = M, n = n, a = a, b = b dla x = z arunku (6) i zoru (1) nika, że musi zachodzić: MT p() s nt p() b a( M ns) M n s (14) Z arunku (5) zoru i zoru (11) T (, s) a a (15) 1 Roziązanie układu rónań (13) i (14) oraz (15) daje następujący ynik: MT 1 p() s nt 1 p() b1 T(, s)( M1 n1s) (16) M n 1 s 1 MTp() s ntp() b T, s M ns M ns ( )( ) (17)

4 178 Władysła Cierniak Warunek róności strumieni ciepła płynącego przez złącze ma postać: T (, t )) T (, t )) D x x D1 (18) Wykorzystanie zoró (11), (16), (17) i (18) przy zeroym arunku początkoym rónaniu (18) po przekształceniach daje ynik: T (, s) D1M1 Tp () s ( M n s) M M ( M n M n ) s n n s D1 1 1 D D D D M MM ( M n Mn) snns ( M ns) () Poyższy zór ma postać uniemożliiającą łate oszacoanie łaściości dynamicznych termopar. Po ykorzystaniu podstaień (), (3) i proadzeniu oznaczeń 4 m Nu 4 1 m Nu d 1cp1 d cp (1) oraz zamiany przekształcenia Laplacea na przekształcenie Fouriera można go przedstaić postaci (). T (, j) 1 Tr Tp ( j) D 1 j 1 ( 1 ) j D 1 D1 1 D1 j 1 ( 1) j () Jak pokazują zory (1) i () na szybkość działania termopar ma pły odbiór ciepła proporcjonalny do yrażenia 4λ m Nu oraz iloczyny d ρc p. Mniejsze znaczenie mają przeodności cieplne metali. Właściości metali i ich stopó stosoanych na termopary zostały zebrane tabeli (1). Szybkość działania termopar szybko rośnie z odrotnością kadratu ich średnicy. Zykle przeody stosoane na termopary mają średnice nie mniejsze niż. mm. Dostępne są bardzo cienkie przeody z metali o dużej plastyczności. Takimi metalami są: miedź, molibden, nikiel, platyna, ren i złoto. Bardzo cienkie (rzędu mikrometró) przeody są rónież ykonyane ze stopó platyny i rodu. Dostępne są druty o grubości kilkudziesięciu mikrometró z konstantanu. Szybkości termopar można ziększyć poiększając stosunek ich poierzchni do objętości. Procedura polega na ykonaniu złącza z dosyć grubych przeodó a następnie ich spłaszczenia przez kolejno potarzane procesy kucia i ygrzeania [9]. Liczbę Nusselta dla cienkich drutó umieszczonych poietrzu dobrze jest obliczać ze zoru Collinsa-Williama [] zeryfikoanego przez różnych badaczy, stanoiącego aproksymację yniku pomiaró poietrzu przy ciśnieniu atmosferycznym, dla 38 < T p < 98 C, 1.41 < T /T p <, 7 < l/d < 866,.5 < V < 4.7 m/s,.1 < Kn <.3. Re n T Nuc A B m Tp gdzie: T m średnia artość temperatury poietrza i drutu, K, T p temperatura poietrza, K, której spółczynniki są zaarte tabeli ()..17 (3)

5 Dynamika pomiaru temperatury termoparą 179 Dla bardzo cienkich przeodó należy uzględnić stosunek średnicy drutu do średniej odległości przebyanej przez cząsteczki gazu pomiędzy zderzeniami nazyanym liczbą Knudsena z zastosoaniem zoru []: Nuc Nu 1 KnNu (4) c Lp. Naza metalu lub stopu Tab. 1. Termiczne łaściości metali stosoanych na termopary Napięcie Przeodność Ciepło Gęstość Temperatura Wytrzymałość zględem cieplna łaście ρc ρ topnienia na rozryanie p 1 6 platyny λ c p μv/k kg/m 3 W/kgK J/kgK K MPa J/m 3 K Źródło danych [1] 1 miedź [5] [1] molibden 14.5 [1] [1] 3 nikiel [5] [1] [1] [1] 4 platyna [7] [3] [5] 5 ren [1] 6 olfram 11. [5] [1] 7 złoto [1] [1] [1] 8 żelazo [1] [5] 9 Ni 95% Al % Mn % Si 1% [5] 1 alumel Ni 95% Mn % Al. % [5] 11 Ni 85% Cr 1% [5] 1 kantal P Ni 9% Cr 1% [5] kantal N 13 Ni 98-97% Si -3% [5] 14 konstantan Cu 55% Ni 45% [5] 15 chromel Ni 9% Cr 1% [5] 16 Pt 9% Rh 1% [5] 17 Pt 8% Ir % [5] Dla małych prędkości, porónaniu z prędkością dźięku, liczbę Knudsena yraża edług [4] zależność: Ma RiTm Kn (5) Re pd cp (6) c v gdzie: c p ciepło łaście gazu przy stałym ciśnieniu, J/kgK, c v ciepło łaście gazu przy stałej objętości, J/kg/K,

6 18 Władysła Cierniak p ciśnienie gazu, Pa, R i indyidualna stała gazoa, J/kilomolK, η spółczynnik lepkości dynamicznej gazu, Pas. Tab.. Zestaienie parametró do zoru (3) Lp spółczynnik. < Re < < Re < 14 n A.4 Dla oceny łaściości dynamicznych złącz termparoych przeliczono charakterystyki częstotliościoe dla trzech termopar z drutó o grubości 5 μm. Jedna z termopar składa się z drutu złotego i platynoego a druga z drutu chromeloego i konstantanoego natomiast trzecia z drutó z alumelu i kantalu P. Termopary platyna złoto są obecnie intensynie badane gdyż mają doskonałe łaściości metrologiczne. Do obliczeń została ybrana ta termopara rónież ze zględu na duże różnice przeodnościach cieplnych obu metali. Dla drugiej termopary różnice przeodności są mniejsze a iększe są różnice pojemnościach cieplnych. Przeody trzeciej termopary ykazują najmniejsze różnice zaróno dla przeodności i pojemności cieplnej. Obliczenia przeproadzono dla suchego poietrza o prędkości 1 m/s. Dane poietrza przyjęte do obliczeń zostały umieszczone tabeli (3). A yniki zostały zamieszczone tabeli (4). Tab. 3. Parametry poietrza przyjęte do obliczeń Lp Parametr Wartość Jednostka Źródło informacji 1 temperatura K - ciśnienie 1135 Pa - 3 gęstość 1.41 kg/m 3-4 indyidualna stała gazoa J/kgK [8] 5 przeodność cieplna.59 W/Km [1] 6 spółczynnik lepkości dynamicznej Ns/m [1] Charakterystyki częstotliościoe termopar (transmitancje) można aproksymoać modelem pierszego rzędu opisanego poniższym rónaniem: T r T (, j) a T ( j) j p a (3) gdzie: ω a = πf a f a częstotliość graniczna, Hz. Moduł poyższego yrażenia ma postać: T r T (, j) 1 Tp ( j) 1 a (4) Charakterystyki częstotliościoe ybranych termopar opisanych tabeli (4) są pokazane na rysunku (1). Wykresy i 3 pokazują termoparę chromel konstantan. Wykres narysoany linią ciągłą przedstaia pełny model edług zoru (). Wykres narysoany linią przeryaną pokazuje model pierszego rzędu opisanego zorem (4). Przeody termopary chromel konstantan mają najiększe różnice pojemność cieplnych. Wykresy 1 oraz 4 pokazują łaściości termopar złoto-platyna oraz alumel-kantal. Aproksymacja ich charakterystyk zorem (4) jest tak dokładna, że różnice skali tego rysunku są nieidoczne.

7 Dynamika pomiaru temperatury termoparą 181 Tab. 4. Zestaienie danych do obliczeń i yniki Lp. Rodzaj przeodu Parametr Jednostka Złoto Platyna Chromel Konstantan Alumel Kantal P 1 średnica przeodu μm 5 prędkość poietrza m/s 1 3 liczba Reynoldsa liczba Knudsena liczba Nusselta przeodność cieplna przeodó W/Km iloczyn ciepła łaściego i gęstości J/Km 3.48E6.83E6 1.9E6 3.71E6 1.5E6 1.11E6 8 częstotliość graniczna pojedynczego przeodu Hz średnia artość częstotliości granicznych obu przeodó termopary Hz częstotliość graniczna termopary aproksymoanej modelem pierszego Hz rzędu z inercją 11 napięcie termopary na jeden Kelin μ/k Porónanie iersza 9-tego i iersza 1-ego pozala ysnuć niosek, że częstotliość graniczna edług aproksymacji zorem (4) e szystkich przypadkach jest nieco iększa od średniej artości częstotliości granicznych obu par przeodó. Tr Rys. 1. Wykresy transmitancji (charakterystyk częstotliościoej) ybranych termopar o średnicy 5 μm umieszczonych suchym poietrzu, którego prędkość ynosi 1 m.s. 1. termopara alumel-kantal, edług zoró () i (4);. termopara chromel konstantan, edług zoru (); 3. termopara chromel konstantan, edług zoru (4); 4. termopara złoto-platyna zoró () i (4) f, Hz F rys.1

8 18 Władysła Cierniak 3. Wnioski Z prostej analizy ykresó z rysunku (1) ynika możliość stosoania dynamicznego modelu termopary postaci członu inercyjnego pierszego rzędu. Częstotliość graniczna takiej termopary (jak to ynika z tabeli (4), iersze 8 i 9) jest z dosyć dobrym przybliżeniem róna średniej artość częstotliości granicznych przeodó termopary. Praca została ykonana roku 1 ramach prac statutoych realizoanych IMG PAN Krakoie, finansoanych przez Ministersto Nauki i Szkolnicta Wyższego. Literatura 1. Bruun H.H. Hot-ire anemometry, principles and signal analysis. Oxford University Pres, Ne York Collis D.C., Williams M.J. Tu-dimensional convection from heated ires at lo Reynolds numbers. J. Fluid Mech. 6, , Lipczyński J., Sokołoicz M., Olczak S., Rybka E. Tablice Matematyczne, Fizyczne i Astronomiczne. Wydanicta Szkolne i Pedagogiczne, Warszaa Lomas Ch.G. Fundamentals of hot ire anemometry. Cambridge University Press. 5. Michalski L., Eckersdorf K. Pomiary temperatury. Wydanicta Naukoo-Techniczne, Warszaa Oleśkieicz-Popiel Cz., Wojtkoiak J. Eksperymenty ymianie ciepła. Wydanicto Politechniki Poznańskiej, Poznań Strickert H. Hitzdrat-und Hitzfi lmanemometrie. VEB Verlag Technk Berlin Rażnijeić K. Tablice Cieplne z Wykresami. Tłumaczenie z Rażnijeić, Toplinskie Tablice i Dijagramy, 1964 Technićka Kniga, Zgreb. 9. Rysz J. Informacja pryatna. 1. Wiśnieski S. Wymiana ciepła. Państoe Wydanicto Naukoe, Warszaa Wróbleski A.K., Zakrzeski J.A. Wstęp do fi zyki. Tom, Wydanicto Naukoe PWN Warszaa Wikipedia. Dynamics of the measurement of temperature ith thermocouple Abstract Thermocouples combine to ires of a different density, heat conductance and specific heat. These differences may cause difficulties in description of the couple temperature during measurement of fast variable processes. A model of heat exchange through infinitely long ires as considered. A transmittance of temperature-thermocouple voltage as derived. The transmittance as calculated for a set of three temperatures (Fig. 1). Approximation of the transmittances ith a first order inertial terms gave good results ith exception of the nickel constantan thermocouple, hich has a big difference of heat capacitances. Keyords: measurement of temperature, thermocouple

(1.1) (1.2) (1.3) (1.4) (1.5) (1.6) Przy opisie zjawisk złożonych wartości wszystkich stałych podobieństwa nie mogą być przyjmowane dowolnie.

(1.1) (1.2) (1.3) (1.4) (1.5) (1.6) Przy opisie zjawisk złożonych wartości wszystkich stałych podobieństwa nie mogą być przyjmowane dowolnie. 1. Teoria podobieństa Figury podobne geometrycznie mają odpoiadające sobie kąty róne, a odpoiadające sobie boki są proporcjonane 1 n (1.1) 1 n Zjaiska fizyczne mogą być podobne pod arunkiem, że zachodzą

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 121: Termometr oporowy i termopara

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 121: Termometr oporowy i termopara Nazwisko i imię: Zespół: Data: Ćwiczenie nr 121: Termometr oporowy i termopara Cel ćwiczenia: Wyznaczenie współczynnika temperaturowego oporu platyny oraz pomiar charakterystyk termopary miedź-konstantan.

Bardziej szczegółowo

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym .Wproadzenie. Wyznaczanie profilu prędkości płynu rurociągu o przekroju kołoym Dla ustalonego, jednokierunkoego i uarstionego przepłyu przez rurę o przekroju kołoym rónanie aviera-stokesa upraszcza się

Bardziej szczegółowo

IDENTYFIKACJA WSPÓŁCZYNNIKA WNIKANIA CIEPŁA NA ZEWNĘTRZNEJ POWIERZCHNI TERMOMETRU DO WYZNACZANIA NIEUSTALONEJ TEMPERATURY PŁYNU

IDENTYFIKACJA WSPÓŁCZYNNIKA WNIKANIA CIEPŁA NA ZEWNĘTRZNEJ POWIERZCHNI TERMOMETRU DO WYZNACZANIA NIEUSTALONEJ TEMPERATURY PŁYNU ZESZYTY NAUKOWE POLITECHNIKI RZESZOWSKIEJ 91, Mechanika 87 RUTMech, t. XXXII, z. 87 (3/15), lipiec-rzesień 015, s. 51-60 Jan TALER 1 Magdalena JAREMKIEWICZ IDENTYFIKACJA WSPÓŁCZYNNIKA WNIKANIA CIEPŁA NA

Bardziej szczegółowo

LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ. Ćwiczenie nr 7

LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ. Ćwiczenie nr 7 KAEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ INSRUKCJE DO ĆWICZEŃ LABORAORYJNYCH LABORAORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ Skaloanie zężki Osoba odpoiedzialna: Piotr Rybarczyk Gdańsk,

Bardziej szczegółowo

ZADANIE 28. Wyznaczanie przewodnictwa cieplnego miedzi

ZADANIE 28. Wyznaczanie przewodnictwa cieplnego miedzi ZADANIE 28 Wyznaczanie przewodnictwa cieplnego miedzi Wstęp Pomiędzy ciałami ogrzanymi do różnych temperatur zachodzi wymiana ciepła. Ciało o wyższej temperaturze traci ciepło, a ciało o niższej temperaturze

Bardziej szczegółowo

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II. Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy maksymalną liczbę punktów.

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II. Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy maksymalną liczbę punktów. MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II Zdający może roziązać każdą popraną metodą. Otrzymuje tedy maksymalną liczbę punktó. Numer Wykonanie rysunku T R Q Zadanie. Samochód....4.6 Narysoanie sił

Bardziej szczegółowo

ĆWICZENIE NR 7 SKALOWANIE ZWĘśKI

ĆWICZENIE NR 7 SKALOWANIE ZWĘśKI ĆWICZENIE NR SKALOWANIE ZWĘśKI. Cel ćiczenia: Celem ćiczenia jest ykonanie cechoania kryzy pomiaroej /yznaczenie zaleŝności objętościoego natęŝenia przepłyu poietrza przez zęŝkę od róŝnicy ciśnienia na

Bardziej szczegółowo

Belki na podłożu sprężystym

Belki na podłożu sprężystym Belki na podłożu sprężystym podłoże inkleroskie, rónanie różniczkoe ugięcia belki, linie płyoe M-Q-, belki półnieskończone, sposób Bleicha, przykład obliczenioy odłoże inkleroskie Założenia Winklera spółpracy

Bardziej szczegółowo

Bilans cieplny suszarni teoretycznej Termodynamika Techniczna materiały dla studentów

Bilans cieplny suszarni teoretycznej Termodynamika Techniczna materiały dla studentów Bilans cieplny suszarni teoretycznej Termodynamika Techniczna materiały dla studentó K. Kyzioł, J. Szczerba Bilans cieplny suszarni teoretycznej Na rysunku 1 przedstaiono przykładoy schemat suszarni jednostopnioej

Bardziej szczegółowo

POMIAR MOCY BIERNEJ W OBWODACH TRÓJFAZOWYCH

POMIAR MOCY BIERNEJ W OBWODACH TRÓJFAZOWYCH ĆWICZEIE R 9 POMIAR MOCY BIEREJ W OBWODACH TRÓJFAZOWYCH 9.. Cel ćiczenia Celem ćiczenia jest poznanie metod pomiaru mocy biernej odbiornika niesymetrycznego obodach trójfazoych. 9.. Pomiar mocy biernej

Bardziej szczegółowo

Analiza właściwości dynamicznych detektorów propagacji fali temperaturowej w przepływie powietrza i mieszaniny powietrze dwutlenek węgla

Analiza właściwości dynamicznych detektorów propagacji fali temperaturowej w przepływie powietrza i mieszaniny powietrze dwutlenek węgla Prace Instytutu Mechaniki Górotworu PAN Tom 18, nr 1, marzec 2016, s. 41-47 Instytut Mechaniki Górotworu PAN Analiza właściwości dynamicznych detektorów propagacji fali temperaturowej w przepływie powietrza

Bardziej szczegółowo

Modelowanie rozwoju pożaru w pomieszczeniach zamkniętych. Cz. II. Model spalania.

Modelowanie rozwoju pożaru w pomieszczeniach zamkniętych. Cz. II. Model spalania. Modeloanie rozoju pożaru pomieszczeniach zamkniętych. Cz.. Model spalania. Dr hab. inż. Tadeusz Maciak prof. SGSP, mgr inż. Przemysła Czajkoski, Spis ażniejszych oznaczeń stosoanych modeloaniu pożaru:

Bardziej szczegółowo

Termoanemometr z możliwością wyznaczania wektora prędkości w płaszczyźnie

Termoanemometr z możliwością wyznaczania wektora prędkości w płaszczyźnie 169 Prace Instytutu Mechaniki Górotworu PAN Tom 12, nr 1-4, (2010), s. 169-174 Instytut Mechaniki Górotworu PAN Termoanemometr z możliwością wyznaczania wektora prędkości w płaszczyźnie WŁADYSŁAW CIERNIAK,

Bardziej szczegółowo

2. CHARAKTERYSTYKI TERMOMETRYCZNE TERMOELEMENTÓW I METALOWYCH OPORNIKÓW TERMOMETRYCZNYCH

2. CHARAKTERYSTYKI TERMOMETRYCZNE TERMOELEMENTÓW I METALOWYCH OPORNIKÓW TERMOMETRYCZNYCH 2. CHARAKTERYSTYKI TERMOMETRYCZNE TERMOELEMENTÓW I METALOWYCH OPORNIKÓW TERMOMETRYCZNYCH 2.1. Cel ćwiczenia: zapoznanie się ze zjawiskami fizycznymi, na których oparte jest działanie termoelementów i oporników

Bardziej szczegółowo

Wyznaczanie gęstości cieczy i ciał stałych za pomocą wagi hydrostatycznej FIZYKA. Ćwiczenie Nr 3 KATEDRA ZARZĄDZANIA PRODUKCJĄ

Wyznaczanie gęstości cieczy i ciał stałych za pomocą wagi hydrostatycznej FIZYKA. Ćwiczenie Nr 3 KATEDRA ZARZĄDZANIA PRODUKCJĄ POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja o zajęć laboratoryjnych z przemiotu: FIZYKA Ko przemiotu: KS07; KN07; LS07; LN07 Ćiczenie Nr Wyznaczanie gęstości cieczy i ciał stałych

Bardziej szczegółowo

ANALIZA WPŁYWU ZUŻYCIA NA RUCH DYNAMICZNEGO TŁUMIKA DRGAŃ Z TARCIEM SUCHYM

ANALIZA WPŁYWU ZUŻYCIA NA RUCH DYNAMICZNEGO TŁUMIKA DRGAŃ Z TARCIEM SUCHYM ANALIZA WPŁYWU ZUŻYCIA NA RUCH DYNAMICZNEGO TŁUMIKA DRGAŃ Z TARCIEM SUCHYM JAN AWREJCEWICZ, YURIY PYRYEV Politechnika Łódzka, Katedra Automatyki i Biomechaniki, 9-94 Łódź, ul. Stefanoskiego /5, e-mail:

Bardziej szczegółowo

Ćwiczenie N 14 KAWITACJA

Ćwiczenie N 14 KAWITACJA LABORATORIUM MECHANIKI PŁYNÓW Ćiczenie N 1 KAWITACJA 1. Cel ćiczenia ośiadczalne yznaczenie ciśnienia i strumienia objętości kaitacji oraz charakterystyki przepłyu zęŝki, której postaje kaitacja.. Podstay

Bardziej szczegółowo

Moc wydzielana na rezystancji

Moc wydzielana na rezystancji Opracoał: mgr inż. Marcin Wieczorek.marie.net.pl Moc ydzielana na rezystancji moc oddaana na odcinku, przez który płynie prąd ipomiędzy końcami którego panuje napięcie, ynosi za pomocą praa Ohma =, = /

Bardziej szczegółowo

Wykład 9. Stateczność prętów. Wyboczenie sprężyste

Wykład 9. Stateczność prętów. Wyboczenie sprężyste Wykład 9. Stateczność prętó. Wyoczenie sprężyste 1. Siła ytyczna pręta podpartego soodnie Dla pręta jak na rysunku 9.1 eźmiemy pod uagę możliość ygięcia się pręta z osi podczas ściskania. jest modułem

Bardziej szczegółowo

Zapoznanie się ze zjawiskiem Seebecka i Peltiera. Zastosowanie elementu Peltiera do chłodzenia i zamiany energii cieplnej w energię elektryczną.

Zapoznanie się ze zjawiskiem Seebecka i Peltiera. Zastosowanie elementu Peltiera do chłodzenia i zamiany energii cieplnej w energię elektryczną. FiIS PRAONIA FIZYZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆIZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OENA el ćwiczenia: Zapoznanie się ze

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA ZAKŁADZIE BIOFIZYKI Ćwiczenie 7 KALORYMETRIA

POLITECHNIKA ŁÓDZKA ZAKŁADZIE BIOFIZYKI Ćwiczenie 7 KALORYMETRIA POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćiczenie 7 KALORYMETRIA I. WSTĘP TEORETYCZNY Kalorymetria jest działem fizyki zajmującym się metodami pomiaru ciepła ydzielanego bądź

Bardziej szczegółowo

LABORATORIUM TEORII STEROWANIA. Ćwiczenie 6 RD Badanie układu dwupołożeniowej regulacji temperatury

LABORATORIUM TEORII STEROWANIA. Ćwiczenie 6 RD Badanie układu dwupołożeniowej regulacji temperatury Wydział Elektryczny Zespół Automatyki (ZTMAiPC). Cel ćiczenia LABORATORIUM TEORII STEROWANIA Ćiczenie 6 RD Badanie układu dupołożenioej regulacji temperatury Celem ćiczenia jest poznanie łaściości regulacji

Bardziej szczegółowo

Wyznaczenie współczynników przejmowania ciepła dla konwekcji wymuszonej

Wyznaczenie współczynników przejmowania ciepła dla konwekcji wymuszonej LABORATORIUM TERMODYNAMIKI INSTYTUTU TECHNIKI CIEPLNEJ I MECHANIKI PŁYNÓW WYDZIAŁ MECHANICZNO-ENERGETYCZNY POLITECHNIKI WROCŁAWSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwiczenia 18 Wyznaczenie współczynników

Bardziej szczegółowo

OKREŚLANIE STOPNIA ODWRACALNOŚCI OBIEGÓW LEWOBIEŻNYCH

OKREŚLANIE STOPNIA ODWRACALNOŚCI OBIEGÓW LEWOBIEŻNYCH Dariusz Nanoski Akademia Morska Gdyni OKREŚLANIE OPNIA ODWRACALNOŚCI OBIEGÓW LEWOBIEŻNYCH Praca odnosi się do dostępnej literatury i zaiera łasne analizy ziązane z określaniem stopnia odracalności obiektu

Bardziej szczegółowo

Numeryczna symulacja rozpływu płynu w węźle

Numeryczna symulacja rozpływu płynu w węźle 231 Prace Instytutu Mechaniki Górotworu PAN Tom 7, nr 3-4, (2005), s. 231-236 Instytut Mechaniki Górotworu PAN Numeryczna symulacja rozpływu płynu w węźle JERZY CYGAN Instytut Mechaniki Górotworu PAN,

Bardziej szczegółowo

Układ pomiaru temperatury termoelementem typu K o dużej szybkości. Paweł Kowalczyk Michał Kotwica

Układ pomiaru temperatury termoelementem typu K o dużej szybkości. Paweł Kowalczyk Michał Kotwica Układ pomiaru temperatury termoelementem typu K o dużej szybkości Paweł Kowalczyk Michał Kotwica Plan prezentacji Fizyczne podstawy działania termopary Zalety wykorzystania termopar Właściwości termoelementu

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

ANALIZA PRĘDKOŚCI POWIERZCHNIOWYCH W CIEKACH W WARUNKACH DZIAŁANIA WIATRU

ANALIZA PRĘDKOŚCI POWIERZCHNIOWYCH W CIEKACH W WARUNKACH DZIAŁANIA WIATRU Acta Sci. Pol., Formatio Circumiectus 9 (1) 010, 39 44 ANALIZA PRĘDKOŚCI POWIERZCHNIOWYCH W CIEKACH W WARUNKACH DZIAŁANIA WIATRU Dorota Libront * Regionalny Zarząd Gospodarki Wodnej Szczecinie, Zachodniopomorski

Bardziej szczegółowo

ZJAWISKA TERMOELEKTRYCZNE

ZJAWISKA TERMOELEKTRYCZNE Wstęp W ZJAWISKA ERMOELEKRYCZNE W.1. Wstęp Do zjawisk termoelektrycznych zaliczamy: zjawisko Seebecka - efekt powstawania różnicy potencjałów elektrycznych na styku metali lub półprzewodników, zjawisko

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW

LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie numer Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny o

Bardziej szczegółowo

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów ANALIZA PRZEKAZYWANIA CIEPŁA I FORMOWANIA SIĘ PROFILU TEMPERATURY DLA NIEŚCIŚLIWEGO, LEPKIEGO PRZEPŁYWU LAMINARNEGO W PRZEWODZIE ZAMKNIĘTYM Cel ćwiczenia Celem ćwiczenia będzie obserwacja procesu formowania

Bardziej szczegółowo

Termometr oporowy i termopara

Termometr oporowy i termopara Ćwiczenie 11 Termometr oporowy i termopara Cel ćwiczenia Wyznaczenie współczynnika temperaturowego oporu platyny. Pomiar charakterystyki termopary miedź konstantan. Wprowadzenie Każda mierzalna wielkość

Bardziej szczegółowo

teoretyczne podstawy działania

teoretyczne podstawy działania Techniki Niskotemperaturowe w medycynie Seminarium Termoelektryczne urządzenia chłodnicze - teoretyczne podstawy działania Edyta Kamińska IMM II st. Sem I 1 Spis treści Termoelektryczność... 3 Zjawisko

Bardziej szczegółowo

SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie

SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie DEFINICJE OGÓLNE I WIELKOŚCI CHARAKTERYSTYCZNE WENTYLATORA WENTYLATOR maszyna wirnikowa, która otrzymuje energię mechaniczną za pomocą jednego wirnika lub kilku wirników zaopatrzonych w łopatki, użytkuje

Bardziej szczegółowo

KLASYFIKACJA MATERIAŁÓW SYPKICH W ZŁOŻU FLUIDALNYM

KLASYFIKACJA MATERIAŁÓW SYPKICH W ZŁOŻU FLUIDALNYM 37/38 Solidification of Metals and Alloys, No. 38, 1998 Krzepnięcie Metali i Stopó, nr 38, 1998 PAN Katoice PL ISSN 0208-9386 KLASYFIKACJA MATERIAŁÓW SYPKICH W ZŁOŻU FLUIDALNYM SZLUMCZYK Henryk, JURA Stanisła,

Bardziej szczegółowo

1 K A T E D R A F I ZYKI S T O S O W AN E J

1 K A T E D R A F I ZYKI S T O S O W AN E J 1 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 1. Łączenie i pomiar oporu Wprowadzenie Prąd elektryczny Jeżeli w przewodniku

Bardziej szczegółowo

instrukcja do ćwiczenia 3.4 Wyznaczanie metodą tensometrii oporowej modułu Younga i liczby Poissona

instrukcja do ćwiczenia 3.4 Wyznaczanie metodą tensometrii oporowej modułu Younga i liczby Poissona UT-H Radom Instytut Mechaniki Stosoanej i Energetyki Laboratorium Wytrzymałości Materiałó instrukcja do ćiczenia 3.4 Wyznaczanie metodą tensometrii oporoej modułu Younga i liczby Poissona I ) C E L Ć W

Bardziej szczegółowo

2.1 Cechowanie termopary i termistora(c1)

2.1 Cechowanie termopary i termistora(c1) 76 Ciepło 2.1 Cechowanie termopary i termistora(c1) Celem ćwiczenia jest zbadanie zależności temperaturowej oporu termistora oraz siły elektromotorycznej indukowanej w obwodach z termoparą. Przeprowadzane

Bardziej szczegółowo

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają

Bardziej szczegółowo

Badania asymetrii rozkładu napięć na dzielonym włóknie termoanemometru w zależności od prędkości przepływu

Badania asymetrii rozkładu napięć na dzielonym włóknie termoanemometru w zależności od prędkości przepływu 81 Prace Instytutu Mechaniki Górotoru PAN Tom 7, nr 1-, (005), s. 81-86 Instytut Mechaniki Górotoru PAN Badania asymetrii rozkładu napięć na dzielonym łóknie termoanemometru zależności od prędkości przepłyu

Bardziej szczegółowo

OCENA DOKŁADNOŚCI OBLICZANIA PARAMETRÓW SPOTKANIA CPA I TCPA W MULTIAGENTOWYM SYSTEMIE WSPOMAGANIA NAWIGACYJNEGO PROCESU DECYZYJNEGO

OCENA DOKŁADNOŚCI OBLICZANIA PARAMETRÓW SPOTKANIA CPA I TCPA W MULTIAGENTOWYM SYSTEMIE WSPOMAGANIA NAWIGACYJNEGO PROCESU DECYZYJNEGO ANDRZEJ BANACHOWICZ, PIOTR WOŁEJSZA ** OCENA DOKŁADNOŚCI OBLICZANIA PARAMETRÓW SPOTKANIA I T W MULTIAGENTOWYM SYSTEMIE WSPOMAGANIA NAWIGACYJNEGO PROCESU DECYZYJNEGO CALCULATION ACCURACY OF AND T IN MADSS

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW

LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie numer 2 Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała

Bardziej szczegółowo

s s INSTRUKCJA STANOWISKOWA

s s INSTRUKCJA STANOWISKOWA INSTKCJA STANOWISKOWA Wstęp. Przewodzenie ciepła zachodzi w obszarze jednego ciała, w którym istnieją różnice temperatur. Ciepło płynie od miejsca o temperaturze wyższej do miejsca o temperaturze niższej.

Bardziej szczegółowo

Analiza statycznych warunków pracy czujnika termoanemometrycznego w układzie stałotemperaturowym w zależności od średnicy włókna pomiarowego

Analiza statycznych warunków pracy czujnika termoanemometrycznego w układzie stałotemperaturowym w zależności od średnicy włókna pomiarowego Prace Instytutu Mechaniki Górotworu PAN Tom 20, nr 4, Grudzień 2018, s. 349-353 Instytut Mechaniki Górotworu PAN Analiza statycznych warunków pracy czujnika termoanemometrycznego w układzie stałotemperaturowym

Bardziej szczegółowo

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Siła Coulomba. F q q = k r 1 = 1 4πεε 0 q q r 1. Pole elektrostatyczne. To przestrzeń, w której na ładunek

Bardziej szczegółowo

Instrukcja stanowiskowa

Instrukcja stanowiskowa POLITECHNIKA WARSZAWSKA Wydział Budownictwa, Mechaniki i Petrochemii Instytut Inżynierii Mechanicznej w Płocku Zakład Aparatury Przemysłowej LABORATORIUM WYMIANY CIEPŁA I MASY Instrukcja stanowiskowa Temat:

Bardziej szczegółowo

Wykonanie ćwiczenia 3. NAPIĘCIE POWIERZCHNIOWE POMIAR NAPIĘCIA POWIERZCHNIOWEGO CIECZY METODĄ STALAGMOMETRYCZNĄ

Wykonanie ćwiczenia 3. NAPIĘCIE POWIERZCHNIOWE POMIAR NAPIĘCIA POWIERZCHNIOWEGO CIECZY METODĄ STALAGMOMETRYCZNĄ Wykonanie ćiczenia 3. NAPIĘCIE POWIERZCHNIOWE POMIAR NAPIĘCIA POWIERZCHNIOWEGO CIECZY METODĄ STALAGMOMETRYCZNĄ Zadania: 1. Zmierzyć napięcie poierzchnioe odnych roztoró kasó organicznych lub alkoholi (do

Bardziej szczegółowo

Wzorcowanie termometrów i termopar

Wzorcowanie termometrów i termopar Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wzorcowanie termometrów i termopar - 1 - Wstęp teoretyczny Temperatura jest jednym z parametrów określających stan termodynamiczny ciała

Bardziej szczegółowo

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 10. Pomiary w warunkach dynamicznych.

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 10. Pomiary w warunkach dynamicznych. Cel ćwiczenia: Poznanie budowy i zasady działania oraz parametrów charakterystycznych dla stykowych czujników temperatury. Zapoznanie się z metodami pomiaru temperatur czujnikami stykowymi oraz sposobami

Bardziej szczegółowo

SKALOWANIE TERMOPARY I WYZNACZANIE TEMPERATURY KRZEPNIĘCIA STOPU

SKALOWANIE TERMOPARY I WYZNACZANIE TEMPERATURY KRZEPNIĘCIA STOPU ĆWICZENIE 20 SKALOWANIE TERMOPARY I WYZNACZANIE TEMPERATURY KRZEPNIĘCIA STOPU Cel ćwiczenia: Poznanie budowy i zasady działania termopary. Skalowanie termopary i wyznaczanie jej współczynnika termoelektrycznego.

Bardziej szczegółowo

Zjawisko termoelektryczne

Zjawisko termoelektryczne 34 Zjawisko Peltiera polega na tym, że w obwodzie składającym się z różnych przewodników lub półprzewodników wytworzenie różnicy temperatur między złączami wywołuje przepływ prądu spowodowany różnicą potencjałów

Bardziej szczegółowo

Wykład FIZYKA II. 2. Prąd elektryczny. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 2. Prąd elektryczny.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 2. Prąd elektryczny Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ UCH ŁADUNKÓW Elektrostatyka zajmowała się ładunkami

Bardziej szczegółowo

POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW

POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW Ćwiczenie 65 POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW 65.1. Wiadomości ogólne Pole magnetyczne można opisać za pomocą wektora indukcji magnetycznej B lub natężenia pola magnetycznego H. W jednorodnym ośrodku

Bardziej szczegółowo

POLITECHNIKA CZĘSTOCHOWSKA. Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji

POLITECHNIKA CZĘSTOCHOWSKA. Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji POLITECHNIKA CZĘSTOCHOWSKA Instytut Maszyn Cieplnych Optymalizacja Procesów Cieplnych Ćwiczenie nr 3 Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji Częstochowa 2002 Wstęp. Ze względu

Bardziej szczegółowo

Występują dwa zasadnicze rodzaje skraplania: skraplanie kroplowe oraz skraplanie błonkowe.

Występują dwa zasadnicze rodzaje skraplania: skraplanie kroplowe oraz skraplanie błonkowe. Wymiana ciepła podczas skraplania (kondensacji) 1. Wstęp Do skraplania dochodzi wtedy, gdy para zostaje ochłodzona do temperatury niższej od temperatury nasycenia (skraplania, wrzenia). Ma to najczęściej

Bardziej szczegółowo

Temat nr 3: Pomiar temperatury termometrami termoelektrycznymi

Temat nr 3: Pomiar temperatury termometrami termoelektrycznymi Temat nr 3: Pomiar temperatury termometrami termoelektrycznymi 1.Wiadomości podstawowe Termometry termoelektryczne należą do najbardziej rozpowszechnionych przyrządów, służących do bezpośredniego pomiaru

Bardziej szczegółowo

1. Wnikanie ciepła podczas wrzenia pęcherzykowego na zewnętrznej powierzchni rur W (1.1)

1. Wnikanie ciepła podczas wrzenia pęcherzykowego na zewnętrznej powierzchni rur W (1.1) nikanie_ciepla Wnikanie ciepła 1. Wnikanie ciepła podcas renia pęcherykoego na enętrnej poierchni rur Zależność Rohsenoa q 1/ g c pt W r (1.1) n C rr s m n = 1,0 dla ody n = 1,7 dla innych ciecy 3 Współcynnik

Bardziej szczegółowo

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A, p 2, S E C B, p 1, S C [W] wydajność pompowania C= d ( pv ) = d dt dt (nrt )= kt dn dt dn / dt - ilość cząstek przepływających w ciągu

Bardziej szczegółowo

Natężenie prądu elektrycznego

Natężenie prądu elektrycznego Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam kierunek jak przepływ ładunków

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn

Podstawy Konstrukcji Maszyn Podstawy Konstrukcji Maszyn Część 2 hydrodynamiczne łożyska ślizgowe 1.Hydrodynamiczne łożyska ślizgowe podział Podział łożysk ze względu na sposób zasilania medium smarnym: zasilanie olejem pod ciśnieniem

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH

METODA ELEMENTÓW SKOŃCZONYCH METODA ELEMENTÓW SKOŃCZONYCH Projekt Prowadzący: prof. nadzw. Tomasz Stręk Wykonali: 1. Kornelia Matusiak 2. Paweł Łuszczewski Grupa: KMiU Semestr: VII Rok akademicki 2013/2014 Spis treści I. Przewodzenie

Bardziej szczegółowo

Metoda Elementów Skończonych

Metoda Elementów Skończonych Projekt Metoda Elementów Skończonych w programie COMSOL Multiphysics 3.4 Wykonali: Helak Bartłomiej Kruszewski Jacek Wydział, kierunek, specjalizacja, semestr, rok: BMiZ, MiBM, KMU, VII, 2011-2012 Prowadzący:

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 5 Prawo autorskie Niniejsze

Bardziej szczegółowo

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia II. Wyznaczanie charakterystyk statycznych czujników temperatury

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia II. Wyznaczanie charakterystyk statycznych czujników temperatury Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia II Wyznaczanie charakterystyk statycznych czujników temperatury 1 1. Wstęp Temperatura jest jedną z najważniejszych wielkości fizycznych

Bardziej szczegółowo

Ćwiczenie 6. Pomiary wielkości elektrycznych za pomocą oscyloskopu

Ćwiczenie 6. Pomiary wielkości elektrycznych za pomocą oscyloskopu Ćiczenie 6 Pomiary ielkości elektrycznych za pomocą oscyloskopu 6.1. Cel ćiczenia Zapoznanie z budoą, zasadą działa oscyloskopu oraz oscyloskopoymi metodami pomiaroymi. Wykonanie pomiaró ielkości elektrycznych

Bardziej szczegółowo

Wyznaczanie sprawności grzejnika elektrycznego i ciepła właściwego cieczy za pomocą kalorymetru z grzejnikiem elektrycznym

Wyznaczanie sprawności grzejnika elektrycznego i ciepła właściwego cieczy za pomocą kalorymetru z grzejnikiem elektrycznym Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 24 III 2009 Nr. ćwiczenia: 215 Temat ćwiczenia: Wyznaczanie sprawności grzejnika elektrycznego i ciepła

Bardziej szczegółowo

ĆWICZENIE 4 WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODZENIA CIEPŁA. Cel ćwiczenia. Celem ćwiczenia jest wyznaczenie współczynnika przewodzenia ciepła cieczy.

ĆWICZENIE 4 WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODZENIA CIEPŁA. Cel ćwiczenia. Celem ćwiczenia jest wyznaczenie współczynnika przewodzenia ciepła cieczy. ĆWICZENIE 4 WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODZENIA CIEPŁA Cel ćwiczenia. Celem ćwiczenia jest wyznaczenie współczynnika przewodzenia ciepła cieczy. Zakres wymaganych wiadomości. Definicje: bilans cieplny,

Bardziej szczegółowo

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia III Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia Sonda poboru ciśnienia Sonda poboru ciśnienia (Rys. ) jest to urządzenie

Bardziej szczegółowo

Wykaz aparatury znajduje się w dodatku A do niniejszej instrukcji (s. 15, 16).

Wykaz aparatury znajduje się w dodatku A do niniejszej instrukcji (s. 15, 16). Ćiczenie 6 Techniczne metody pomiaru impedancji rogram ćiczenia:. omiar pojemności kondensatora metodą techniczną.. omiar parametró i dłaika z ykorzystaniem atomierza, amperomierza i oltomierza. 3. omiar

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIERSYTET TECHNOLOGICZNO-PRZYRODNICZY BYDGOSZCZY YDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆICZENIE: E3 BADANIE ŁAŚCIOŚCI

Bardziej szczegółowo

1.12. CAŁKA MOHRA Geometryczna postać całki MOHRA. Rys. 1

1.12. CAŁKA MOHRA Geometryczna postać całki MOHRA. Rys. 1 .. CAŁA OHRA Całka OHRA yraża ziązek między przemieszczeniem (ydłużeniem, ugięciem, obrotem) a obciążeniem (siłą, momentem, obciążeniem ciągłym). Służy ona do yznaczania przemieszczeń statycznie yznaczanych

Bardziej szczegółowo

Mechanika Płynów. Wzornictwo Przemysłowe I stopień ogólnoakademicki studia stacjonarne wszystkie Katedra Mechaniki Dr hab. inż.

Mechanika Płynów. Wzornictwo Przemysłowe I stopień ogólnoakademicki studia stacjonarne wszystkie Katedra Mechaniki Dr hab. inż. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Naza modułu Mechanika Płynó Naza modułu języku angielskim Fluid Mechanics Oboiązuje od roku akademickiego 2014/2015 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek

Bardziej szczegółowo

Sterowane źródło mocy

Sterowane źródło mocy Sterowane źródło mocy Iloczyn prądu i napięcia jest zawsze proporcjonalny (równy) do pewnej mocy p Źródła tego typu nie mogą być zwarte ani rozwarte Moc ujemna pochłanianie mocy W rozważanym podobwodzie

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 5 Prawo autorskie Niniejsze

Bardziej szczegółowo

Laboratorium InŜynierii i Aparatury Przemysłu SpoŜywczego

Laboratorium InŜynierii i Aparatury Przemysłu SpoŜywczego Laboratorium InŜynierii i Aparatury Przemysłu SpoŜywczego 1. Temat ćwiczenia :,,Wyznaczanie współczynnika przenikania ciepła 2. Cel ćwiczenia : Określenie globalnego współczynnika przenikania ciepła k

Bardziej szczegółowo

LABORATORIUM - TRANSPORT CIEPŁA I MASY II

LABORATORIUM - TRANSPORT CIEPŁA I MASY II Ćwiczenie numer 4 Transport ciepła za pośrednictwem konwekcji 1. Wprowadzenie Jednostka eksperymentalna WL 352 Heat Transfer by Convection umożliwia analizę transportu ciepła za pośrednictwem konwekcji

Bardziej szczegółowo

Instrukcja do laboratorium z fizyki budowli.

Instrukcja do laboratorium z fizyki budowli. Instrukcja do laboratorium z fizyki budowli. Ćwiczenie: Pomiar współczynnika przewodzenia ciepła materiałów budowlanych Strona 1 z 5 Cel ćwiczenia Prezentacja metod stacjonarnych i dynamicznych pomiaru

Bardziej szczegółowo

Ocena struktury geometrycznej powierzchni

Ocena struktury geometrycznej powierzchni Wrocła, dnia Metrologia Wielkości Geometrycznych Ćiczenie 4 Rok i kierunek 1. 2.. Grupa (dzień i godzina rozpoczęcia zajęć) Imię i nazisko Imię i nazisko Imię i nazisko Ocena struktury geometrycznej poierzchni

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA METODA ELEMENTÓW SKOŃCZONYCH PROJEKT ZALICZENIOWY COMSOL 4.3

POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA METODA ELEMENTÓW SKOŃCZONYCH PROJEKT ZALICZENIOWY COMSOL 4.3 POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA METODA ELEMENTÓW SKOŃCZONYCH PROJEKT ZALICZENIOWY COMSOL 4.3 Prowadzący: dr hab. Tomasz Stręk, prof. nadz. Wykonały: Agnieszka Superczyńska Martyna

Bardziej szczegółowo

Prąd przemienny - wprowadzenie

Prąd przemienny - wprowadzenie Prąd przemienny - wprowadzenie Prądem zmiennym nazywa się wszelkie prądy elektryczne, dla których zależność natężenia prądu od czasu nie jest funkcją stałą. Zmienność ta może związana również ze zmianą

Bardziej szczegółowo

ANALIZA WYMIANY CIEPŁA OŻEBROWANEJ PŁYTY GRZEWCZEJ Z OTOCZENIEM

ANALIZA WYMIANY CIEPŁA OŻEBROWANEJ PŁYTY GRZEWCZEJ Z OTOCZENIEM Wymiana ciepła, żebro, ogrzewanie podłogowe, komfort cieplny Henryk G. SABINIAK, Karolina WIŚNIK* ANALIZA WYMIANY CIEPŁA OŻEBROWANEJ PŁYTY GRZEWCZEJ Z OTOCZENIEM W artykule przedstawiono sposób wymiany

Bardziej szczegółowo

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Inżynierii Jakości Ćiczenie nr 11 Temat: Karta kontrolna ruchomej średniej MA Zakres ćiczenia:

Bardziej szczegółowo

Politechnika Warszawska Instytut Techniki Cieplnej, MEiL, ZSL

Politechnika Warszawska Instytut Techniki Cieplnej, MEiL, ZSL Politechnika Warszawska Instytut Techniki Cieplnej, MEiL, ZSL SEMINARIUM INSTYTUTOWE Problem pomiaru szybkozmiennych temperatur w aplikacjach silnikowych badania eksperymentalne Dr inż. Jan Kindracki Warszawa,

Bardziej szczegółowo

Klucz odpowiedzi. Konkurs Fizyczny Etap Rejonowy

Klucz odpowiedzi. Konkurs Fizyczny Etap Rejonowy Klucz odpowiedzi Konkurs Fizyczny Etap Rejonowy Zadania za 1 p. TEST JEDNOKROTNEGO WYBORU (łącznie 20 p.) Nr zadania 1 2 3 4 5 6 7 8 9 10 Odpowiedź B C C B B D C A D B Zadania za 2 p. Nr zadania 11 12

Bardziej szczegółowo

PIĘTRZENIE WIATROWE W UJŚCIU RZEKI W WARUNKACH SILNYCH WIATRÓW WIND SWELLING IN RIVER MOUTH DUE TO STRONG WINDS

PIĘTRZENIE WIATROWE W UJŚCIU RZEKI W WARUNKACH SILNYCH WIATRÓW WIND SWELLING IN RIVER MOUTH DUE TO STRONG WINDS PĘTRZENE WATROWE W UJŚCU RZEK W WARUNKAC SLNYC WATRÓW WND SWELLNG N RVER MOUT DUE TO STRONG WNDS prof. dr ha. inż. Zygmunt Meyer Zachodniopomorski Uniersytet Technologiczny Szczecinie Katedra Geotechniki,

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechaniki płynów ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH . Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

J. Szantyr Wykład nr 26 Przepływy w przewodach zamkniętych II

J. Szantyr Wykład nr 26 Przepływy w przewodach zamkniętych II J. Szantyr Wykład nr 6 Przepływy w przewodach zamkniętych II W praktyce mamy do czynienia z mniej lub bardziej złożonymi rurociągami. Jeżeli strumień płynu nie ulega rozgałęzieniu, mówimy o rurociągu prostym.

Bardziej szczegółowo

Regulacja adaptacyjna w anemometrze stałotemperaturowym

Regulacja adaptacyjna w anemometrze stałotemperaturowym 3 Prace Instytutu Mechaniki Górotworu PAN Tom 8, nr 1-4, (2006), s. 3-7 Instytut Mechaniki Górotworu PAN Regulacja adaptacyjna w anemometrze stałotemperaturowym PAWEŁ LIGĘZA Instytut Mechaniki Górotworu

Bardziej szczegółowo

Maszyny cieplno - przepływowe Thermal fluid-flow machines

Maszyny cieplno - przepływowe Thermal fluid-flow machines KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Naza modułu Naza modułu języku angielskim Oboiązuje od roku akademickiego 2016/2017 Maszyny cieplno - przepłyoe Thermal fluid-flo machines A. USYTUOWANIE MODUŁU

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE

ELEMENTY ELEKTRONICZNE AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki ELEMENTY ELEKTRONICZNE dr inż. Piotr Dziurdzia paw. C-3,

Bardziej szczegółowo

Politechnika Poznańska. Metoda Elementów Skończonych

Politechnika Poznańska. Metoda Elementów Skończonych Politechnika Poznańska PROJEKT: Metoda Elementów Skończonych Prowadzący: Dr hab. Tomasz Stręk Autorzy: Rafał Wesoły Daniel Trojanowicz Wydział: WBMiZ Kierunek: MiBM Specjalność: IMe Spis treści: 1. Zagadnienie

Bardziej szczegółowo

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM 2/1 Archives of Foundry, Year 200, Volume, 1 Archiwum Odlewnictwa, Rok 200, Rocznik, Nr 1 PAN Katowice PL ISSN 1642-308 WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM D.

Bardziej szczegółowo

Aerodynamika i mechanika lotu

Aerodynamika i mechanika lotu Prędkość określana względem najbliższej ścianki nazywana jest prędkością względną (płynu) w. Jeśli najbliższa ścianka porusza się względem ciał bardziej oddalonych, to prędkość tego ruchu nazywana jest

Bardziej szczegółowo

PODSTAWOWE CZŁONY DYNAMICZNE

PODSTAWOWE CZŁONY DYNAMICZNE PODSTAWOWE CZŁONY DYNAMICZNE Człon podstawowy jest to element przetwarzający wprowadzony do niego sygnał wejściowy x(t) na sygnał wyjściowy y(t) w sposób elementarny. Przetwarzanie elementarne oznacza,

Bardziej szczegółowo

Druty oporowe [ BAP_ doc ]

Druty oporowe [ BAP_ doc ] Druty oporowe [ ] Cel Przyrząd jest przeznaczony do następujących doświadczeń: 1. Pierwsze prawo Ohma: sprawdzenie związku między różnicą potencjałów na końcach przewodnika liniowego i natężeniem prądu

Bardziej szczegółowo

Badanie charakterystyk statycznych termoanemometrycznych czujników włóknowych

Badanie charakterystyk statycznych termoanemometrycznych czujników włóknowych Prace Instytutu Mechaniki Górotoru PAN Tom 17, nr 3-4, grudzień 15, s. 45-53 Instytut Mechaniki Górotoru PAN Badanie charakterystyk statycznych termoanemometrycznych czujnikó łóknoych PAWEŁ JAMRÓZ, KATARZYNA

Bardziej szczegółowo