ELEMENTY ELEKTRONICZNE
|
|
- Ksawery Żurawski
- 8 lat temu
- Przeglądów:
Transkrypt
1 AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki ELEMENTY ELEKTRONICZNE dr inż. Piotr Dziurdzia paw. C-3, pokój 413; tel , dziurdzi@agh.edu.pl dr inż. Ireneusz Brzozowski paw. C-3, pokój 51; tel , brzoza@agh.edu.pl ZAGADNIENIA TERMICZMNE W ELEMENTACH ELEKTRONICZNYCH EiT 015 r. PD&IB 1
2 MOC, CIEPŁO, TEMPERATURA P R O B L E M? Jeden z tranzystorów układu scalonego o wymiarach 1µm x 1µm x 1µm rozprasza 1mW mocy elektrycznej (np. MOS. I D =1mA przy U DS =1V) Jaką gęstość mocy zanotujemy:? P? [W/m 3 ]!!! V EiT 015 r. PD&IB Elementy elektroniczne zagadnienia termiczne 3 MOC, CIEPŁO, TEMPERATURA SPRZĘŻENIE ELEKTROTERMICZNE Wydzielana w układzie moc Zmiana temperatury w sąsiedztwie elementu mocy Zmiana parametrów elektrycznych mikrostruktury pod wpływem zmian temperatury EiT 015 r. PD&IB Elementy elektroniczne zagadnienia termiczne 4
3 MOC, CIEPŁO, TEMPERATURA DROGI ROZPRASZANIA CIEPŁA Q T P(t) moc wydzielana w układzie Q L P(t) Q B ciepło rozpraszane przez dolną powierzchnię układu scalonego Q B Q T ciepło rozpraszane przez górną powierzchnię układu scalonego Q L ciepło rozpraszane przez wyprowadzenia układu scalonego EiT 015 r. PD&IB Elementy elektroniczne zagadnienia termiczne 5 SPOSOBY PRZEKAZYWANIA CIEPŁA PRZEWODZENIE EiT 015 r. PD&IB Elementy elektroniczne zagadnienia termiczne 6 3
4 SPOSOBY PRZEKAZYWANIA CIEPŁA KONWEKCJA Konwekcja, inaczej unoszenie ciepła, jest procesem przekazywania ciepła z powierzchni ciała stałego do otaczającego płynu (gaz lub ciecz). Przekazywanie ciepła odbywa się zatem nie tylko przez przewodnictwo cieplne, ale i poprzez ruch swobodnych molekuł. Naturalna konwekcja jest spowodowana miejscową różnicą gęstości medium i w jej procesie rozrzedzony płyn unosi się ku górze w obecności pola grawitacyjnego. RADIACJA W procesie radiacji nie uczestniczy żadne medium pośredniczące. Ciepło jest transmitowane do otoczenia poprzez fale elektromagnetyczne (najskuteczniej w próżni). Ilość emitowanego ciepła zależy tylko od temperatury i emisyjności powierzchni materiału z którego jest wykonana. Procesem radiacji rządzi prawo Stefana- Boltzmanna, zgodnie z którym energia radiacji jest proporcjonalna do czwartej potęgi temperatury. EiT 015 r. PD&IB Elementy elektroniczne zagadnienia termiczne 7 REZYSTANCJA TERMICZNA T x, y, z, t wx, y, z, t C T x, y, z, t t gdzie: - współczynnik przewodności cieplnej [W/mK], C - pojemność cieplna właściwa [J/m 3 K], w rozkład gęstości generowanej mocy cieplnej [W/m 3 ] To x ( 3, l 3, c 3, m 3, S 3 ) (, l, c, m, S ) Tj ( 1, l 1, c 1, m 1, S 1 ) - przewodność cieplna, l grubość warstwy, c ciepło właściwe, m masa, S powierzchnia warstwy EiT 015 r. PD&IB Elementy elektroniczne zagadnienia termiczne 8 4
5 REZYSTANCJA TERMICZNA To x ( 3, l 3, c 3, m 3, S 3 ) (, l, c, m, S ) ( 1, l 1, c 1, m 1, S 1 ) Tj T j (t) R th_1 R th_ R th_3 T 0 (t) P(t) Tj T P l l l T PR R R th_1 th_ th_3 S1 1 S S 3 3 EiT 015 r. PD&IB Elementy elektroniczne zagadnienia termiczne 9 POJEMNOŚĆ TERMICZNA To x ( 3, l 3, c 3, m 3, S 3 ) (, l, c, m, S ) ( 1, l 1, c 1, m 1, S 1 ) Tj C 4C l S th Rth 4 C c T j (t) R th_1 R th_ R th_3 T 0 (t) P(t) C th_1 C th_ C th_3 EiT 015 r. PD&IB Elementy elektroniczne rezystancja termiczna 10 5
6 MODEL TERMICZNY Przykładowy model elektrotermiczny obudowy układu scalonego Q T Q T Q L radiator Q B mikrostruktura metaliczne wyprowadzenia z mikrostruktury P(t) Q L dolna część obudowy mikrostruktury Q B EiT 015 r. PD&IB Elementy elektroniczne rezystancja termiczna 11 MODUŁ PELTIERA 30mm q c Cu 3mm 30mm (-) (+) q h q h EiT 015 r. PD&IB Elementy elektroniczne moduł Peltiera 1 6
7 MODUŁ PELTIERA EiT 015 r. PD&IB Elementy elektroniczne moduł Peltiera 13 MODUŁ PELTIERA EiT 015 r. PD&IB Elementy elektroniczne moduł Peltiera 14 7
8 MODUŁ PELTIERA x 1 P N P N P N 3 T Temperatura względna 1 radiator, moduł termoelektryczny, 3 - mikroukład Q h Q U I c pel EiT 015 r. PD&IB Elementy elektroniczne moduł Peltiera 15 MODUŁ PELTIERA Q h = *T h (t)*i pel (t) x Al O 3 Cu Bi Te 3 T h (t) P j =R*I pel(t) Cu T c (t) Al O 3 Q c = *T c (t)*i pel (t) EiT 015 r. PD&IB Elementy elektroniczne moduł Peltiera 16 8
9 ZJAWISKA TOWARZYSZĄCE DZIAŁANIU MODUŁU TERMOELEKTRYCZNEGO ZJAWISKO SEEBECKA Zjawisko Seebecka opisuje indukowanie się siły termoelektrycznej w obwodzie składającym się z dwóch różnych przewodników, których połączenia znajdują się w różnych temperaturach. Indukowane napięcie termoelektryczne U zależy od temperatury. Współczynnik s jest charakterystyczny dla zastosowanego materiału przewodnika. T+T T Przewodnik Przewodnik T+T T+T U=s 1 T-s (T-T)-s T= =s 1 T=(s 1 -s ) T U s T... 1 T s EiT 015 r. PD&IB Elementy elektroniczne moduł Peltiera 17 ZJAWISKA TOWARZYSZĄCE DZIAŁANIU MODUŁU TERMOELEKTRYCZNEGO ZJAWISKO PELTIERA Zjawisko Peltiera opisuje procesy zachodzące na złączu dwóch różnych przewodników przy przepływie prądu elektrycznego. W zależności od kierunku przepływu prądu złącze pochłania lub wydziela ciepło do otoczenia. Efektywność zachodzących procesów zależy od różnicy poziomów energetycznych pasm przewodnictwa zastosowanych przewodników. q c przewodnik_1 e q h Ciepło pochłaniane przez złącze Temperatura obniża się e przewodnik_ Ciepło wydzielane przez złącze Temperatura wzrasta EiT 015 r. PD&IB Elementy elektroniczne moduł Peltiera 18 9
10 ZJAWISKA TOWARZYSZĄCE DZIAŁANIU MODUŁU TERMOELEKTRYCZNEGO ZJAWISKO PELTIERA pasmo przewodnictwa pasmo przewodnictwa poziom E Fermiego Metal_1 Q T poziom Fermiego T Półprzewodnik T poziom Fermiego Metal_ p I pel pasmo przewodnictwa EiT 015 r. PD&IB Elementy elektroniczne moduł Peltiera 19 ZJAWISKA TOWARZYSZĄCE DZIAŁANIU MODUŁU TERMOELEKTRYCZNEGO ZJAWISKO THOMSONA Zjawisku Thomsona musi towarzyszyć przepływ prądu elektrycznego pod wpływem przyłożonego z zewnątrz napięcia. Jeżeli jednorodny przewodnik znajduje się w polu gradientu temperatury, to w zależności od kierunku przepływającego prądu ciepło jest pochłaniane lub wydzielane z jego objętości T 1 q c T 1 +T Q t e q h e dt T I dx gdzie: T współczynnik Thomsona [Vm/K], I prąd elektryczny [A] x EiT 015 r. PD&IB Elementy elektroniczne moduł Peltiera 0 10
11 ZJAWISKA TOWARZYSZĄCE DZIAŁANIU MODUŁU TERMOELEKTRYCZNEGO ZJAWISKO JOULE A Q j I R Z uwagi na zależność rezystywności od temperatury oraz ze względu na znaczne gradienty temperatury występujące w pracujących modułach termoelektrycznych, właściwą formułą opisującą wydzielane w nich ciepło Joule'a jest wzór: Q j l ( T I S 0 ) dx gdzie: (T) rezystywność materiału [m], l długość przewodnika [m], S powierzchnia przekroju poprzecznego przewodnika [m ] EiT 015 r. PD&IB Elementy elektroniczne moduł Peltiera 1 MODUŁ PELTIERA Q c I R pel BiTe3 Tc I pel Bi Te3 T h T c Q h I R pel BiTe3 Th I pel Bi Te3 T h T c EiT 015 r. PD&IB Elementy elektroniczne moduł Peltiera 11
12 MODEL MODUŁU PELTIERA Zależności termiczne parametrów modułów Peltiera [W/ o C] R [Ω] %.4 80% [mv/ o C] T [ o C] T [ o C] % T [ o C] EiT 015 r. PD&IB Elementy elektroniczne moduł Peltiera 3 MODEL MODUŁU PELTIERA Ekwiwalentny model modułu termoelektrycznego EiT 015 r. PD&IB Elementy elektroniczne moduł Peltiera 4 1
13 MOC CIEPLNA MODUŁU PELTIERA P. Górecki : Ogniwa Peltiera, Elektronika Praktyczna 1/96, Warszawa 1996 EiT 015 r. PD&IB Elementy elektroniczne moduł Peltiera 5 TECHNOLOGIE PÓŁPRZEWODNIKOWE EiT 015 r. PD&IB 6 13
14 WYTWARZANIE MONOKRYSZTAŁÓW PÓŁPRZEWODNIKÓW POZIOMA METODA BRIDGAMA ZARODEK KRYSZTAŁ STOPIONA STREFA POLIKRYSZTAŁ GRZEJNIK EiT 015 r. PD&IB Elementy elektroniczne technologie półprzewodnikowe 7 WYTWARZANIE MONOKRYSZTAŁÓW PÓŁPRZEWODNIKÓW METODA CZOCHRALSKIEGO EiT 015 r. PD&IB Elementy elektroniczne technologie półprzewodnikowe 8 14
15 WYTWARZANIE MONOKRYSZTAŁÓW PÓŁPRZEWODNIKÓW METODA CZOCHRALSKIEGO EiT 015 r. PD&IB Elementy elektroniczne technologie półprzewodnikowe 9 WYTWARZANIE MONOKRYSZTAŁÓW PÓŁPRZEWODNIKÓW METODA BEZTYGLOWA EiT 015 r. PD&IB Elementy elektroniczne technologie półprzewodnikowe 30 15
16 WYTWARZANIE MONOKRYSZTAŁÓW PÓŁPRZEWODNIKÓW WAFER płytka podłożowa (np. krzemu) powstała z pociętego pręta krzemowego EiT 015 r. PD&IB Elementy elektroniczne technologie półprzewodnikowe 31 WYTWARZANIE MONOKRYSZTAŁÓW PÓŁPRZEWODNIKÓW EPITAKSJA Technika półprzewodnikowa wzrostu kryształów z roztworów i z fazy gazowej na istniejącym podłożu krystalicznym. Najważniejszym zastosowaniem tej techniki jest wytwarzanie cienkich warstw monokrystalicznych. Jej cechą jest możliwość otrzymywania materiałów półprzewodnikowych w temperaturach dużo niższych niż temperatura topnienia. GaAs+Ga GaAs Stopiony roztwór o temperaturze dużo niższej niż temperatura topnienia samego GaAs Warstwa epitaksjalna Podłoże EiT 015 r. PD&IB Elementy elektroniczne technologie półprzewodnikowe 3 16
17 WYTWARZANIE ZŁĄCZ P-N ZŁĄCZA WYCIĄGANE N D =10 14 cm -3 N A -N D =5x10 14 cm -3 N D -N A =10 15 cm -3 N A -N D =5x10 15 cm -3 N D -N A =10 16 cm -3 PRZEKOMPENSOWANIE zmiana wypadkowej koncentracji domieszki Metoda wyciągania została zastąpiona metodami polegającymi na wprowadzaniu domieszek po otrzymaniu monokryształu lub metodami epitaksji warstwy o przeciwnym do podłoża typie przewodnictwa. EiT 015 r. PD&IB Elementy elektroniczne technologie półprzewodnikowe 33 WYTWARZANIE ZŁĄCZ P-N ZŁĄCZA STOPOWE In Faza ciekła In+Ge p-ge n-ge n-ge n-ge EiT 015 r. PD&IB Elementy elektroniczne technologie półprzewodnikowe 34 17
18 WYTWARZANIE ZŁĄCZ P-N ZŁĄCZA DYFUZYJNE Metoda dyfuzji stosowana jest obecnie na szeroka skalę. Przeprowadzana jest w wysokiej temperaturze. N A >N D p N D >N A n Bor N A>N D p N D >N A n IMPLANTACJA JONÓW Implantację przeprowadzana jest w stosunkowo niskich temperaturach. Implantacja może być przeprowadzana poprzez warstwy tlenku, lecz na ogół nie zachodzi przez warstwę metalu. Implantacja stosowana jest do wytwarzania bardzo cienkich warstw, do wprowadzania domieszek, które nie mogą być wprowadzone poprzez dyfuzję. Dyfuzja ze źródła o skończonej wydajności Złącze liniowe Dyfuzja ze źródła o stałej wydajności Złącze skokowe Implantacja pozwala na uzyskanie bardzo dokładnej geometrii i jakości obszarów domieszkowanych. EiT 015 r. PD&IB Elementy elektroniczne technologie półprzewodnikowe 35 WYTWARZANIE TRANZYSTORA N-P-N SiO n-si p n-si n+ p n-si n+ p n-si EiT 015 r. PD&IB Elementy elektroniczne technologie półprzewodnikowe 36 18
ELEMENTY ELEKTRONICZNE
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Elektroniki ELEMENTY ELEKTRONICZNE dr inż. Piotr Dziurdzia paw. C-3, pokój 413;
ELEMENTY ELEKTRONICZNE
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Elektroniki ELEMENTY ELEKTRONICZNE dr inż. Piotr Dziurdzia paw. C-3, pokój 413;
ELEMENTY ELEKTRONICZNE
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Elektroniki ELEMENTY ELEKTRONICZNE dr inż. Piotr Dziurdzia aw. C-3, okój 413; tel.
Zjawisko termoelektryczne
34 Zjawisko Peltiera polega na tym, że w obwodzie składającym się z różnych przewodników lub półprzewodników wytworzenie różnicy temperatur między złączami wywołuje przepływ prądu spowodowany różnicą potencjałów
Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r.
Fizyka i technologia złącza P Adam Drózd 25.04.2006r. O czym będę mówił: Półprzewodnik definicja, model wiązań walencyjnych i model pasmowy, samoistny i niesamoistny, domieszki donorowe i akceptorowe,
Funkcja rozkładu Fermiego-Diraca w różnych temperaturach
Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B
TECHNOLOGIA WYKONANIA PRZYRZĄDÓW PÓŁPRZEWOD- NIKOWYCH WYK. 16 SMK Na pdstw.: W. Marciniak, WNT 1987: Przyrządy półprzewodnikowe i układy scalone,
TECHNOLOGIA WYKONANIA PRZYRZĄDÓW PÓŁPRZEWOD- NIKOWYCH WYK. 16 SMK Na pdstw.: W. Marciniak, WNT 1987: Przyrządy półprzewodnikowe i układy scalone, 1. Technologia wykonania złącza p-n W rzeczywistych złączach
Metody wytwarzania elementów półprzewodnikowych
Metody wytwarzania elementów półprzewodnikowych Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Wytwarzanie
wymiana energii ciepła
wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk
ZADANIE 28. Wyznaczanie przewodnictwa cieplnego miedzi
ZADANIE 28 Wyznaczanie przewodnictwa cieplnego miedzi Wstęp Pomiędzy ciałami ogrzanymi do różnych temperatur zachodzi wymiana ciepła. Ciało o wyższej temperaturze traci ciepło, a ciało o niższej temperaturze
Półprzewodniki. złącza p n oraz m s
złącza p n oraz m s Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja współfinansowana ze środków Unii
Czym jest prąd elektryczny
Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,
Ćwiczenie 2. Zjawiska cieplne w ogniwie Peltier a
Zespół Elektrotermii Laboratorium Termokinetyki Ćwiczenie 2. Zjawiska cieplne w ogniwie Peltier a 1. Zasada działania ogniw Peltiera Działanie modułów termoelektrycznych, zwanych najczęściej ogniwami Peltier
i elementy z półprzewodników homogenicznych część II
Półprzewodniki i elementy z półprzewodników homogenicznych część II Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Elementy przełącznikowe
Elementy przełącznikowe Dwie główne grupy: - niesterowane (diody p-n lub Schottky ego), - sterowane (tranzystory lub tyrystory) Idealnie: stan ON zwarcie, stan OFF rozwarcie, przełączanie bez opóźnienia
str. 1 d. elektron oraz dziura e.
1. Półprzewodniki samoistne a. Niska temperatura b. Wzrost temperatury c. d. elektron oraz dziura e. f. zjawisko fotoelektryczne wewnętrzne g. Krzem i german 2. Półprzewodniki domieszkowe a. W półprzewodnikach
Wykład IV. Półprzewodniki samoistne i domieszkowe
Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent
ELEKTRONIKA ELM001551W
ELEKTRONIKA ELM001551W Podstawy elektrotechniki i elektroniki Definicje prądu elektrycznego i wielkości go opisujących: natężenia, gęstości, napięcia. Zakres: Oznaczenia wielkości fizycznych i ich jednostek,
ZJAWISKA TERMOELEKTRYCZNE
Wstęp W ZJAWISKA ERMOELEKRYCZNE W.1. Wstęp Do zjawisk termoelektrycznych zaliczamy: zjawisko Seebecka - efekt powstawania różnicy potencjałów elektrycznych na styku metali lub półprzewodników, zjawisko
Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz
Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy
Natężenie prądu elektrycznego
Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam kierunek jak przepływ ładunków
Przyrządy Półprzewodnikowe
KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH Laboratorium Mikrotechnologii Przyrządy Półprzewodnikowe Ćwiczenie 1 Sonda czteroostrzowa 2009 1. Podstawy teoretyczne Ćwiczenie 1 Sonda czteroostrzowa
Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n
Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Zapoznanie się ze zjawiskiem Seebecka i Peltiera. Zastosowanie elementu Peltiera do chłodzenia i zamiany energii cieplnej w energię elektryczną.
FiIS PRAONIA FIZYZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆIZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OENA el ćwiczenia: Zapoznanie się ze
W1. Właściwości elektryczne ciał stałych
W1. Właściwości elektryczne ciał stałych Względna zmiana oporu właściwego przy wzroście temperatury o 1 0 C Materiał Opór właściwy [m] miedź 1.68*10-8 0.0061 żelazo 9.61*10-8 0.0065 węgiel (grafit) 3-60*10-3
Podstawy fizyki ciała stałego półprzewodniki domieszkowane
Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,
Teoria pasmowa ciał stałych
Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury
Skalowanie układów scalonych
Skalowanie układów scalonych Technologia mikroelektroniczna Charakterystyczne parametry najmniejszy realizowalny rozmiar (ang. feature size), liczba bramek (układów) na jednej płytce, wydzielana moc, maksymalna
Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Półprzewodniki i elementy z półprzewodników homogenicznych Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja
Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych
Część 2 Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 23 Półprzewodniki
teoretyczne podstawy działania
Techniki Niskotemperaturowe w medycynie Seminarium Termoelektryczne urządzenia chłodnicze - teoretyczne podstawy działania Edyta Kamińska IMM II st. Sem I 1 Spis treści Termoelektryczność... 3 Zjawisko
III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski
III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski 1 1 Wstęp Materiały półprzewodnikowe, otrzymywane obecnie w warunkach laboratoryjnych, charakteryzują się niezwykle wysoką czystością.
Pytania z przedmiotu Inżynieria materiałowa
Pytania z przedmiotu Inżynieria materiałowa 1.Podział materiałów elektrotechnicznych 2. Potencjał elektryczny, różnica potencjałów 3. Związek pomiędzy potencjałem i natężeniem pola elektrycznego 4. Przewodzenie
Materiały używane w elektronice
Materiały używane w elektronice Typ Rezystywność [Wm] Izolatory (dielektryki) Over 10 5 półprzewodniki 10-5 10 5 przewodniki poniżej 10-5 nadprzewodniki (poniżej 20K) poniżej 10-15 Model pasm energetycznych
Elektryczne własności ciał stałych
Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale
Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne
Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne Janusz Brzychczyk, Instytut Fizyki UJ Postulat Nernsta (1906):
Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy
Złącze p-n: dioda Półprzewodniki Przewodnictwo półprzewodników Dioda Dioda: element nieliniowy Przewodnictwo kryształów Atomy dyskretne poziomy energetyczne (stany energetyczne); określone energie elektronów
Badanie charakterystyk elementów półprzewodnikowych
Badanie charakterystyk elementów półprzewodnikowych W ramach ćwiczenia student poznaje praktyczne właściwości elementów półprzewodnikowych stosowanych w elektronice przez badanie charakterystyk diody oraz
Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki
Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności
Rozszczepienie poziomów atomowych
Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek
Technika sensorowa. Czujniki piezorezystancyjne. dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel
Technika sensorowa Czujniki piezorezystancyjne dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel. 12 617 30 39 Wojciech.Maziarz@agh.edu.pl 1 Czujniki działające w oparciu o efekt Tensometry,
Złącza p-n, zastosowania. Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET
Złącza p-n, zastosowania Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET Złącze p-n, polaryzacja złącza, prąd dyfuzyjny (rekombinacyjny) Elektrony z obszaru n na złączu dyfundują
Elektryczne własności ciał stałych
Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)
Skalowanie układów scalonych Click to edit Master title style
Skalowanie układów scalonych Charakterystyczne parametry Technologia mikroelektroniczna najmniejszy realizowalny rozmiar (ang. feature size), liczba bramek (układów) na jednej płytce, wydzielana moc, maksymalna
Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne
Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Zadania elektroniki: Urządzenia elektroniczne
WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ
INSYU INFORMAYKI SOSOWANEJ POLIECHNIKI ŁÓDZKIEJ Ćwiczenie Nr2 WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ 1.WPROWADZENIE. Wymiana ciepła pomiędzy układami termodynamicznymi może być realizowana na
Elektryczne własności ciał stałych
Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/
Termoelektryczne urządzenia chłodnicze
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE Termoelektryczne urządzenia chłodnicze Teoretyczne podstawy działania Monika Wilczyńska Inżynieria Mechaniczno Medyczna
W książce tej przedstawiono:
Elektronika jest jednym z ważniejszych i zarazem najtrudniejszych przedmiotów wykładanych na studiach technicznych. Co istotne, dogłębne zrozumienie jej prawideł, jak również opanowanie pewnej wiedzy praktycznej,
TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE
TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE SEMINARIUM Termoelektryczne urządzenia chłodnicze Teoretyczne podstawy działania Anna Krzesińska I M-M sem. 2 1 Spis treści Termoelektryczność...3 Efekt Seebecka...4
Wykład V Złącze P-N 1
Wykład V Złącze PN 1 Złącze pn skokowe i liniowe N D N A N D N A p n p n zjonizowane akceptory + zjonizowane donory x + x Obszar zubożony Obszar zubożony skokowe liniowe 2 Złącze pn skokowe N D N A p n
1. Wprowadzenie: dt q = - λ dx. q = lim F
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwiczenia: WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODNOŚCI
Złożone struktury diod Schottky ego mocy
Złożone struktury diod Schottky ego mocy Diody JBS (Junction Barrier Schottky) złącze blokujące na powierzchni krzemu obniżenie krytycznego natężenia pola (Ubr 50 V) Diody MPS (Merged PINSchottky) struktura
SKALOWANIE TERMOPARY I WYZNACZANIE TEMPERATURY KRZEPNIĘCIA STOPU
ĆWICZENIE 20 SKALOWANIE TERMOPARY I WYZNACZANIE TEMPERATURY KRZEPNIĘCIA STOPU Cel ćwiczenia: Poznanie budowy i zasady działania termopary. Skalowanie termopary i wyznaczanie jej współczynnika termoelektrycznego.
Wyznaczanie współczynnika efektywności pompy ciepła Peltiera
Wyznaczanie współczynnika efektywności pompy ciepła Peltiera 1. METODY TRANSPORTU CIEPŁA Każde ciało, rozpatrywane jako układ termodynamiczny, posiada pewną energię wewnętrzną, na którą składają się energie
TEORIA TRANZYSTORÓW MOS. Charakterystyki statyczne
TEORIA TRANZYSTORÓW MOS Charakterystyki statyczne n Aktywne podłoże, a napięcia polaryzacji złącz tranzystora wzbogacanego nmos Obszar odcięcia > t, = 0 < t Obszar liniowy (omowy) Kanał indukowany napięciem
3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA
3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA Złącze p-n jest to obszar półprzewodnika monokrystalicznego utworzony przez dwie graniczące ze sobą warstwy jedną typu p i drugą typu n. Na rysunku 3.1 przedstawiono uproszczony
Równanie Shockley a. Potencjał wbudowany
Wykład VI Diody Równanie Shockley a Potencjał wbudowany 2 I-V i potencjał wbudowany Temperatura 77K a) Ge E g =0.7eV b) Si E g =1.14eV c) GaAs E g =1.5eV d) GaAsP E g =1.9eV qv 0 (0. 5 0. 7)E g 3 I-V i
Złącze p-n powstaje wtedy, gdy w krysztale półprzewodnika wytworzone zostaną dwa obszary o odmiennym typie przewodnictwa p i n. Nośniki większościowe
Diody Dioda jest to przyrząd elektroniczny z dwiema elektrodami mający niesymetryczna charakterystykę prądu płynącego na wyjściu w funkcji napięcia na wejściu. Symbole graficzne diody, półprzewodnikowej
Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej
termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,
Przyrządy i układy półprzewodnikowe
Przyrządy i układy półprzewodnikowe Prof. dr hab. Ewa Popko ewa.popko@pwr.edu.pl www.if.pwr.wroc.pl/~popko p.231a A-1 Zawartość wykładu Wy1, Wy2 Wy3 Wy4 Wy5 Wy6 Wy7 Wy8 Wy9 Wy10 Wy11 Wy12 Wy13 Wy14 Wy15
Energia emitowana przez Słońce
Energia słoneczna i ogniwa fotowoltaiczne Michał Kocyła Problem energetyczny na świecie Przewiduje się, że przy obecnym tempie rozwoju gospodarczego i zapotrzebowaniu na energię, paliw kopalnych starczy
Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj
Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Przerwa energetyczna w germanie
Ćwiczenie 1 Przerwa energetyczna w germanie Cel ćwiczenia Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporu monokryształu germanu od temperatury. Wprowadzenie Eksperymentalne badania
T-1 Pompa cieplna Peltiera. Zakres materiału. Cel ćwiczenia - zadania do wykonania. Wprowadzenie teoretyczne
Centrum Nauczania Matematyki i Fizyki olitechnika Łódzka Al. olitechniki 11 90-924 Łódź oland Center of Mathematics and hysics Technical University of Łódź t./fax: +48(0-42) 631-36-14, 631-36-19 e-mail:
Przyrządy półprzewodnikowe
Przyrządy półprzewodnikowe Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA E&T Metal
Prawo Ohma. qnv. E ρ U I R U>0V. v u E +
Prawo Ohma U>0V J v u J qnv u - E + J qne d J gęstość prądu [A/cm 2 ] n koncentracja elektronów [cm -3 ] ρ rezystywność [Ωcm] σ - przewodność [S/cm] E natężenie pola elektrycznego [V/cm] I prąd [A] R rezystancja
Model elektronów swobodnych w metalu
Model elektronów swobodnych w metalu Stany elektronu w nieskończonej trójwymiarowej studni potencjału - dozwolone wartości wektora falowego k Fale stojące - warunki brzegowe znikanie funkcji falowej na
Wykład FIZYKA II. 2. Prąd elektryczny. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 2. Prąd elektryczny Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ UCH ŁADUNKÓW Elektrostatyka zajmowała się ładunkami
IV. TRANZYSTOR POLOWY
1 IV. TRANZYSTOR POLOWY Cel ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora polowego złączowego. Zagadnienia: zasada działania tranzystora FET 1. Wprowadzenie Nazwa tranzystor pochodzi z
Przewodnictwo elektryczne ciał stałych. Fizyka II, lato
Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2016 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi
Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają
KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY
IŃSTYTUT INFORMATYKI STOSOWANEJ POLITECHNIKI ŁÓDZKIEJ Ćwiczenie Nr1 KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY 1.WPROWADZENIE Przewodzenie ciepła (kondukcja) jest to wymiana ciepła między
Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik
Repeta z wykładu nr 6 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 - kontakt omowy
ZALEŻNOŚĆ OPORU ELEKTRYCZNEGO 57 METALU I PÓŁPRZEWODNIKA OD TEMPERATURY
ZALEŻNOŚĆ OPORU ELEKTRYCZNEGO 57 METALU I PÓŁPRZEWODNIKA OD TEMPERATURY I.. Prąd elektryczny Dla dużej grupy przewodników prądu elektrycznego (metale, półprzewodniki i inne) spełnione jest prawo Ohma,
Domieszkowanie półprzewodników
Jacek Mostowicz Domieszkowanie półprzewodników Fizyka komputerowa, rok 4, 10-06-007 STRESZCZENIE We wstępie przedstawiono kryterium podziału materiałów na metale, półprzewodniki oraz izolatory, zdefiniowano
Właściwości kryształów
Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne
Modelowanie w projektowaniu maszyn i procesów cz.7
Modelowanie w projektowaniu maszyn i procesów cz.7 Solvery MES zaimplementowane do środowisk CAD - termika Dr hab. inż. Piotr Pawełko p. 141 Piotr.Pawełko@zut.edu.pl www.piopawelko.zut.edu.pl Przekazywanie
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) (13) B1
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 174002 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 300055 (22) Data zgłoszenia: 12.08.1993 (5 1) IntCl6: H01L21/76 (54)
Wpływ defektów punktowych i liniowych na własności węglika krzemu SiC
Wpływ defektów punktowych i liniowych na własności węglika krzemu SiC J. Łażewski, M. Sternik, P.T. Jochym, P. Piekarz politypy węglika krzemu SiC >250 politypów, najbardziej stabilne: 3C, 2H, 4H i 6H
3.4 Badanie charakterystyk tranzystora(e17)
152 Elektryczność 3.4 Badanie charakterystyk tranzystora(e17) Celem ćwiczenia jest wyznaczenie charakterystyk tranzystora npn w układzie ze wspólnym emiterem W E. Zagadnienia do przygotowania: półprzewodniki,
Przyrządy półprzewodnikowe część 5 FET
Przyrządy półprzewodnikowe część 5 FET r inż. Bogusław Boratyński Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska 2011 Literatura i źródła rysunków G. Rizzoni, Fundamentals of Electrical
Tranzystory polowe FET(JFET), MOSFET
Tranzystory polowe FET(JFET), MOSFET Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja współfinansowana
Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.
Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy
Podstawy technologii monokryształów
1 Wiadomości ogólne Monokryształy - Pojedyncze kryształy o jednolitej sieci krystalicznej. Powstają w procesie krystalizacji z substancji ciekłych, gazowych i stałych, w określonych temperaturach oraz
STRUKTURA PASM ENERGETYCZNYCH
PODSTAWY TEORII PASMOWEJ Struktura pasm energetycznych Teoria wa Struktura wa stałych Półprzewodniki i ich rodzaje Półprzewodniki domieszkowane Rozkład Fermiego - Diraca Złącze p-n (dioda) Politechnika
Podstawy fizyki wykład 6
Podstawy fizyki wykład 6 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Elementy termodynamiki Temperatura Rozszerzalność cieplna Ciepło Praca a ciepło Pierwsza zasada termodynamiki Gaz doskonały
Diody półprzewodnikowe
Diody półprzewodnikowe prostownicze detekcyjne impulsowe... Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Półprzewodniki
Repeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj
Repeta z wykładu nr 4 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Pomiar współczynnika przewodzenia ciepła ciał stałych
Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Pomiar współczynnika przewodzenia ciepła ciał stałych - - Wiadomości wstępne Przewodzenie ciepła jest procesem polegającym na przenoszeniu
Przewodnictwo elektryczne ciał stałych
Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2011 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi
Wnikanie ciepła przy konwekcji swobodnej. 1. Wstęp
Wnikanie ciepła przy konwekcji swobodnej 1. Wstęp Współczynnik wnikania ciepła podczas konwekcji silnie zależy od prędkości czynnika. Im prędkość czynnika jest większa, tym współczynnik wnikania ciepła
Budowa. Metoda wytwarzania
Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.
Fotodetektory. Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał
FOTODETEKTORY Fotodetektory Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał - detektory termiczne, wykorzystują zmiany temperatury
Pomiar przewodności cieplnej i elektrycznej metali
ĆWICZENIE 27 Pomiar przewodności cieplnej i elektrycznej metali Cel ćwiczenia: wyznaczenia współczynnika przewodzenia ciepła pręta metalowego metodą statyczną, wyznaczanie ciepła właściwego badanych materiałów
5. Tranzystor bipolarny
5. Tranzystor bipolarny Tranzystor jest to trójkońcówkowy element półprzewodnikowy zdolny do wzmacniania sygnałów prądu stałego i zmiennego. Każdy tranzystor jest zatem wzmacniaczem. Definicja wzmacniacza:
METALE. Cu 8.50 1.35 1.56 7.0 8.2 Ag 5.76 1.19 1.38 5.5 6.4 Au 5.90 1.2 1.39 5.5 6.4
MAL Zestawienie właściwości gazu elektronowego dla niektórych metali: n cm -3 k cm -1 v cm/s ε e ε /k Li 4.6 10 1.1 10 8 1.3 10 8 4.7 5.5 10 4 a.5 0.9 1.1 3.1 3.7 K 1.34 0.73 0.85.1.4 Rb 1.08 0.68 0.79
Podstawy elektrotechniki V1. Na potrzeby wykładu z Projektowania systemów pomiarowych
Podstawy elektrotechniki V1 Na potrzeby wykładu z Projektowania systemów pomiarowych 1 Elektrotechnika jest działem nauki zajmującym się podstawami teoretycznymi i zastosowaniami zjawisk fizycznych z dziedziny
Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych
Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych