Wykład 1. Metale, w których elektrony wykazują właściwości gazu elektronowego: Li, Na, K, Mg, Al, Cu, Ag, Au.
|
|
- Bernard Bednarek
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wykład 1 1. Plazon A - polaryton (urface plaon polariton) = plazon propagujący na powierzchni etalu B - plazon zlokalizowany (gdy czątka etaliczna jet dużo niejza od λ) Metale, w których elektrony wykazują właściwości gazu elektronowego: Li, Na, K, Mg, Al, Cu, Ag, Au. Plazon propagujący a pęd; wzbudzenie takiego plazonu wyaga odpowiedniego kąta padania światła. Plazon zlokalizowany fala tojąca gętości elektronowej w ały obiekcie etaliczny, pobudzana pole elektryczny fali świetlnej ( jednorodny). 1
2 . Klatry i nanoczątki Klatry (ałe klatry) wykazują właściwości wyraźnie zależne od właściwości atoów; liczba atoów: od kilku do 1 (Au, Ag: 59 atoów w 1 n 3 ). Nanoczątki (duże klatry) ają właściwości dużego objętościowo etalu. Wido optyczne atoowego odu (589.3, n), wido jonizacji Na 3, wido aborpcji Na 8, wido aborpcji dużych klatrów (nanoczątek) Na w NaCl, tranija litej wartwy etalicznej Na o grubości 1 n.
3 3. Małe klatry. Scheat aparatury do badań optycznych właności klatrów. Metaliczne rebro jet rozpylane wiazką jonów Xe + (3 kev), atoy i klatry Ag o różnych ładunkach elektrycznych ą wyciągane oczewką elektrotatyczną L 1, rozdzielane w kwadrupolowy pektroetrze aowy QMS i oadzane na płytce CaF w 1 K (typowy prąd jonowy: -4 na). Na ryunku poinięto wiązkę atoów Ar, która wyrażając ię na płytce CaF tanowi atrycę, w której oadzają ię klatry Ag. Spex onochroatory, PM fotopowielacze, D lapa deuterowa (źródło UV), W lapa wolfraowa (żarówka halogenowa) tanowią układ do poiaru aborpcji światła i fluorecencji próbki klatrów. S. Fedrigo, W. Harbich, J. Buttet (1993) 3
4 Wida aborpcji klatrów Ag o różnej wielkości w atrycy Ar. Punkty i kreki wyniki obliczeń i średnie położenia pa aborpcji. Nieregularności w położeniu pa aborpcji klatrów wynikają z tworzenia zakniętych powłok przy pewnych liczbach atoów (ą to tzw. liczby agiczne). 4
5 Wielkość nanoczątek a wpływ na ich właściwości fizyczne. Poniżej: zerokość linii w rentgenograach (etoda θ-θ) zależy od roziarów czątek. Średnice i ay cząteczkowe klatrów podane w tyiącach j..at. (aa atoowa Au: 197). Upakowanie atoów Ag i Au: 59 atoów w 1 n atoów 33 atoów 15 atoy 11 atoów 71 atoów 41 atoów AccCheRe 3 5
6 d inθ = nλ Wzór Bragga określa kierunek proienia odbitego względe proienia padającego (θ), gdy ugięcie i interferencja fali proieniowania X zachodzi na niekończonych płazczyznach. Gdy płazczyzny kryztału ają roziary tylko 1-1 razy więkze od tałej ieci (d), to kątowa zerokość prążka tanowi iarę wielkości płazczyzn krytalicznych (wielkości kryztału). Średni roziar - z kątowej zerokości linii w rentgenograach - z wzoru Debye-Scherrera: Kλ D = co K czynnik zależny od kztałtu (.9); λ - długość fali (Cu K α : 1.54 Å) θ - kąt ugięcia, - zerokość kątowa prążka (FWHM). θ Przykład: rentgenogra nanokryztałów TiO E+4 1E XRD Cu Kα λ = 1.54 A.8-11 n n E θ (deg) 6
7 4. Duże klatry (nanoczątki) etaliczne Gdy średnica nanoczątki przekracza.5-3 n (dla Ag i Au: 59 atoów/n 3 ), to jej właściwości tają ię powiązane z właściwościai dużych objętości (bulk) etalu. Wśród właności optycznych i pektralnych takich nanoczątek najbardziej charakterytyczne jet wytępowanie rezonanu plazonowego. Przejawia ię on w potaci wzożonej aborpcji i wzożonego rozprazania światła w paach pektralnych o zerokości kilkudzieięciu n, z reguły w UV-Vi. Plazon Powtaje w objętości i przy powierzchni przewodnika, wzbudzany pole elektryczny fali świetlnej o czętości zbliżonej do czętości drgań włanych gazu elektronowego. +σ E x przeunięcie gazu elektronowego względe nieruchoych rdzeni atoów _ -σ Przeunięcie elektronów znajdujących ię w pewnej objętości powoduje wytąpienie pola elektrycznego pochodzącego od nadiarowych ładunków na powierzchniach, zawracającego przeunięte ładunki do położenia równowagi. σ E = = [ e( xns) ] / S ne = x Elektrony wykonują więc ruch haroniczny: d x ne ne = ee = x dt ω p = 7
8 Pole elektryczne o czętości ω p (i czętościach zbliżonych) powoduje wytąpienie rezonanowych ocylacji gętości elektronowej. Rzecz a ię jednak tak proto jedynie w plazie (zjonizowany gazie). W etalach, a zczególnie ilnie w półprzewodnikach, elektrony nie ą całkie wobodne a w ich ruchu przejawiają ię ich właściwości takie jak aa efektywna, ruchliwość, średnia droga wobodna itp., a także ograniczenia przetrzenne (kwantowanie roziarowe). Ponadto czętość plazonowa zależy od kztałtu i roziarów bryłki etalu. Zadanie: Obliczyć czętość plazonową rebra wg odelu elektronów wobodnych. e = C, = C /N, = kg, 59 atoów/n 3. Uwaga: wynik jet zawyżony ok. dwukrotnie jeżeli założyy, że koncentracja elektronów wobodnych jet równa koncentracji atoów. Aborpcja światła przez nanoczątki etaliczne Swiatło przechodzące przez zawieinę zawierającą w jednotce objętości N czątek etalicznych ulega ołabieniu wkutek aborpcji jego energii we wnętrzu czątek. Jeżeli intenywność padającej wiązki światła wynoi I, to na drodze d zniejza ię do wartości I, przy czy: A = log I I = 1 N C d.33 π C = Re n + k k = π λ n ( n + 1) ( a b ) gdzie jet przenikalnością dielektryczną ośrodka otaczającego czątki (np. cieczy), zaś a n oraz b n ą funkcjai Ricattiego-Beela dla arguentu zależnego od proienia czątek R oraz od długości fali światła λ. Zaiat wielkości C wygodniej jet używać olowego wpółczynnika ektynkcji odnieionego do olowego tężenia etalu wytępującego w potaci czątek koloidalnych: n 8
9 3 1 V C σ [M c ] = 3 (M oznacza ol/litr) 4π.33 R gdzie V [c 3 /ol] jet objętością olową etalu. Według elektrodynaiki klaycznej (Mie 198) dla czątek ałych, dla których kr << 1, dobry przybliżenie dla wielkości C jet wzór: C π = λ 3 3/ 4 R '' ( ' + ) + ( '') = + i jet zepoloną przenikalnością dielektryczną czątek ich funkcją dielektryczną. Barwa koloidów etalicznych wynika ze wzożonej aborpcji światła, która wytępuje gdy =. Gdy czątki ą pokryte wartwą dielektryczną o przenikalności to: C = 4πR k I ( )( ) ( )( )( ) + 1 g + ( + )( + ) + ( 1 g)( )( ) g - ułaek objętości czątek przypadającej na powłokę, R - proień czątki wraz z powłoką, i ą przenikalnościai ośrodka i powłoki. W etalach (Au, Ag, Pt, Al,...) aborpcja w zakreie pektralny ięgający czętości plazowej wynika z właności wobodnych elektronów, a funkcja dielektryczna dla czętotliwości optycznych jet dobrze opiywana przez teorię Drudego. Według tej teorii: ' ω = p ω ω + ω ( pω d '' = ) d ω ω + ω d gdzie jet graniczną przenikalnością dielektryczną dla wyokich czętości (powiązaną z przejściai iędzypaowyi i w powłokach wewnętrznych atoów) a ω p jet czętością plazową (por. powyżej): 9
10 ω p = ne a wielkość ω d a związek z tłuienie ruchu elektronów ( tarcie ) i zależy od średniej drogi wobodnej R b i od prędkości elektronów o energii Feriego (v F ): ω = d v F R b Powyżej zdefiniowane wielkości odpowiadają ruchowi elektronów w nieograniczonej bryle etalu. Gdy jednak proień czątki etalicznej R taje ię niejzy od średniej drogi wobodnej, to elektrony ą dodatkowo rozprazane na ograniczającej ich ruch powierzchni, średnia droga wobodna ulega króceniu i w powyżzy wzorze w iejce R b należy podtawić niejzą efektywną wartość średniej drogi wobodnej R ef z wzoru: 1 R 1 = + R 1 ef R b W ten poób efektywna wartość drogi wobodnej wpływa na wartość ω p i pośrednio na funkcję dielektryczną i, oraz na pao aborpcji nanoczątek w topniu zależny od ich roziaru. 1
Zespolona funkcja dielektryczna metalu
Zespolona funkcja dielektryczna metalu Przenikalność elektryczna ośrodków absorbujących promieniowanie elektromagnetyczne jest zespolona, a także zależna od częstości promieniowania, które przenika przez
RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w
RUCH FALOWY Ruch alowy to zaburzenie przemiezczające ię w przetrzeni i zmieniające ię w czaie. Podcza rozchodzenia ię al mechanicznych elementy ośrodka ą wytrącane z położeń równowagi i z powodu właności
Ćwiczenie nr 4 Badanie zjawiska Halla i przykłady zastosowań tego zjawiska do pomiarów kąta i indukcji magnetycznej
Ćwiczenie nr 4 Badanie zjawika alla i przykłady zatoowań tego zjawika do pomiarów kąta i indukcji magnetycznej Opracowanie: Ryzard Poprawki, Katedra Fizyki Doświadczalnej, Politechnika Wrocławka Cel ćwiczenia:
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU
ĆWICZENIE 76 WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU Cel ćwiczenia: pomiar kąta łamiącego i kąta minimalnego odchylenia pryzmatu, wyznaczenie wpółczynnika załamania zkła w funkcji
Fizyka, technologia oraz modelowanie wzrostu kryształów
Fizyka, technologia oraz modelowanie wzrotu kryztałów Staniław Krukowki i Michał Lezczyńki Intytut Wyokich Ciśnień PAN 01-14 Warzawa, ul Sokołowka 9/37 tel: 88 80 44 e-mail: tach@unipre.waw.pl, mike@unipre.waw.pl
Model elektronów swobodnych w metalu
Model elektronów swobodnych w metalu Stany elektronu w nieskończonej trójwymiarowej studni potencjału - dozwolone wartości wektora falowego k Fale stojące - warunki brzegowe znikanie funkcji falowej na
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)
Funkcja rozkładu Fermiego-Diraca w różnych temperaturach
Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów dotychczasowych gimnazjów. Schemat punktowania zadań
1 KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów dotychczaowych ginazjów 0 tycznia 019 r. etap rejonowy Scheat punktowania zadań Makyalna liczba punktów 40. 85% 4pkt. Uwaga! 1. Za poprawne rozwiązanie zadania
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
FALE MECHANICZNE C.D. W przypadku fal mechanicznych energia fali składa się z energii kinetycznej i energii
FALE MECHANICZNE CD Gętość energii ruchu alowego otencjalnej W rzyadku al mechanicznych energia ali kłada ię z energii kinetycznej i energii Energia kinetyczna Energia kinetyczna małego elementu ośrodka
Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
Przejścia kwantowe w półprzewodnikach (kryształach)
Przejścia kwantowe w półprzewodnikach (kryształach) Rozpraszanie na nieruchomej sieci krystalicznej (elektronów, neutronów, fotonów) zwykłe odbicie Bragga (płaszczyzny krystaliczne odgrywają rolę rys siatki
Właściwości kryształów
Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne
Własności optyczne półprzewodników
Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki UW przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego Klasyfikacja
POMOCNIK GIMNAZJALISTY
POMOCNIK GIMNAZJALISTY ważne wzory i definicje z fizyki opracowała gr Irena Keka KLASA I... 3 I. WIADOMOŚCI WSTĘPNE... 3 II. HYDROSTATYKA I AEROSTATYKA... 4 Klaa II... 5 I. KINEMATYKA... 5 II. DYNAMIKA...
Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11
Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.
Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych
Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by Harcourt,
Czym jest prąd elektryczny
Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,
OBLICZENIA STATYCZNO-WYTRZYMAŁOŚCIOWE komina stalowego H = 52 m opartego na trójnogu MPGK Kraosno. - wysokość całkowita. - poziom pierścienia trójnogu
OBLICZENIA STATYCZNO-WYTRZYMAŁOŚCIOWE koina talowego H opartego na trójnogu MPGK Kraono I. Dane geoetryczne koina: H H npt D z g i : - wyokość całkowita :. - pozio pierścienia trójnogu :. - wyokość podtawy
WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki
Układy zdyspergowane. Wykład 6
Układy zdyspergowane Wykład 6 Treśd Podwójna warstwa elektryczna Zjawiska elektrokinetyczne Potencjał zeta Nowoczesne metody oznaczania Stabilnośd dyspersji Stabilnośd dyspersji koloidalnej jest wypadkową
BADANIE ZALEŻNOŚCI PRĘDKOŚCI DŹWIĘKU OD TEMPERATURY
Ć w i c z e n i e 30 BADANIE ZALEŻNOŚCI PRĘDKOŚCI DŹWIĘKU OD EMPERAURY 30.1 Wtęp teoretyczny 30.1.1. Prędkość dźwięku. Do bardzo rozpowzechnionych proceów makrokopowych należą ruchy określone wpólną nazwą
Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:
Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest
Wyznaczanie e/m za pomocą podłużnego pola magnetycznego
- 1 - Wyznaczanie e/ za poocą podłużnego pola agnetycznego Zagadnienia: 1. Ruch cząstek naładowanych w polu elektryczny i agnetyczny.. Budowa i zasada działania lapy oscyloskopowej. 3. Wyprowadzenie wzoru
Elektryczne własności ciał stałych
Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale
SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74
Pracownia Dydaktyki Fizyki i Atronoii, Uniwerytet Szczecińki SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Sprężyna jet przeznaczona do badania ruchu drgającego protego (haronicznego) na lekcji fizyki w liceu
WOJEWÓDZKI KONKURS FIZYCZNY [ETAP REJONOWY] ROK SZKOLNY 2009/2010 Czas trwania: 120 minut
KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP REJONOWY] ROK SZKOLNY 009/010 Cza trwania: 10 inut Tet kłada ię z dwóch części. W części pierwzej az do rozwiązania 15 zadań zakniętych, za które
Analiza częstościowa sprzęgła o regulowanej podatności skrętnej
Dr inż. Paweł Kołodziej Dr inż. Marek Boryga Katedra Inżynierii Mechanicznej i Autoatyki, Wydział Inżynierii Produkcji, Uniwerytet Przyrodniczy w Lublinie, ul. Doświadczalna 5A, -8 Lublin, Polka e-ail:
Własności optyczne półprzewodników
Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki Uniwersytetu Warszawakiego przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego
Opracowała: mgr Agata Wiśniewska PRZYKŁADOWE SPRAWDZIANY WIADOMOŚCI l UMIEJĘTNOŚCI Współczesny model budowy atomu (wersja A)
PRZYKŁADOW SPRAWDZIANY WIADOMOŚCI l UMIJĘTNOŚCI Współczesny model budowy atomu (wersja A) 1. nuklid A. Zbiór atomów o tej samej wartości liczby atomowej. B. Nazwa elektrycznie obojętnej cząstki składowej
Natężenie prądu elektrycznego
Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam kierunek jak przepływ ładunków
WOJEWÓDZKI KONKURS FIZYCZNY stopień wojewódzki
KOD UCZNIA Białytok 07.03.2007r. WOJEWÓDZKI KONKURS FIZYCZNY topień wojewódzki Młody Fizyku! Przed Tobą topień wojewódzki Wojewódzkiego Konkuru Fizycznego. Maz do rozwiązania 10 zadań zamkniętych i 3 otwarte.
Spektroskopia fotoelektronów (PES)
Spektroskopia fotoelektronów (PES) Efekt fotoelektryczny hν ( UV lub X) E =hν kin W Proces fotojonizacji w PES: M + hν M + + e E kin (e) = hν E B Φ sp E B energia wiązania elektronu w atomie/cząsteczce
Skończona studnia potencjału
Skończona studnia potencjału U = 450 ev, L = 100 pm Fala wnika w ściany skończonej studni długość fali jest większa (a energia mniejsza) Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach
Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT
Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań
1 KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów 10 marca 2017 r. zawody III topnia (finałowe) Schemat punktowania zadań Makymalna liczba punktów 60. 90% 5pkt. Uwaga! 1. Za poprawne rozwiązanie zadania
Dozymetria promieniowania jonizującego. Jonizacja gazów. średnia praca jonizacji W (1) bilans energii dla jonizacji gazu (2)
Jonizacja gazów potencjał jonizacyjny J inialna energia potrzebna do wytworzenia pary jonów średnia praca jonizacji W E = N W (1) i bilans energii dla jonizacji gazu E = N i E i + N ex E ex + N i E se
Zjawiska transportu 22-1
Zjawiska transport - Zjawiska transport Zjawiska transport są zjawiskai, które występją jeżeli kład terodynaiczny nie jest w stanie równowagi: i v! const - w kładzie występje akroskopowy przepływ gaz lb
Techniki Jądrowe w Diagnostyce i Terapii Medycznej
Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 2-5 marca 2019 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Rozpad Przemiana Widmo
Uwaga. Dr inż. Anna Adamczyk
Uwaga Kolokwium zaliczeniowe z Zaawanowanych Metod Badań Materiałów dla WIMiR odbędzie ię 7 grudnia (środa) o godz. 17.00 w ali -1.24 (pracownia komputerowa) B8. Na kolokwium obowiązują problemy i zagadnienia
9. Optyka Interferencja w cienkich warstwach. λ λ
9. Optyka 9.3. nterferencja w cienkich warstwach. Światło odbijając się od ośrodka optycznie gęstszego ( o większy n) zienia fazę. Natoiast gdy odbicie zachodzi od powierzchni ośrodka optycznie rzadszego,
Różne dziwne przewodniki
Różne dziwne przewodniki czyli trzy po trzy o mechanizmach przewodzenia prądu elektrycznego Przewodniki elektronowe Metale Metale (zwane również przewodnikami) charakteryzują się tym, że elektrony ich
PIERWIASTKI W UKŁADZIE OKRESOWYM
PIERWIASTKI W UKŁADZIE OKRESOWYM 1 Układ okresowy Co można odczytać z układu okresowego? - konfigurację elektronową - podział na bloki - podział na grupy i okresy - podział na metale i niemetale - trendy
Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych
Wykład XIV: Właściwości optyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wiadomości wstępne: a) Załamanie
Zadania do sprawdzianu
Zadanie 1. (1 pkt) Na podtawie wykreu możemy twierdzić, że: Zadania do prawdzianu A) ciało I zaczęło poruzać ię o 4 później niż ciało II; B) ruch ciała II od momentu tartu do chwili potkania trwał 5 ;
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział
Mody sprzężone plazmon-fonon w silnych polach magnetycznych
Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga,, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
Drobiną tą jest: A) proton B) neutron C) atom wodoru D) elektron
ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO Kod pracy Wypełnia Przewodniczący Wojewódzkiej Koiji Wojewódzkiego Konkuru Przediotowego z Fizyki Iię i nazwiko ucznia... Szkoła... Punkty
Zasady obsadzania poziomów
Zasady obsadzania poziomów Model atomu Bohra Model kwantowy atomu Fala stojąca Liczby kwantowe -główna liczba kwantowa (n = 1,2,3...) kwantuje energię elektronu (numer orbity) -poboczna liczba kwantowa
II. KWANTY A ELEKTRONY
II. KWANTY A ELEKTRONY II.1. PROMIENIE KATODOWE Promienie katodowe są przyczyną fluorescencji. Odegrały one bardzo ważną rolę w odkryciu elektronów. Skład promieniowania katodowego stanowią cząstki elektrycznie
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Stany skupienia materii
Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 12, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład, 0..07 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład - przypomnienie superpozycja
Elektryczne własności ciał stałych
Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/
Elementy teorii powierzchni metali
prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 4 v.16 Wiązanie metaliczne Wiązanie metaliczne Zajmujemy się tylko metalami dlatego w zasadzie interesuje nas tylko wiązanie metaliczne.
Pomiar widm emisyjnych He, Na, Hg, Cd oraz Zn
Ćwiczenie 33 Pomiar widm emisyjnych He, Na, Hg, Cd oraz Zn 33.1. Zasada ćwiczenia W ćwiczeniu mierzone są widma emisyjne atomów helu(he), sodu(na), rtęci (Hg), kadmu(cd) i cynku(zn). Pomiar widma helu
Konwersatorium 1. Zagadnienia na konwersatorium
Konwersatorium 1 Zagadnienia na konwersatorium 1. Omów reguły zapełniania powłok elektronowych. 2. Podaj konfiguracje elektronowe dla atomów Cu, Ag, Au, Pd, Pt, Cr, Mo, W. 3. Wyjaśnij dlaczego występują
Zaburzenia periodyczności sieci krystalicznej
Zaburzenia periodyczności sieci krystalicznej Defekty liniowe dyslokacja krawędziowa dyslokacja śrubowa dyslokacja mieszana Defekty punktowe obcy atom w węźle luka w sieci (defekt Schottky ego) obcy atom
Wykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
Kwantowa natura promieniowania
Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała
Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki
Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności
Wykład 17: Optyka falowa cz.2.
Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie
Wykład FIZYKA II. 7. Optyka geometryczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 7. Optyka geometryczna Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ WSPÓŁCZYNNIK ZAŁAMANIA Współczynnik załamania ośrodka opisuje zmianę prędkości fali
wymiana energii ciepła
wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk
Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ
Właściwości optyczne Oddziaływanie światła z materiałem hν MATERIAŁ Transmisja Odbicie Adsorpcja Załamanie Efekt fotoelektryczny Tradycyjnie właściwości optyczne wiążą się z zachowaniem się materiałów
EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA
Centralna Komisja Egzaminacyjna EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi MAJ 2013 2 Egzamin maturalny z fizyki i astronomii Zadanie 1. (0 1) Obszar standardów
Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy
T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny
Model wiązania kowalencyjnego cząsteczka H 2
Model wiązania kowalencyjnego cząsteczka H 2 + Współrzędne elektronu i protonów Orbitale wiążący i antywiążący otrzymane jako kombinacje orbitali atomowych Orbital wiążący duża gęstość ładunku między jądrami
Laboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Kα i Kβ promieniowania charakterystycznego X emitowanego przez anodę
Atom wodoru w mechanice kwantowej. Równanie Schrödingera
Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach
SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU I. Zadania zamknięte. Zadania otwarte
SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU I Jeżeli zdający rozwiąże zadanie inną, merytorycznie poprawną metodą, to za rozwiązanie otrzymuje makymalną liczbę punktów. Zadania zamknięte
Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik
Repeta z wykładu nr 6 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 - kontakt omowy
Wykład 3: Atomy wieloelektronowe
Wykład 3: Atomy wieloelektronowe Funkcje falowe Kolejność zapełniania orbitali Energia elektronów Konfiguracja elektronowa Reguła Hunda i zakaz Pauliego Efektywna liczba atomowa Reguły Slatera Wydział
UKŁAD OKRESOWY PIERWIASTKÓW
UKŁAD OKRESOWY PIERWIASTKÓW Michał Sędziwój (1566-1636) Alchemik Sędziwój - Jan Matejko Pierwiastki chemiczne p.n.e. Sb Sn Zn Pb Hg S Ag C Au Fe Cu (11)* do XVII w. As (1250 r.) P (1669 r.) (2) XVIII
Nazwy pierwiastków: ...
Zadanie 1. [ 3 pkt.] Na podstawie podanych informacji ustal nazwy pierwiastków X, Y, Z i zapisz je we wskazanych miejscach. I. Atom pierwiastka X w reakcjach chemicznych może tworzyć jon zawierający 20
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne
VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.
VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. Światło wykazuje zjawisko dyfrakcyjne. Rys.VII.1.Światło padające na
Konfiguracja elektronowa atomu
Konfiguracja elektronowa atomu ANALIZA CHEMICZNA BADANIE WŁAŚCIWOŚCI SUBSTANCJI KONTROLA I STEROWANIE PROCESAMI TECHNOLOGICZNYMI Właściwości pierwiastków - Układ okresowy Prawo okresowości Mendelejewa
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Klasyczny przykład pośredniego oddziaływania pola magnetycznego na wzbudzenia fononowe Schemat: pole magnetyczne (siła Lorentza) nośniki (oddziaływanie
10. Spektroskopia rentgenowska
0. Spektroskopia rentgenowska CZĘŚĆ A. Badanie charakterystycznego proieniowania X dla Fe, Cu i Mo Zagadnienia Zbadanie intensywności proieniowania X eitowanego przez Fe (Cu, Mo) przy aksyalny napięciu
Fale elektromagnetyczne. Obrazy.
Fale elektroagnetyczne. Obrazy. Wykład 7 1 Wrocław University of Technology 28-4-212 Tęcza Maxwella 2 1 Tęcza Maxwella 3 ( kx t) ( kx t) E = E sin ω = sin ω Prędkość rozchodzenia się fali: 1 8 c = = 3.
Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią?
Własności optyczne materii Jak zachowuje się światło w zetknięciu z materią? Właściwości optyczne materiału wynikają ze zjawisk: Absorpcji Załamania Odbicia Rozpraszania Własności elektrycznych Refrakcja
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
Filtry aktywne czasu ciągłego i dyskretnego
Politechnika Wrocławka czau ciągłego i dykretnego Wrocław 5 Politechnika Wrocławka, w porównaniu z filtrami paywnymi L, różniają ię wieloma zaletami, np. dużą tabilnością pracy, dokładnością, łatwością
WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE
WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być
Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?
Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody
Układ okresowy. Przewidywania teorii kwantowej
Przewidywania teorii kwantowej Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle
Teoria pasmowa ciał stałych
Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
Falowa natura materii
r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie
V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r.
V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. 1. Po wirującej płycie gramofonowej idzie wzdłuż promienia mrówka ze stałą prędkością względem płyty. Torem ruchu mrówki
Inne koncepcje wiązań chemicznych. 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań?
Inne koncepcje wiązań chemicznych 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań? Model VSEPR wiązanie pary elektronowe dzielone między atomy tworzące wiązanie.