Entropia - obliczanie. Podsumowanie
|
|
- Oskar Patryk Kowalski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Chem. Fiz. CH II/4 Entropia - obliczanie. Podsumowanie = = 2 ) ( 2 V d C S S S = = 2 ) ( 2 P d C S S S S k S p S = 2 2 ln ln V V R C S V + = 2 2 ln ln P P R C S P = w izobarze: Funkcja stanu! w izochorze: dla gazu doskonałego:
2 Entropia, jako miara uporządkowania () GAZ Chem. Fiz. CH II/4 2 W gazie ruch cząstek jest chaotyczny (przypadkowy) i najszybszy ze wszystkich stanów skupienia. W modelu gazu doskonałego pomija się nawet wszelkie oddziaływania atomów czy molekuł gazu między sobą (zakłada się jedynie sprężyste odbicia).
3 Entropia, jako miara uporządkowania (2) CIECZ Chem. Fiz. CH II/4 3 W cieczach, choć pod wieloma względami nie różnią się od gazów (stąd płyny!!!), obserwujemy: znacznie powolniejsze ruchy termiczne, -znacznie większą gęstość: do razy (choć można sprężyć gaz do podobnej gęstości, bez przemiany fazowej skraplania - byle powyżej temperatury krytycznej), -pewien stopień uporządkowania (mniej lub bardziej uporządkowane struktury (agregaty), -oddziaływania międzycząsteczkowe (znacznie silniejsze niż w gazach rzeczywistych) aż do wiązań chemicznych (kowalencyjnych - wodorowe).
4 Entropia, jako miara uporządkowania (3) CIAŁO SAŁE Chem. Fiz. CH II/4 4 Kryształ nieruchome atomy w węzłach sieci. Mogą jednak drgać (oscylować), a przy ogólnie niskich energiach (temperaturach) - wchodzi w rachubę także ruch elektronów (zwłaszcza w metalach).
5 Entropia, jako miara uporządkowania (4) Ludwig Eduard Boltzmann S = k lnw GAZ CIECZ CIAŁO SAŁE uporządkowanie entropia Chem. Fiz. CH II/4 5 Wszelkie przemiany prowadzące do wzrostu nieuporządkowania wykazują dodatnią zmianę entropii (układu). Na przykład ROZPUSZCZANIE, zwłaszcza substancji krystalicznych.!!!! Jeśli w reakcji chemicznej dochodzi do przyrostu liczby moli substancji w stanie gazowym, to na pewno towarzysząca jej zmiana entropii jest dodatnia.
6 Krzywa ogrzewania (). P=const=,3 5 Pa PF2 = wrz =298K; H PF = top H 2 tgα = H PF2 (wrzenie) = P C P PF (topnienie) H Chem. Fiz. CH II/4 6 emperatury przemian fazowych są NORMALNYMI temperaturami topnienia i wrzenia, bowiem ciśnienie jest standardowe. Gdyby C P nie zależało od temperatury, linie ogrzewania poza przejściami fazowymi byłyby liniami prostymi.
7 Krzywa ogrzewania (2). Entropia absolutna S top S() S wrz S( ) = S() + H + top C + wrz top + P, g wrz top C top ( ) d P, c C P, s ( ) d ( ) d H + wrz par top wrz Chem. Fiz. CH II/4 7 W podanej całce nie da się obliczyć ln(), stąd dla najniższych temperatur CP nie ma członu stałego, tylko wyższe potęgi (np. tzw. ekstrapolacja Debye a).
8 III Zasada ermodynamiki () Ekstrapolacja Debye a: 3 C P = a eoremat cieplny Nernsta: Gdy temperatura zmierza do zera bezwzględnego, zmiana entropii towarzysząca dowolnym przemianom fizycznym lub chemicznym dąży do zera: S, gdy lim S = Walther Hermann Nernst Chem. Fiz. CH II/4 8
9 III Zasada ermodynamiki (2) Jeśli entropię każdego pierwiastka w jego najbardziej trwałej postaci przyjmiemy za równą zeru w =, to każda substancja ma entropię dodatnią, która dla = może przyjmować wartość zero, a która przyjmuje taką wartość dla wszystkich doskonale krystalicznych substancji (także związków chemicznych). Dla substancji doskonałych S()= Chem. Fiz. CH II/4 9 zw ciecze nadciekłe, obserwowane w pobliżu zera bezwzględnego także wykazują wysokie uporządkowanie (choć w ruchu, a nie statyczne). Entropia resztkowa,, gdy są możliwe różne ustawienia równocennych energetycznie stanów, elektrony (zaczyna rządzić mechanika kwantowa).
10 III Zasada ermodynamiki (3) emperatura zera bezwzględnego jest nieosiągalna w skończonej liczbie kroków obecny rekord to 2 nk. PV θ g θ z θ = η = = nr θ 3 nagrody Nobla za kriotechnikę (z fizyki): Onnes Heike Kamerlingh - 93 William Francis Giauque David M. Lee, Robert C. Richardson, Douglas D. Osheroff g Chem. Fiz. CH II/4 θ zdefiniowana z równania gazu doskonałego (musi osiągać zero, bowiem P i V nie mogą być ujemne). θ zdefiniowana w skali termodynamicznej z teorematu Carnota: sprawność odwracalnej maszyny cieplnej wynosi, gdy temperatura zbiornika zimnego wynosi (a sprawność wyższa od oznacza perpetuum mobile). Dla uzyskania zgodności wielkości jednostki przyrostu temperatury ze stopniem Celsjusza, przyjęto, że punkt potrójny wody ma w skali termodynamicznej (bezwzględnej) temperaturę 273,6 K. Nobliści (pamietajmy o polskim wkładzie w kriotechnikę: Wróblewski i Olszewski) Onnes Holender - pierwszy skroplił hel, zaobserwował nadprzewodnictwo. W jego laboratorium (jego uczeń Keesom) zestalono też hel w 926 roku. Giauque Kanadyjczyk - w 926 roku zaproponował metodę uzyskiwania niskich temperatur (rozmagnesowanie adiabatyczne, niezależnie proponował ją także Debye) tzn. znacznie poniżej o C, lecz to on pierwszy zastosował ją praktycznie w 935, razem z D.P. MacDougallem. rójka Amerykanów osiągnęła w/w rekord (zauważając nadciekłość 3 He.
11 Entropia standardowa () Entropia przemiany fazowej (w temperaturze przemiany fazowej), pod stałym ciśnieniem standardowym. H PF SPF = Dla pierwiastków i związków chemicznych jest obliczana zgodnie z podanymi wzorami (uwzględniającymi przemiany fazowe) w temperaturze 298 K, pod ciśnieniem standardowym. Jej wartości (na jeden mol) znajdujemy w tablicach. PF S 298 Chem. Fiz. CH II/4 Molowa standardowa entropia (absolutna) pierwiastków (w odróznieniu od stadardowej molowej entalpii - tworzenia) NIE jest równa zeru!!! Dla wodnych roztworów elektrolitów przyjmuje się standardową molową entropię jonu wodorowego za równą zeru w każdej temperaturze. Konwencja ta potrzebna jest do rozdzielenia mierzalnej entropii soli w roztworze na udziały kationu i anionu.
12 Entropia standardowa (2) Dla reakcji chemicznych pod stałym ciśnieniem, standardowa molowa entropia obliczana jest wg wzoru: S n n r, 298 = msi, pr,298 asi, s,298 i= i= Entropia jest ekstensywną funkcją stanu. Jednostki: J K -, lub (dla molowej) J K- mol- Chem. Fiz. CH II/4 2
13 Reguła routona Standardowa molowa entropia parowania w przybliżeniu wynosi 85 J K- mol- Gdy dowolna ciecz paruje, powstaje w przybliżeniu taka sama ilość nieporządku. Odstępstwa od tej reguły obserwuje się, gdy w cieczy istnieją oddziaływania specyficzne, np. woda (9, J K - mol - ), w której istnieją wiązania wodorowe. Chem. Fiz. CH II/4 3 Praktycznie możemy więc oszacować ciepła parowania znając temperatury wrzenia cieczy (i stosując regułę routona). Wyjątkami są także bardzo lekkie gazy (ze względu na słabe wzbudzenie rotacyjne).
14 Czy reakcja chemiczna jest samorzutna? () Dana jest reakcja: S(s,romb) + O 2 (g) = SO 2 (g) Czy może ona zachodzić samorzutnie w warunkach standardowych? S(s,romb.) O 2 (g) SO 2 (g) H tw298 kj/mol -296,83 S 298 J/(K mol) 3,8 25,4 248,22 S u. i. = Sukł + Sot > S ukł = Sr, 298 = (248,22) (3,8 + 25,4) =,28 J/K H ukł H r, 298 = J Sot = = 996 J/K 298 S u. i. =, J/K > JES!!! Chem. Fiz. CH II/4 4
15 Entalpia swobodna () Su. i. Su. i. Su. i. = S ukł + S ot H r = Sr = S H r r gdy : S u i. Su. i.. < = H r - to reakcja S r jest samorzutna Josiah Willard Gibbs G = H S G = H S Chem. Fiz. CH II/4 5 Gibbs był Amerykaninem, w przyszłym roku (23) mija rocznica jego śmierci. ę funkcję stanu nazywa się też czasem energią swobodną Gibbsa (ang. Gibbs free energy). Entalpia swobodna jest częścią entalpii, która może być użytecznie wykorzystana z procesu (reakcji). Pozostała część zużywa się na wzrost nieuporządkowania. We wzorze definicyjnym wszystkie symbole odnoszą się do reakcji (używa się określeń człon entalpowy i człon entropowy). Człon entropowy określa nam energię zmagazynowaną w układzie na sposób chaotyczny (nie uporządkowany). Wskazuje nam, jaką energię możemy uzyskać z reakcji (sama egzotermiczność nie wystarcza), jaką pracę (nie objętościową) można uzyskać z reakcji. o ostatnie twierdzenie jest jeszcze wyraźniejsze w odniesieniu do energii swobodnej, patrz slajd 2, gdzie praca objętościowa w ogóle nie występuje.
16 Entalpia swobodna (2) Kryteria samorzutności reakcji: S r > zawsze samorzutna egzotermiczna H r < S r < samorzutna, gdy H r > S r endotermiczna H r > S r > S r < samorzutna, gdy H r < S r nigdy nie jest samorzutna Zawsze musi być: samorzutna, gdy G,P < Chem. Fiz. CH II/4 6 Warunek ogólny jest słuszny, gdy w procesie wykonywana jest tylko praca objętościowa. (Warunek ogólniejszy zostanie omówiony na następnym wykładzie).
17 Entalpia swobodna (3) Entalpia swobodna jest funkcją stanu, zatem: zawsze prawdziwe jest G = G k -G p Jeżeli proces nie jest samorzutny, to znaczy, że samorzutny jest proces odwrotny (zachodzący w kierunku przeciwnym). Proces nie samorzutny może zostać ewentualnie wymuszony. Chem. Fiz. CH II/4 7
18 Entalpia swobodna (4) G Dla reakcji chemicznej: n n r, 298 = m Gi, tw, pr,298 a Gi, tw, s,298 i= i= Dla pierwiastków chemicznych w ich trwałej postaci, standardowa molowa entalpia swobodna G 298 = Dla związków mówimy o G tw, którą definiujemy analogicznie jak H tw. Chem. Fiz. CH II/4 8 Dane są także stablicowane. Dla protonu w roztworze wodnym, przyjmujemy konwencjonalnie G tw = w każdej temperaturze. Związki egzo- i endoergiczne (możliwość syntezy totalnej, dla pierwszych MOŻLIWA, dla drugich NIE).
19 Energia swobodna Dla warunków izochorycznych zdefiniowano inną funkcję stanu, zwaną energią swobodną: F = U S F = U S Hermann Ludwig Ferdinand von Helmholtz Kryterium samorzutności procesów (reakcji chemicznych) zachodzących w warunkach izochorycznych jest: F V, < Chem. Fiz. CH II/4 9 Funkcja ta zwana jest także energią swobodną Helmholtza (ang. Helmholtz free energy). Często nazywana jest także funkcją pracy maksymalnej lub funkcją pracy i oznaczana także symbolem A (niem. Arbeit), wskazuje bowiem jaką maksymalną pracę (tutaj na pewno nie objętościową) można uzyskać z układu. Dowód na następnym wykładzie. Jej obliczenia dla przemiany fazowej, reakcji, itp. są analogiczne jak sposoby określone dla entalpii swobodnej. Jednostki są takie same jak dla energii wewnętrznej, entalpii i entalpii swobodnej (J lub J/mol). akże wszystkie konsekwencje wynikające z faktu, że jest ona funkcją stanu są analogiczne.
20 Czy reakcja chemiczna jest samorzutna? (2) Dana jest reakcja: S(s,romb) + O 2 (g) = SO 2 (g) Czy może ona zachodzić samorzutnie w warunkach standardowych? G tw298 kj/mol S(s,romb.) O 2 (g) SO 2 (g) -3,9 G r G, 298 = twso2,298 = JES!!! 3,9 Gr = Su. i. = H r Sr Sprawdzamy obliczenia z części (). Lewa strona: Prawa strona: H r S u S. i. = (298 7,35) / = 3,9 r kj kj = 296,83 (298,28) / = 3,9 kj Chem. Fiz. CH II/4 2
21 Czy reakcja chemiczna jest samorzutna? (3) Dana jest reakcja: NaHCO 3 (s) = NaOH(s) + CO 2 (g) Czy może ona zachodzić samorzutnie w warunkach standardowych? NaHCO 3 (s) NaOH(s) CO 2 (g) G tw298 kj/mol G = ( G + G ) -85,9-379,7-394,38 r,298 G twnaco,298 3 twco,298 2 twnaoh,298 = 773, ,9 = 78,45 NIE JES!!! kj WNIOSEK: Wodorowęglan sodu jest termodynamicznie trwały w warunkach standardowych. Chem. Fiz. CH II/4 2
22 Entalpia swobodna (5) Zależnie od składu mieszaniny reakcyjnej możemy oczekiwać samorzutnego przebiegu reakcji w prawo, w lewo (samorzutnie przebiega reakcja przeciwna) lub pozostawania przez nią w równowadze. Chem. Fiz. CH II/4 22
23 Iloraz reakcji Dla reakcji: aa + bb +... = mm + nn +... Q a b a a b A B = m n am N Q c c c a b A B = m n cm N gdzie aktywności (stężenia) są dowolne odpowiadają konkretnemu, dowolnie wybranemu stanowi mieszaniny reakcyjnej (mogą być nietrwałe w czasie). Gdy skład mieszaniny nie ulega zmianie (reakcja pozostaje w równowadze), to Q = K (stała równowagi reakcji), zaś aktywności lub stężenia odpowiadają tzw. składowi równowagowemu mieszaniny reakcyjnej. Chem. Fiz. CH II/4 23 Aktywności zdefiniujemy sobie we właściwy czasie. Na razie używajmy stężeń molowych (podzielonych przez stężenie jednostkowe, aby uniknąć wymiarów, Q bowiem zawsze jest w ten sposób bezwymiarowe, niezależnie od wykładników a, b, c, d). Bliżej o związkach G ze stałą równowagi reakcji i z ilorazem reakcji będziemy mówić na wykładach z równowagi chemicznej.
Entropia - obliczanie. Podsumowanie
Chem. Fiz. CH II/4 Entropia - obliczanie. Podsumowanie 2 ) ( 2 V d C S S S 2 ) ( 2 P d C S S S S k S p S 2 2 ln ln V V R C S V + 2 2 ln ln P P R C S P w izobarze: Funkcja stanu! w izochorze: dla gazu doskonałego:
I piętro p. 131 A, 138
CHEMIA NIEORGANICZNA Dr hab. Andrzej Kotarba Zakład Chemii Nieorganicznej Wydział Chemii I piętro p. 131 A, 138 WYKŁAD - 4 RÓWNOWAGA Termochemia i termodynamika funkcje termodynamiczne, prawa termodynamiki,
DRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
TERMODYNAMIKA I TERMOCHEMIA
TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami
DRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
Warunki izochoryczno-izotermiczne
WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne
Ciepła tworzenia i spalania (3)
Ciepła tworzenia i spalania (3) Standardowa entalpia tworzenia jest standardową entalpią związku 0 0 H = H Dla pierwiastków: Dla związków: H H 98 tw,98 0 tw, = C p ( ) d 98 0 0 tw, = Htw,98 + C p ( ) 98
Podstawy termodynamiki
Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach
Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne
Kryteria samorzutności procesów fizyko-chemicznych
Kryteria samorzutności procesów fizyko-chemicznych 2.5.1. Samorzutność i równowaga 2.5.2. Sens i pojęcie entalpii swobodnej 2.5.3. Sens i pojęcie energii swobodnej 2.5.4. Obliczanie zmian entalpii oraz
Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36
Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną
Kontakt,informacja i konsultacje
Kontakt,informacja i konsultacje Chemia A ; pokój 307 elefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl tablica ogłoszeń Katedry Chemii Fizycznej http://www.pg.gda.pl/chem/dydaktyka/ lub http://www.pg.gda.pl/chem/katedry/fizyczna
Wykład 10 Równowaga chemiczna
Wykład 10 Równowaga chemiczna REAKCJA CHEMICZNA JEST W RÓWNOWADZE, GDY NIE STWIERDZAMY TENDENCJI DO ZMIAN ILOŚCI (STĘŻEŃ) SUBSTRATÓW ANI PRODUKTÓW RÓWNOWAGA CHEMICZNA JEST RÓWNOWAGĄ DYNAMICZNĄ W rzeczywistości
Inżynieria Biomedyczna Wykład V
Inżynieria Biomedyczna Wykład V 1 Plan Reakcje samorzutne Entropia II zasada termodynamiki Entalpia i energia swobodna Kryteria samorzutności Termodynamika a stała równowagi K r 2 Woda zawsze spływa w
Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez
Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19)
Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19) Uwaga! Uzyskane wyniki mogą się nieco różnić od podanych w materiałach, ze względu na uaktualnianie wartości zapisanych
Wykład 6. Klasyfikacja przemian fazowych
Wykład 6 Klasyfikacja przemian fazowych JS Klasyfikacja Ehrenfesta Ehrenfest klasyfikuje przemiany fazowe w oparciu o potencjał chemiczny. nieciągłość Przemiany fazowe pierwszego rodzaju pochodne potencjału
1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA
. PIERWSZA I DRUGA ZASADA ERMODYNAMIKI ERMOCHEMIA Zadania przykładowe.. Jeden mol jednoatomowego gazu doskonałego znajduje się początkowo w warunkach P = 0 Pa i = 300 K. Zmiana ciśnienia do P = 0 Pa nastąpiła:
Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1
Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący 1. Obliczyć zmianę entalpii dla izobarycznej (p = 1 bar) reakcji chemicznej zapoczątkowanej
(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca.
(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. 1. Aby określić dokładną wartość stałej gazowej R, student ogrzał zbiornik o objętości 20,000 l wypełniony 0,25132 g gazowego
Fizyka Termodynamika Chemia reakcje chemiczne
Termodynamika zajmuje się badaniem efektów energetycznych towarzyszących procesom fizykochemicznym i chemicznym. Termodynamika umożliwia: 1. Sporządzanie bilansów energetycznych dla reakcji chemicznych
Zasady termodynamiki
Zasady termodynamiki Energia wewnętrzna (U) Opis mikroskopowy: Jest to suma średnich energii kinetycznych oraz energii oddziaływań międzycząsteczkowych i wewnątrzcząsteczkowych. Opis makroskopowy: Jest
Dr Andrzej Bąk Wykład KRIOGENIKA
Dr Andrzej Bąk Wykład KRIOGENIKA KRIOGENIKA ZASTOSOWANIA TECHNICZNE 1. Droga do zera bezwzględnego rys historyczny 2. Termometria niskich temperatur termometry gazowe, ciśnieniowe, oporowe, magnetyczne,
= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A
Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),
Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny
Równowagi fazowe Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Równowaga termodynamiczna Przemianom fazowym towarzyszą procesy, podczas których nie zmienia się skład chemiczny układu, polegają
Wykład 4. Przypomnienie z poprzedniego wykładu
Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika
Podstawy termodynamiki
Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare
Kiedy przebiegają reakcje?
Kiedy przebiegają reakcje? Thermodynamics lets us predict whether a process will occur but gives no information about the amount of time required for the process. CH 4(g) + 2O 2(g) substraty 2(g) egzotermiczna
Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).
Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo
Roztwory rzeczywiste (1)
Roztwory rzeczywiste (1) Również w temp. 298,15K, ale dla CCl 4 () i CH 3 OH (). 2 15 1 5-5 -1-15 Τ S H,2,4,6,8 1 G -2 Chem. Fiz. TCH II/12 1 rzyczyny dodatnich i ujemnych odchyleń od prawa Raoulta konsekwencja
Zadania pochodzą ze zbioru zadań P.W. Atkins, C.A. Trapp, M.P. Cady, C. Giunta, CHEMIA FIZYCZNA Zbiór zadań z rozwiązaniami, PWN, Warszawa 2001
Zadania pochodzą ze zbioru zadań P.W. Atkins, C.A. Trapp, M.P. Cady, C. Giunta, CHEMIA FIZYCZNA Zbiór zadań z rozwiązaniami, PWN, Warszawa 2001 I zasada termodynamiki - pojęcia podstawowe C2.4 Próbka zawierająca
Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.
1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada
Jak mierzyć i jak liczyć efekty cieplne reakcji?
Jak mierzyć i jak liczyć efekty cieplne reakcji? Energia Zdolność do wykonywania pracy lub do produkowania ciepła Praca objętościowa praca siła odległość 06_73 P F A W F h N m J P F A Area A ciśnienie
Wykład 8. Równowaga fazowa Roztwory rzeczywiste
Wykład 8 Równowaga fazowa Roztwory rzeczywiste Roztwory doskonałe Porównanie roztworów doskonałych i Roztwory Doskonałe rzeczywistych Roztwory Rzeczywiste Spełniają prawo Raoulta Mieszanie w warunkach
Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne
Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne Janusz Brzychczyk, Instytut Fizyki UJ Postulat Nernsta (1906):
Kiedy przebiegają reakcje?
Kiedy przebiegają reakcje? Thermodynamics lets us predict whether a process will occur but gives no information about the amount of time required for the process. Termodynamika dziedzina termodynamiki
3. Przejścia fazowe pomiędzy trzema stanami skupienia materii:
Temat: Zmiany stanu skupienia. 1. Energia sieci krystalicznej- wielkość dzięki której można oszacować siły przyciągania w krysztale 2. Energia wiązania sieci krystalicznej- ilość energii potrzebnej do
Wykład 7: Przekazywanie energii elementy termodynamiki
Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne
Termochemia elementy termodynamiki
Termochemia elementy termodynamiki Termochemia nauka zajmująca się badaniem efektów cieplnych reakcji chemicznych Zasada zachowania energii Energia całkowita jest sumą energii kinetycznej i potencjalnej.
Wykład 3. Entropia i potencjały termodynamiczne
Wykład 3 Entropia i potencjały termodynamiczne dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej
Stany równowagi i zjawiska transportu w układach termodynamicznych
Stany równowagi i zjawiska transportu w układach termodynamicznych dr hab. Jerzy Nakielski Katedra Biofizyki i Biologii Komórki plan wykładu: 1. Funkcje stanu dla termodynamicznego układu otwartego 2.
Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15)
Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15) (Uwaga! Liczba w nawiasie przy odpowiedzi oznacza numer zadania (zestaw.nr), którego rozwiązanie dostępne
WYKŁAD 3 TERMOCHEMIA
WYKŁAD 3 TERMOCHEMIA Termochemia jest działem termodynamiki zajmującym się zastosowaniem pierwszej zasady termodynamiki do obliczania efektów cieplnych procesów fizykochemicznych, a w szczególności przemian
Podstawy termodynamiki.
Podstawy termodynamiki. Termodynamika opisuje ogólne prawa przemian energetycznych w układach makroskopowych. Określa kierunki procesów zachodzących w przyrodzie w sposób samorzutny, jak i stanów końcowych,
GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.
TERMODYNAMIKA GAZ DOSKONAŁY Gaz doskonały to abstrakcyjny, matematyczny model gazu, chociaż wiele gazów (azot, tlen) w warunkach normalnych zachowuje się w przybliżeniu jak gaz doskonały. Model ten zakłada:
II zasada termodynamiki Sens i pojęcie entropii Obliczanie zmian entropii Związki entropii z funkcjami termodynamicznymi
Druga zasada termodynamiki 2.4.1. II zasada termodynamiki 2.4.2. Sens i pojęcie entropii 2.4.3. Obliczanie zmian entropii 2.4.4. Związki entropii z funkcjami termodynamicznymi Druga zasada termodynamiki
relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach
1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach
TERMODYNAMIKA FENOMENOLOGICZNA
TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N
Wykład z Chemii Ogólnej i Nieorganicznej
Wykład z Chemii Ogólnej i Nieorganicznej Część 5 ELEMENTY STATYKI CHEMICZNEJ Katedra i Zakład Chemii Fizycznej Collegium Medicum w Bydgoszczy Uniwersytet Mikołaja Kopernika w Toruniu Prof. dr hab. n.chem.
3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?
1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 kj nie jest jednostką a) entropii
Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 4 Procesy izoparametryczne Entropia Druga zasada termodynamiki Janusz Brzychczyk, Instytut Fizyki UJ Pierwsza zasada termodynamiki procesy kwazistatyczne Zgodnie z pierwszą zasadą termodynamiki,
ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa
Prawo zachowania energii: ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Ogólny zasób energii jest niezmienny. Jeżeli zwiększa się zasób energii wybranego układu, to wyłącznie kosztem
Podstawowe pojęcia 1
Tomasz Lubera Półogniwo Podstawowe pojęcia 1 układ złożony z min. dwóch faz pozostających ze sobą w kontakcie, w którym w wyniku zachodzących procesów utleniania lub redukcji ustala się stan równowagi,
1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?
Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody
CHEMIA FIZYCZNA ZTiM
CHEMIA FIZYCZNA ZTiM Semestr zimowy 2016/2017 Dr hab. inż. Dorota Warmińska 1. Chemia fizyczna. Termodynamika. Podstawowe pojęcia stosowane w termodynamice. Układ i otoczenie. Przegroda adiabatyczna i
Specyficzne własności helu w temperaturach kriogenicznych
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Specyficzne własności helu w temperaturach kriogenicznych Opracowała: Joanna Pałdyna W ramach przedmiotu: Techniki niskotemperaturowe w medycynie Kierunek studiów:
Jak mierzyć i jak liczyć efekty cieplne reakcji?
Jak mierzyć i jak liczyć efekty cieplne reakcji? Energia Zdolność do wykonywania pracy lub produkowania ciepła Praca objętościowa praca siła odległość 06_73 P F A W F h N m J P F A Area A ciśnienie siła/powierzchnia
Wykład 5. Kalorymetria i przejścia fazowe
Wykład 5 Kalorymetria Ciepło przemian fazowych Bilans cieplny Proces kwazistatyczny Procesy odwracalne i nieodwracalne Praca Energia wewnętrzna Podstawowe przemiany gazowe W. Dominik Wydział Fizyki UW
WNIOSEK REKRUTACYJNY NA ZAJĘCIA KÓŁKO OLIMPIJSKIE Z CHEMII - poziom PG
WNIOSEK REKRUTACYJNY NA ZAJĘCIA KÓŁKO OLIMPIJSKIE Z CHEMII - poziom PG Imię i nazwisko: Klasa i szkoła*: Adres e-mail: Nr telefonu: Czy uczeń jest już uczestnikiem projektu? (odp. otoczyć kółkiem) Ocena
chemia wykład 3 Przemiany fazowe
Przemiany fazowe Przemiany fazowe substancji czystych Wrzenie, krzepnięcie, przemiana grafitu w diament stanowią przykłady przemian fazowych, które zachodzą bez zmiany składu chemicznego. Diagramy fazowe
WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami
WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje
II zasada termodynamiki Sens i pojęcie entropii Obliczanie zmian entropii Związki entropii z funkcjami termodynamicznymi
Druga zasada termodynamiki 2.4.1. II zasada termodynamiki 2.4.2. Sens i pojęcie entropii 2.4.3. Obliczanie zmian entropii 2.4.4. Związki entropii z funkcjami termodynamicznymi 2.4.5. Standardowe funkcje
Odwracalność przemiany chemicznej
Odwracalność przemiany chemicznej Na ogół wszystkie reakcje chemiczne są odwracalne, tzn. z danych substratów tworzą się produkty, a jednocześnie produkty reakcji ulegają rozkładowi na substraty. Fakt
Termodynamika. Energia wewnętrzna ciał
ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy
Fizykochemiczne podstawy inżynierii procesowej
Fizykochemiczne podstawy inżynierii procesowej Wykład I - 1 Sprawy formalne 2 Fizykochemiczne podstawy inżynierii procesowej Sprawy formalne: Forma: Wykład w postaci prezentacji komputerowych Przeznaczenie:
Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23
Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy
TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku
TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak
Termodynamiczny opis przejść fazowych pierwszego rodzaju
Wykład II Przejścia fazowe 1 Termodynamiczny opis przejść fazowych pierwszego rodzaju Woda występuje w trzech stanach skupienia jako ciecz, jako gaz, czyli para wodna, oraz jako ciało stałe, a więc lód.
CHEMIA NIEORGANICZNA. Andrzej Kotarba Zakład Chemii Nieorganicznej Wydział Chemii I pietrop. 131 A. WYKŁAD -3
CHEMIA NIEORGANICZNA Andrzej Kotarba Zakład Chemii Nieorganicznej Wydział Chemii I pietrop. 131 A http://www.chemia.uj.edu.pl/kotarba/ WYKŁAD -3 RÓWNOWAGA Termochemia i termodynamika funkcje termodynamiczne,
TERMODYNAMIKA IM. Semestr letni
TERMODYNAMIKA IM Semestr letni Ogólny kierunek przebiegu zjawisk i procesów w przyrodzie Układ i otoczenie Układ odosobniony Przegroda adiabatyczna i diatermiczna Układ zamknięty i układ otwarty Zmienne
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,
TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska
1. Bilans cieplny 2. Przejścia fazowe 3. Równanie stanu gazu doskonałego 4. I zasada termodynamiki 5. Przemiany gazu doskonałego 6. Silnik cieplny 7. II zasada termodynamiki TERMODYNAMIKA Zajęcia wyrównawcze,
TERMOCHEMIA. TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki.
1 TERMOCHEMIA TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki. TERMODYNAMIKA: opis układu w stanach o ustalonych i niezmiennych w
Zadania treningowe na kolokwium
Zadania treningowe na kolokwium 3.12.2010 1. Stan układu binarnego zawierającego n 1 moli substancji typu 1 i n 2 moli substancji typu 2 parametryzujemy za pomocą stężenia substancji 1: x n 1. Stabilność
Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej. Część IV - Elementy termodynamiki i kinetyki chemicznej
Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej Część IV - Elementy termodynamiki i kinetyki chemicznej Wydział Chemii UAM Poznań 2011 POJĘCIA CIA PODSTAWOWE UKŁAD AD pewna część
Równowaga. równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) równowaga stabilna (pełna) brak równowagi rozpraszanie energii
Równowaga równowaga stabilna (pełna) równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) brak równowagi rozpraszanie energii energia swobodna Co jest warunkiem równowagi? temperatura W
Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej
termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,
Spis tres ci 1. Wiadomos ci wste pne
Spis treści Przedmowa do wydania I... 9 Przedmowa do wydania II... 10 Wykaz ważniejszych oznaczeń... 11 1. Wiadomości wstępne... 15 1.1. Fenomenologiczny opis materii... 15 1.2. Wielkości ekstensywne (WE)...
Kinetyka reakcji chemicznych. Dr Mariola Samsonowicz
Kinetyka reakcji chemicznych Dr Mariola Samsonowicz 1 Czym zajmuje się kinetyka chemiczna? Badaniem szybkości reakcji chemicznych poprzez analizę eksperymentalną i teoretyczną. Zdefiniowanie równania kinetycznego
S ścianki naczynia w jednostce czasu przekazywany
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
Obraz statyczny układu
Termodynamika Obraz statyczny układu energia kinetyczna E k = mv 2 / 2 energia wewnetrzna energia powierzchniowa inne energie U inne parametry: T, m, P, V, S... Ep= mgh energia potencjalna STAN I PRZEMIANA
1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej
1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 2. 1 kmol każdej substancji charakteryzuje się taką samą a) masą b) objętością
4. 1 bar jest dokładnie równy a) Pa b) 100 Tr c) 1 at d) 1 Atm e) 1000 niutonów na metr kwadratowy f) 0,1 MPa
1. Adiatermiczny wymiennik ciepła to wymiennik, w którym a) ciepło płynie od czynnika o niższej temperaturze do czynnika o wyższej temperaturze b) nie ma strat ciepła na rzecz otoczenia c) czynniki wymieniające
Podstawowe definicje
Wprowadzenie do równowag fazowych (1) Podstawowe definicje 1) Faza dla danej substancji jej postać charakteryzująca się jednorodnym składem chemicznym i stanem fizycznym. W obrębie fazy niektóre intensywne
Równanie gazu doskonałego
Równanie gazu doskonałego Gaz doskonały to abstrakcyjny model gazu, który zakłada, że gaz jest zbiorem sprężyście zderzających się kulek. Wiele gazów w warunkach normalnych zachowuje się jak gaz doskonały.
Podstawy fizyki sezon 1 X. Elementy termodynamiki
Podstawy fizyki sezon 1 X. Elementy termodynamiki Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Temodynamika
Inżynieria Biomedyczna. Wykład IV i V
Inżynieria Biomedyczna Wykład IV i V Energia: Terminologia zdolność do wykonywania pracy w lub przekazywania ciepła q Energia wewnętrzna U-część energii układu zależna tylko od jego stanu wewnętrznego,
powierzchnia rozdziału - dwie fazy ciekłe - jedna faza gazowa - dwa składniki
Przejścia fazowe. powierzchnia rozdziału - skokowa zmiana niektórych parametrów na granicy faz. kropeki wody w atmosferze - dwie fazy ciekłe - jedna faza gazowa - dwa składniki Przykłady przejść fazowych:
Przegląd termodynamiki II
Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy
Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia.
PARA WODNA 1. PRZEMIANY FAZOWE SUBSTANCJI JEDNORODNYCH Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. Przy niezmiennym ciśnieniu zmiana wody o stanie początkowym odpowiadającym
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare
1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka
1 Termodynamika 1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka 2005-2006 Termodynamika Standard 1. Posługiwanie się wielkościami i pojęciami fizycznymi do opisywania zjawisk
Krótki przegląd termodynamiki
Wykład I Przejścia fazowe 1 Krótki przegląd termodynamiki Termodynamika fenomenologiczna oferuje makroskopowy opis układów statystycznych w stanie równowagi termodynamicznej bądź w stanach jemu bliskich.
WNIOSEK REKRUTACYJNY NA ZAJĘCIA KÓŁKO OLIMPIJSKIE Z CHEMII - poziom PG
WNIOSEK REKRUTACYJNY NA ZAJĘCIA KÓŁKO OLIMPIJSKIE Z CHEMII - poziom PG Imię i nazwisko: Klasa i szkoła*: Adres e-mail: Nr telefonu: Czy uczeń jest już uczestnikiem projektu Zdolni z Pomorza - Uniwersytet
Fizyka statystyczna. This Book Is Generated By Wb2PDF. using
http://pl.wikibooks.org/wiki/fizyka_statystyczna This Book Is Generated By Wb2PDF using RenderX XEP, XML to PDF XSL-FO Formatter 18-05-2014 Table of Contents 1. Fizyka statystyczna...4 Spis treści..........................................................................?
Praca objętościowa - pv (wymiana energii na sposób pracy) Ciepło reakcji Q (wymiana energii na sposób ciepła) Energia wewnętrzna
Energia - zdolność danego układu do wykonania dowolnej pracy. Potencjalna praca, którą układ może w przyszłości wykonać. Praca wykonana przez układ jak i przeniesienie energii może manifestować się na
Fizykochemiczne podstawy inżynierii procesowej
Fizykochemiczne podstawy inżynierii procesowej Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste przemiany termodynamiczne PRZYPOMNIENIE Z OSTATNIEGO
Przemiany termodynamiczne
Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość
Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych
Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych 1. Równanie kinetyczne, szybkość reakcji, rząd i cząsteczkowość reakcji. Zmiana szybkości reakcji na skutek zmiany