Modelowanie wieloskalowe. Automaty Komórkowe - podstawy
|
|
- Janina Jadwiga Zakrzewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Modelowanie wieloskalowe Automaty Komórkowe - podstawy Dr hab. inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p. 716 lmadej@agh.edu.pl home.agh.edu.pl/lmadej
2 Automaty komórkowe jedno-wymiarowe Automaty elementarne Automat deterministyczny Stany komórek: 0 lub 1 (k=2) Otoczenie: najbliżsi sąsiedzi (r=1) Reguła przejścia: stan komórki w czasie t +1 zależy od stanu komórek sąsiednich i jej samej w czasie t Reguła przejścia w tym przypadku uwzględnia stan 3 komórek (2r+1) każda może mieć dwa stany. Czyli reguła przejścia musi być określona dla 2 3 =8 różnych konfiguracji. Każda z otrzymanych konfiguracji ma 2 stany, to w rezultacie daje 2 8 = 256 sposobów określenia reguły przejścia.
3 t t+1 Automaty komórkowe jedno-wymiarowe Reguła 90 Ewolucja w czasie = = 90
4 Automaty komórkowe jedno-wymiarowe (źródło MathWorld) randomizer1
5 Automaty komórkowe jedno-wymiarowe (źródło MathWorld) 250 iteracji
6 Automaty komórkowe jedno-wymiarowe (źródło MathWorld)
7 Automaty komórkowe jedno-wymiarowe (źródło MathWorld) Pascal Triangles
8 Automaty komórkowe jedno-wymiarowe (źródło MathWorld)
9 Automaty komórkowe jedno-wymiarowe (źródło MathWorld) Linear B
10 Automaty komórkowe jedno-wymiarowe (źródło MathWorld)
11 (źródło MathWorld)
12 (źródło MathWorld)
13 (źródło MathWorld)
14 (źródło MathWorld)
15 (źródło MathWorld)
16 Game Of Life - J.H. Conway Wymiar przestrzeni: 2D Sąsiedztwo: Moore Ilości stanów komórki: 2 - żywa lub martwa Żywa - 1 Martwa: 0
17 Game Of Life - J.H. Conway Obecnie algorytm ten stanowi głównie źródło fascynacji i zabawy, to jednak gra w życie zrodziła się na drodze poważnych rozważań, dotyczących sformułowania matematycznego modelu opisującego zachowanie się organizmów żywych. Każda martwa komórka (stan 0), posiadająca trzech żywych sąsiadów (komórki w stanie 1), rodzi się (zmienia swój stan z 0 na 1).
18 Game Of Life - J.H. Conway Każda żywa komórka posiadająca dwóch lub trzech żywych sąsiadów (komórki w stanie 1), pozostaje żywą (utrzymuje stan 1), Każda żywa komórka posiadająca więcej niż 3 sąsiadów umiera, z natłoku oraz każda żywa komórka posiadająca mniej niż dwóch ąsiadów ównież umiera, z samotności.
19 Game Of Life - J.H. Conway 23/3 Liczba komórek w sąsiedztwie, dla których żywe komórki przeżywają Liczba komórek w sąsiedztwie, dla których martwe komórki ożywają Probabilistyczna Gra w życie
20 Game Of Life - struktury Struktury niezmienne - inaczej stabilne lub statyczne, pozostają identyczne bez względu na krok czasowy Oscylatory - zmieniają się okresowo, co pewien czas powracają do swojego stanu pierwotnego Struktury niestałe - zmieniają się, nie powracając nigdy do swojego stanu pierwotnego Struktura typu Glider - porusza się w nieskończoność po planszy Struktura typu Działo - wyrzuca z siebie jeden układ komórek np. Glider, który odłącza się i egzystuje samodzielnie
21 Immigration 3 stany żywa czerwona, żywa zielona, martwa Definiując warunki początkowe każdej z komórek przypisujemy jeden kolor. Na każdy z kolorów powinna być zabarwiona przynajmniej jedna komórka, w przeciwnym razie uzyskamy zwykłą grę w życie! Nowo powstające komórki przyjmują taki kolor, jaki ma większość z ich 3 żywych sąsiadów. Kolory żywych komórek nie zmieniają się w trakcie gry. Darwinia Game Of Life - Modyfikacje Komórka pozostaje żywą maksymalnie przez 50 cykli, potem zmienia stan na martwą. Pozostałe reguły bez zmian. Każda symulacja kończy się śmiercią wszystkich komórek!!!
22 Gra Fredkina 1357/1357 Wymiar przestrzeni: 2D Sąsiedztwo: Moore Ilości stanów komórki: 2 - żywa lub martwa Reguła przejścia: Jeżeli liczba komórek żywych w sąsiedztwie rozpatrywanej komórki (martwej w poprzednim kroku czasowym) jest nieparzysta, komórka staje się żywa, w przeciwnym razie martwa.
23 Mrówka Langtona Wymiar przestrzeni: 2D Sąsiedztwo: Moore Ilości stanów komórki: 2 - biały lub czarny Reguły przejścia: W każdym kroku wyróżniona jest jedna komórka nazywana "mrówką", która oprócz koloru ma określony także kierunek, w którym się porusza 1. Jeśli mrówka jest na czarnym polu, obraca się w prawo o 90 stopni i przechodzi do sąsiedniej komórki. 2. Jeśli mrówka jest na białym polu, obraca się w lewo o 90 stopni i przechodzi do sąsiedniej komórki. 3. Opuszczając komórkę mrówka odwraca jej kolor. W kroku czasowym modyfikowana jest jedna komórka Bieżące położenie mrówki jest przechowywane pomiędzy krokami czasowymi
24 (źródło Wikipedia)
25 Pożar lasu Wymiar przestrzeni: 2D Sąsiedztwo: Moore Ilości stanów komórki: 3 - drzewo, płonące drzewo lub spalone drzewo Reguły przejścia: Drzewo Płonące drzewo Spalone drzewo płonące drzewo z prawdopodobieństwem p jeżeli za sąsiada ma płonące drzewo Spalone drzewo Spalone drzewo Dodatki: samozapłon drzewa, odrośniecie drzewa
26 (źródło Wikipedia)
27 wilgotność (większa wilgotność - mniejsze prawdopodobieństwo zapalenia) ukształtowanie terenu wiatr (różne prawdopodobieństwa w różnych kierunkach)
28 Sąsiedztwo Margolusa automaty blokowe 1. Stosuje się je w automatach do symulacji spadającego piasku, czy też interakcji cząsteczek gazu. 2. Reguły przejścia opierają się na kwadratowych blokach tworzonych przez cztery sąsiadujące komórki. 3. Stany tych sąsiednich komórek zmieniają się jednocześnie, przy czym komórki przyjmują wartości binarne 1 i W kolejnym kroku reguły są obliczane podobnie, tylko że zmieniają się grupy komórek. 5. Bloki tworzące te grupy przesuwają się o jeden w prawo i w dół.
29 Sąsiedztwo Margolusa automaty blokowe Parzyste kroki czasowe Nie parzyste kroki czasowe
30
31 Sąsiedztwo Margolusa automaty blokowe 1-p p p prawdopodobieństwo, że dwa ziarna się zablokują 1-p - prawdopodobieństwo, że dwa ziarna spadną
32 Sąsiedztwo Margolusa automaty blokowe 0;4;8;12;4;12;12;13; 8;12;12;14;12;13;14;15
33 Automaty Komórkowe w Inżynierii Materiałowej
Modelowanie wieloskalowe. Automaty Komórkowe - podstawy
Modelowanie wieloskalowe Automaty Komórkowe - podstawy Dr hab. inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p. 716 lmadej@agh.edu.pl
Powstanie gry Opis reguł gry Reguły według Conwaya Elementy występujące w grze Modyfikacje gry Charakterystyka automatu komórkowego Gra w Życie
Game of life Spis treści Powstanie gry Opis reguł gry Reguły według Conwaya Elementy występujące w grze Modyfikacje gry Charakterystyka automatu komórkowego Gra w Życie Powstanie gry Game of life (Gra
Układy dynamiczne Chaos deterministyczny
Układy dynamiczne Chaos deterministyczny Proste iteracje odwzorowań: Funkcja liniowa Funkcja logistyczna chaos deterministyczny automaty komórkowe Ewolucja układu dynamicznego Rozwój w czasie układu dynamicznego
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Automaty komórkowe. Katarzyna Sznajd-Weron
Automaty komórkowe Katarzyna Sznajd-Weron Trochę historii CA (Cellular Automata) Koniec lat 40-tych John von Neuman maszyna z mechanizmem samopowielania Sugestia Ulama 1952 dyskretny układ komórek dyskretne
Podręcznik. Model czy teoria
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 58 92 424 http://www.neuroinf.pl/members/danek/swps/ Iwo Białynicki-Birula Iwona Białynicka-Birula
W dowolnym kwadracie 3x3 ustawiamy komórki na palące się (stan 3). Program powinien pokazywać ewolucję pożaru lasu.
1. Symulacja pożaru lasu ver. 1 Las reprezentowany jest przez macierz 100x100. W lesie występują dwa rodzaje drzew: liściaste i iglaste. Przyjmijmy, że prostokąt A(1:50,1:100) wypełniony jest drzewami
Turing i jego maszyny
Turing Magdalena Lewandowska Politechnika Śląska, wydział MS, semestr VI 20 kwietnia 2016 1 Kim był Alan Turing? Biografia 2 3 Mrówka Langtona Bomba Turinga 4 Biografia Kim był Alan Turing? Biografia Alan
Modelowanie systemów biomedycznych
Modelowanie systemów biomedycznych - automaty komórkowe (czy jest to "nowe oblicze nauki"?) Arkadiusz Mandowski Modelowanie... R. Tadeusiewicz (2008) Modelowanie... R. Tadeusiewicz (2008) Jak rozpoznać
Symulacje komputerowe
Fizyka w modelowaniu i symulacjach komputerowych Jacek Matulewski (e-mail: jacek@fizyka.umk.pl) http://www.fizyka.umk.pl/~jacek/dydaktyka/modsym/ Symulacje komputerowe Automaty komórkowe Wersja: 6 maja
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 02 Jarosław Miszczak IITiS PAN Gliwice 06/10/2016 1 / 31 Czego dowiedzieliśmy się na poprzednim wykładzie? 1... 2... 3... 2 / 31 1 2 3 3 / 31 to jeden z pierwszych
Tworzenie gier na urządzenia mobilne
Katedra Inżynierii Wiedzy Wykład 11 O czym dzisiaj? labirynty, dużo labiryntów; automaty komórkowe; algorytmy do budowy labiryntów; algorytmy do szukania wyjścia z labiryntów; Blueprints i drzewa zachowań
Modelowanie Wieloskalowe. Automaty Komórkowe w Inżynierii Materiałowej
Modelowanie Wieloskalowe Automaty Komórkowe w Inżynierii Materiałowej Dr inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p.
Ruch drogowy, korki uliczne - czy fizyk może coś na to poradzić?
Ruch drogowy, korki uliczne - czy fizyk może coś na to poradzić? KNF Migacz, Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski 16-18 listopada 2007 Spis treści Spis treści 1 Spis treści 1 2 Spis treści
Ćwiczenia z przetwarzania tablic 2D
Ćwiczenia z przetwarzania tablic 2D Wyświetlanie tablic 2D Jako wstęp do przetwarzania obrazów w pythonie przećwiczmy podstawowe operacje na dwuwymiarowych tablicach numpy w postaci których będziemy takie
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Algorytmy sztucznej inteligencji
www.math.uni.lodz.pl/ radmat Przeszukiwanie z ograniczeniami Zagadnienie przeszukiwania z ograniczeniami stanowi grupę problemów przeszukiwania w przestrzeni stanów, które składa się ze: 1 skończonego
Podstawy OpenCL część 2
Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć
Elementy modelowania matematycznego
Elementy modelowania matematycznego Łańcuchy Markowa: zagadnienia graniczne. Ukryte modele Markowa. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ KLASYFIKACJA STANÓW Stan i jest osiągalny
Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych
Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl tel. 022
Mateusz Żyliński Tadeusz Włodarkiewicz. WireWorld. Zebranie informacji dotyczących tematyki projektu oraz przedstawienie koncepcji realizacji projektu
Mateusz Żyliński Tadeusz Włodarkiewicz WireWorld Zebranie informacji dotyczących tematyki projektu oraz przedstawienie koncepcji realizacji projektu 1 I. Informacje ogólne A utomat komórkowy to system
LIVE Gra w życie. LIVE w JavaScript krok po kroku. ANIMACJA Rozpoczynamy od podstawowego schematu stosowanego w animacji
LIVE Gra w życie Live jest jednym z pierwszych i najbardziej znanych tzw. automatów komórkowych. Został wymyślony w 1970 roku przez brytyjskiego matematyka Johna Conwaya. Co to takiego automat komórkowy?
ŻYCIE I EWOLUCJA. w komputerze. czwartek, 23 maja 13
ŻYCIE I EWOLUCJA w komputerze CO TO JEST ŻYCIE? CO TO JEST EWOLUCJA? CO TO JEST ŻYCIE? Trudno zdefiniować jednoznacznie co to jest życie Łatwiej podać cechy charakteryzujące organizmy (niekoniecznie pojedyncze
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują
Iteracje. Algorytm z iteracją to taki, w którym trzeba wielokrotnie powtarzać instrukcję, aby warunek został spełniony.
Iteracje Algorytm z iteracją to taki, w którym trzeba wielokrotnie powtarzać instrukcję, aby warunek został spełniony. Iteracja inaczej zwana jest pętlą i oznacza wielokrotne wykonywanie instrukcji. Iteracje
Złożoność obliczeniowa zadania, zestaw 2
Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze
Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów skończonych
Opracował: dr inż. Zbigniew Buchalski KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów
Zasady gry i przygotowanie
Steffen Benndorf i Reinhard Staupe 935222 Czysta zabawa! Gracze: 2-6 osób Wiek: od 8 lat Czas trwania: ok. 15 minut Zasady gry i przygotowanie Każdy gracz otrzymuje inną kartkę (jest 6 różnych) i pisak.
Algorytm. Krótka historia algorytmów
Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne
Obliczanie prawdopodobieństwa za pomocą metody drzew metoda drzew. Drzewem Reguła iloczynów. Reguła sum.
Obliczanie prawdopodobieństwa za pomocą metody drzew Jeżeli doświadczenie losowe składa się z więcej niż jednego etapu, takich jak serie rzutów kostką lub monetą, zastosowanie klasycznej definicji prawdopodobieństwa
Podręcznik. Wzór Shannona
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 5892 424 http://www.neuroinf.pl/members/danek/swps/ Iwo Białynicki-Birula Iwona Białynicka-Birula
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Metody bezgradientowe optymalizacji bez ograniczeń Materiały pomocnicze do ćwiczeń
Rachunek prawdopodobieństwa- wykład 2
Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
ATOLL. Wykonali: Aleksandra Kuchta, Łukasz Wójcik, Sztuczna Inteligencja, Semestr trzeci, Kierunek Informatyka, Wydział Informatyki i Zarządzania,
Sztuczna Inteligencja, Semestr trzeci, Kierunek Informatyka, Wydział Informatyki i Zarządzania, Politechnika Poznańska ATOLL Wykonali: Aleksandra Kuchta, WFT, PP, nr 76690, rok IV Łukasz Wójcik, WIiZ,
Języki formalne i automaty Ćwiczenia 5
Języki formalne i automaty Ćwiczenia 5 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 L-systemy... 2 Grafika żółwia... 2 Bibliografia... 5 Zadania... 6 Zadania na 3.0... 6 Zadania
Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy:
Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy: a) sumę oczek równą 6, b) iloczyn oczek równy 6, c) sumę oczek mniejszą niż 11, d) iloczyn oczek będący liczbą parzystą,
Statystyka matematyczna
Statystyka matematyczna Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka matematyczna 5 marca 2018 1 / 14 Prawdopodobieństwo klasyczne Ω - zbiór wszystkich zdarzeń elementarnych
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Spadające jabłuszka. licencja CC-BY-SA Uznanie autorstwa Na tych samych warunkach 3.0 Polska. Strona 51
Spadające jabłuszka Materiały opracowane przez Ośrodek Edukacji Informatycznej i Zastosowań Komputerów w Warszawie w ramach programu Warszawa Programuje licencja CC-BY-SA Uznanie autorstwa Na tych samych
2.1. Duszek w labiryncie
https://app.wsipnet.pl/podreczniki/strona/38741 2.1. Duszek w labiryncie DOWIESZ SIĘ, JAK sterować duszkiem, stosować pętlę zawsze, wykorzystywać blok warunkowy jeżeli. Sterowanie żółwiem, duszkiem lub
ALGORYTMY I STRUKTURY DANYCH
LGORTM I STRUKTUR DNH Temat 6: Drzewa ST, VL Wykładowca: dr inż. bigniew TRPT e-mail: bigniew.tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/ Współautorami wykładu
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem
RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA
RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA Doświadczenia losowe Rachunek prawdopodobieństwa zajmuje się zdarzeniami jakie zachodzą, gdy przeprowadzamy doświadczenia losowe. Mówimy, że doświadczenie jest
Najkrótsza droga Maksymalny przepływ Najtańszy przepływ Analiza czynności (zdarzeń)
Carl Adam Petri (1926-2010) Najkrótsza droga Maksymalny przepływ Najtańszy przepływ Analiza czynności (zdarzeń) Problemy statyczne Kommunikation mit Automaten praca doktorska (1962) opis procesów współbieżnych
CZAS NA PROGRAMOWANIE
CZAS NA PROGRAMOWANIE Wanda Jochemczyk Wydawnictwa Szkolne i Pedagogiczne wanda.jochemczyk@oeiizk.waw.pl Abstract. This workshop is for teachers who have basic skills in programming in Scratch. During
Gra planszowa stwarza jeszcze więcej możliwości!
Gra planszowa stwarza jeszcze więcej możliwości! Steffen Benndorf Reinhard Staupe Gracze: 2-4 osób Wiek: powyżej 8 lat Czas trwania: ok.20 minut Uwaga: W przypadku, gdy Państwo znają już wielokrotnie nagradzaną
Tworzenie gier na urządzenia mobilne
Katedra Inżynierii Wiedzy Teoria podejmowania decyzji w grze Gry w postaci ekstensywnej Inaczej gry w postaci drzewiastej, gry w postaci rozwiniętej; formalny opis wszystkich możliwych przebiegów gry z
Algorytm. Krótka historia algorytmów
Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne
Statystyka i Rachunek Prawdopodobieństwa dla Bioinzynierii Lista zadań 2, 2018/19z (zadania na ćwiczenia)
Statystyka i Rachunek Prawdopodobieństwa dla Bioinzynierii Lista zadań 2, 2018/19z (zadania na ćwiczenia) 1 Przestrzeń probabilistyczna Zadanie 1 Rzucamy dwiema kostkami do gry. Opisać przestrzeń zdarzeń
Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I
Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I Rozkład zgodny
Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II
Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II Rozkład wymagający
Algorytm. Słowo algorytm pochodzi od perskiego matematyka Mohammed ibn Musa al-kowarizimi (Algorismus - łacina) z IX w. ne.
Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne
Prawdopodobieństwo czerwonych = = 0.33
Temat zajęć: Naiwny klasyfikator Bayesa a algorytm KNN Część I: Naiwny klasyfikator Bayesa Naiwny klasyfikator bayerowski jest prostym probabilistycznym klasyfikatorem. Naiwne klasyfikatory bayesowskie
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek
Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę
Programowanie genetyczne, gra SNAKE
STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................
Układy Cyfrowe. Specyfikacja wstępna Zebranie informacji dotyczących tematyki projektu oraz przedstawienie koncepcji realizacji projektu.
Układy Cyfrowe Specyfikacja wstępna Zebranie informacji dotyczących tematyki projektu oraz przedstawienie koncepcji realizacji projektu Projekt: Realizacja: Emil Rosłanowski Adrian Staniec Michał Waśkiewicz
SCENARIUSZ ZA JĘĆ KLASA: III BLOK TEMATYCZNY: TEMAT: PODSTAWA PROGRAMOWA:
SCENARIUSZ ZA JĘĆ KLASA: III BLOK TEMATYCZNY: W jesiennej szacie TEMAT: Mnożenie w zakresie 100. Utrwalanie. PODSTAWA PROGRAMOWA: Edukacja matematyczna: - (7.6) mnożny i dzieli liczby w zakresie tabliczki
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 03 (uzupełnienie Wykładu 02) Jarosław Miszczak IITiS PAN Gliwice 31/03/2016 1 / 17 1 2 / 17 Dynamika populacji Równania Lotki-Voltery opisują model drapieżnik-ofiara.
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Optymalizacja zadań bazy transportowej ( część 1 ) Opracowano na podstawie : Stanisław Krawczyk, Metody ilościowe w logistyce ( przedsiębiorstwa ), Wydawnictwo C. H. Beck, Warszawa
oności. Zastosowanie modelowania Agent-based Computational Economics w nauczaniu zdalnym
Ekonomia złożonoz oności. Zastosowanie modelowania Agent-based Computational Economics w nauczaniu zdalnym Tomasz Kopczewski Wydział Nauk Ekonomicznych, Uniwersytet Warszawski Mikroekonomia Praktyka wykładania:
Temat: Algorytm kompresji plików metodą Huffmana
Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik
Algorytmy metaheurystyczne Wykład 6. Piotr Syga
Algorytmy metaheurystyczne Wykład 6 Piotr Syga 10.04.2017 Wprowadzenie Inspiracje Wprowadzenie ACS idea 1 Zaczynamy z pustym rozwiązaniem początkowym 2 Dzielimy problem na komponenty (przedmiot do zabrania,
PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI
PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY ARKUSZ I STYCZEŃ 2014 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 9 stron (zadania 1 3). Ewentualny brak zgłoś przewodniczącemu
8. Neuron z ciągłą funkcją aktywacji.
8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i
Numer zadania Liczba punktów
Kod ucznia Łączna liczba punktów Numer zadania 1 13 14 16 17 18 19 20 Liczba punktów Drogi Uczniu! Przed Tobą test składający się z 20 zadań. Za wszystkie zadania razem możesz zdobyć 45 punktów. Aby mieć
Działania uczniów klasy 3a wg Scenariusza zajęć edukacyjnych z matematyki Wykorzystanie w edukacji matematycznej własnej gry planszowej
Działania uczniów klasy 3a wg Scenariusza zajęć edukacyjnych z matematyki Wykorzystanie w edukacji matematycznej własnej gry planszowej rok szkolny 2016/2017 OPRACOWANO W RAMACH PROJEKTU "PODNOSZENIA KOMPETENCJI
Kodu z klasą. Tower defense, cz. 2. Scenariusz 8
W scenariuszu nr 8 kontynuujemy pracę rozpoczętą na poprzednich zajęciach i ukończymy cały scenariusz gry Tower Defense. Dzisiaj zaprogramujemy pozostałe obiekty, czyli drzewo i jabłka, wieże oraz wrogie
Analiza matematyczna i algebra liniowa Macierze
Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek
Metoda eliminacji Gaussa
Metoda eliminacji Gaussa Rysunek 3. Rysunek 4. Rozpoczynamy od pierwszego wiersza macierzy opisującej nasz układ równań (patrz Rys.3). Zakładając, że element a 11 jest niezerowy (jeśli jest, to niezbędny
Podręcznik. Przykład 1: Wyborcy
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 5892 424 http://www.neuroinf.pl/members/danek/swps/ Iwo Białynicki-Birula Iwona Białynicka-Birula
INFORMATYKA POZIOM ROZSZERZONY
EGZAMIN MATURALNY W ROKU SZKOLNYM 2015/2016 FORMUŁA DO 2014 ( STARA MATURA ) INFORMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MIN-R1, R2 MAJ 2016 Uwaga: Akceptowane są wszystkie odpowiedzi
INFORMATYKA POZIOM ROZSZERZONY
EGZAMIN MATURALNY W ROKU SZKOLNYM 2015/2016 FORMUŁA DO 2014 ( STARA MATURA ) INFORMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MIN-R1, R2 MAJ 2016 Uwaga: Akceptowane są wszystkie odpowiedzi
Sortowanie - wybrane algorytmy
Sortowanie - wybrane algorytmy Aleksandra Wilkowska Wydział Matematyki - Katedra Matematyki Stosowanej Politechika Wrocławska 2 maja 2018 1 / 39 Plan prezentacji Złożoność obliczeniowa Sortowanie bąbelkowe
Algorytm DIC. Dynamic Itemset Counting. Magdalena Przygórzewska Karolina Stanisławska Aleksander Wieczorek
Algorytm DIC Dynamic Itemset Counting Magdalena Przygórzewska Karolina Stanisławska Aleksander Wieczorek Spis treści 1 2 3 4 Algorytm DIC jako rozszerzenie apriori DIC Algorytm znajdowania reguł asocjacyjnych
Szachy INSTRUKCJA. rekwizyty: 1) Bierki - 32 szt. 2) plansza - 1 szt.
INSTRUKCJA Szachy rekwizyty: 1) Bierki - 32 szt. 2) plansza - 1 szt. Partia szachowa jest rozgrywana między dwoma przeciwnikami, którzy wykonują posunięcia bierkami na kwadratowej tablicy, zwanej szachownicą.
SZACHY mini INSTRUKCJA. rekwizyty: 1) Bierki - 32 szt. 2) plansza - 1 szt.
INSTRUKCJA SZACHY mini rekwizyty: 1) Bierki - 32 szt. 2) plansza - 1 szt. Partia szachowa jest rozgrywana między dwoma przeciwnikami, którzy wykonują posunięcia bierkami na kwadratowej tablicy, zwanej
Technologie Informacyjne
POLITECHNIKA KRAKOWSKA - WIEiK - KATEDRA AUTOMATYKI Technologie Informacyjne www.pk.edu.pl/~zk/ti_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład: Generacja liczb losowych Problem generacji
3. Organizacja rozgrzewki jak na rysunku- dowolne podania pomiędzy zawodnikami w sposób określony przez trenera, po wykonaniu podania zawodnicy wykonu
1. Organizacja rozgrzewki jak na rysunku. Wymiana podań i zatrzymanie piłki zmiana miejsc następuje poprzez wykonanie ćwiczenia w ruchu wg schematu. Na sygnał trenera zmiana zawodników środkowych i skrajnych.
UWAGA!!! Przed przystąpieniem do zamknięcia roku proszę zrobić kopie bezpieczeństwa
UWAGA!!! Przed przystąpieniem do zamknięcia roku proszę zrobić kopie bezpieczeństwa Następnie należy sprawdzić czy w KOLFK w Słownik i-> Dokumenty-> znajduje się dokument BO- Bilans Otwarcia (w grupie
Materiały: kartki papieru (5 x 5 kolorów), piłeczki pingpongowe (5 x 5 kolorów), worek (nieprzeźroczysty).
Pudełkowy komputer Materiały: kartki papieru (5 x 5 kolorów), piłeczki pingpongowe (5 x 5 kolorów), worek (nieprzeźroczysty). Budowa komputera: każdy uczeń składa proste pudełko metodą orgiami Zobacz:
Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki
Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First
Lista 0. Kamil Matuszewski 1 marca 2016
Lista 0 Kamil Matuszewski marca 206 2 3 4 5 6 7 8 0 0 Zadanie 4 Udowodnić poprawność mnożenia po rosyjsku Zastanówmy się co robi nasz algorytm Mamy podane liczby n i m W każdym kroku liczbę n dzielimy
Krzywe na płaszczyźnie i w przestrzeni
Konferencja SEM Formalizmy tak czy nie? Krzywe na płaszczyźnie i w przestrzeni Joanna Jaszuńska Wydział Matematyki, Informatyki i Mechaniki UW oraz Instytut Matematyczny PAN Krzywe... 1 21 X 2017 Joanna
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Optymalizacja. Przeszukiwanie lokalne
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Idea sąsiedztwa Definicja sąsiedztwa x S zbiór N(x) S rozwiązań, które leżą blisko rozwiązania x
Matematyka podstawowa X. Rachunek prawdopodobieństwa
Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę
Opis implementacji: Poznanie zasad tworzenia programów komputerowych za pomocą instrukcji języka programowania.
Nazwa implementacji: Robot biedronka Autor: Jarosław Żok Opis implementacji: Poznanie zasad tworzenia programów komputerowych za pomocą instrukcji języka programowania. Gra została zaimplementowana z wykorzystaniem
Instrukcje dla zawodników
Instrukcje dla zawodników Nie otwieraj arkusza z zadaniami dopóki nie zostaniesz o to poproszony. Instrukcje poniżej zostaną ci odczytane i wyjaśnione. 1. Arkusz składa się z 3 zadań. 2. Każde zadanie
Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP
Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP Łukasz Strąk lukasz.strak@gmail.com Uniwersytet Śląski, Instytut Informatyki, Będzińska 39, 41-205 Sosnowiec 9 grudnia
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Automat ze stosem Automat ze stosem to szóstka
2.8. Algorytmy, schematy, programy
https://app.wsipnet.pl/podreczniki/strona/38766 2.8. Algorytmy, schematy, programy DOWIESZ SIĘ co oznaczają pojęcia: algorytm, schemat blokowy, język programowania, jakie są sposoby obliczania największego
Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów
Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 14
Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki. Graniczne własności łańcuchów Markowa
Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Graniczne własności łańcuchów Markowa Toruń, 2003 Co to jest łańcuch Markowa? Każdy skończony, jednorodny łańcuch Markowa