c Plan nauczania z matematyki dla kursu maturalnego

Wielkość: px
Rozpocząć pokaz od strony:

Download "c Plan nauczania z matematyki dla kursu maturalnego"

Transkrypt

1 R c Plan nauczania z matematyki dla kursu maturalnego Plan nauczania opracowaªa Izabella

2 . Przedstawione opracowanie chroni ustawa o prawach autorskich. Powielanie, kopiowanie, wykorzystywanie we fragmentach lub w caªo±ci przez inne podmioty lub przez osoby zyczne, bez wiedzy autorów opracowania, jest zabronione pod odpowiedzialno±ci karn oraz cywilno - prawn. Opracowanie publikuje, ul. Smolna 40 lok. 1, Warszawa,

3 1 Plan nauczania 1.1 Cele programu edukacyjnego Celem programu nauczania z matematyki na kursie maturalnym jest powtórzenie, utrwalenie, a przede wszystkim usystematyzowanie wiedzy oraz umiej tno±ci sªuchaczy, która powinna by zdobyta we wcze±niejszych etapach edukacji. Poniewa» nie zawsze ta wiedza jest peªna i w dostateczny sposób ugruntowana i utrwalona, zatem szczególny nacisk kªadziony jest na te dziaªy i zagadnienia matematyczne, które zazwyczaj przysparzaj najwi cej trudno±ci uczniom. Bardzo wa»na jest rozmowa z kursantami na pierwszych zaj ciach (ankieta), jakie s ich oczekiwania wobec kursu i dostosowanie metod i form pracy do indywidualnych potrzeb sªuchaczy. Powtórzenie i utrwalenie wiadomo±ci z matematyki zgodnie z podstaw programow oraz standardami wymaga«egzaminacyjnych, ma za zadanie wyksztaªci nast puj ce kompetencje, które uj te s w cele ogólne: 1. Wykorzystanie i tworzenie informacji; interpretacja tekstu matematycznego, formuªowanie uzyskanych wyników 2. Umiej tno± posªugiwania si prostymi obiektami matematycznymi 3. Umiej tno± dobierania modeli matematycznych do prostej sytuacji 4. Umiej tno± wyboru strategii rozwi zania i stosowania tej strategii, która jasno wynika z tre±ci zadania 5. Umiej tno± przeprowadzenia prostego rozumowania matematycznego skªadaj cego si z niewielkiej ilo±ci kroków A tak»e: 6. Usystematyzowanie wiedzy matematycznej oraz nabycie sprawno±ci wykonywania oblicze«i posªugiwania si modelami i algorytmami matematycznymi, jak równie» umiej tno± wykorzystania ich w sytuacjach praktycznych 7. Umiej tno± opisywania oraz analizy zale»no±ci i zmienno±ci za pomoc elementarnych funkcji 8. Poznanie struktury otaczaj cej nas przestrzeni poprzez wªasno±ci klasycznych obiektów geometrycznych, rozwój wyobra¹ni przestrzennej 9. Poznanie elementarnych metod analizy zjawisk statystycznych i losowych oraz ich najprostszych opisów kombinatorycznych 10. Ksztaªcenie umiej tno±ci logicznego my±lenia oraz argumentowania przeprowadzonego rozumowania dedukcyjnego. 11. Rozwijanie umiej tno±ci czytania tekstu matematycznego ze zrozumieniem 12. Pobudzenie aktywno±ci umysªowej uczniów Wymagania szczegóªowe zostaªy uj te w podsekcji Tre±ci ksztaªcenia dla poszczególnych zaj edukacyjnych. 3

4 1.2 Plan nauczania okre±laj cy nazw zaj edukacyjnych oraz ich wymiar Plan nauczania kursu maturalnego z matematyki obejmuje 96 godzin lekcyjnych I zaj cia (4h) Powtórzenie wiadomo±ci o liczbach i dziaªaniach na liczbach. Dziaªania w zbiorze liczb wymiernych. Dziaªania na pot gach i pierwiastkach; pot ga o wykªadniku wymiernym. Wzory skróconego mno»enia; usuwanie niewymierno±ci z mianownika. II zaj cia (4h) Podstawowe obliczenia procentowe. Zadania z tre±ci dotycz ce procentów. Obliczanie logarytmów. Dziaªania na logarytmach. III zaj cia (4h) Dziaªania na zbiorach. Warto± bezwzgl dna liczby rzeczywistej. Zadania maturalne dotycz ce liczb rzeczywistych. IV zaj cia (4h) Rozwi zywanie równa«: liniowych kwadratowych stopnia wy»szego ni» 2 wykªadniczych wymiernych V zaj cia (4h) Rozwi zywanie równa«- c.d. Rozwi zywanie nierówno±ci. VI zaj cia (4h) Metody rozwi zywania ukªadów równa«liniowych i kwadratowych. Ilo± rozwi za«ukªadów równa«liniowych. Zadania z tre±ci z zastosowaniem ukªadów równa«- zadania maturalne. VII zaj cia (4h) Powtórzenie wiadomo±ci do próbnej matury - wspólne rozwi zywanie arkusza maturalnego. VIII zaj cia (4h) Rozwi zywanie arkusza maturalnego - c.d.- zadania otwarte. IX zaj cia (4h) Poj cie funkcji, sposoby opisywania funkcji, okre±lanie dziedziny, zbioru warto±ci i miejsca zerowego funkcji. Odczytywanie wªasno±ci funkcji z jej wykresu. Przeksztaªcanie wykresów funkcji. X zaj cia (4h) Funkcja liniowa i jej wªasno±ci. XI zaj cia (4h) Funkcja kwadratowa i jej wªasno±ci. XII zaj cia (4h) Samodzielne rozwi zywanie arkusza maturalnego. XIII zaj cia (4h) Omówienie i poprawa arkuszy maturalnych. Wielomiany. XIV zaj cia (4h) Funkcja wykªadnicza i logarytmiczna - podstawowe wªasno±ci. Powtórzenie wiadomo±ci o logarytmach i dziaªaniach na logarytmach. Zadania maturalne dotycz ce funkcji liniowej, kwadratowej, wielomianów. XV zaj cia (4h) Funkcje trygonometryczne k ta ostrego w trójk cie prostok tnym. Zwi zki mi dzy funkcjami trygonometrycznymi tego samego k ta ostrego. To»samo±ci trygonometryczne. 4

5 XVI zaj cia (4h) Ci gi - poj cie ci gu liczbowego. Ci g arytmetyczny i jego wªasno±ci. Ci g geometryczny i jego wªasno±ci. XVII zaj cia (4h) Zadania z tre±ci dotycz ce ci gów. Powtórzenie wiadomo±ci z planimetrii. XVIII zaj cia (4h) Elementy geometrii analitycznej. XIX zaj cia (4h) Stereometria - obliczanie pola powierzchni i obj to±ci bryª. Przegl d zada«maturalnych z trygonometrii, geometrii i stereometrii. XX zaj cia (4h) Elementy statystyki opisowej i kombinatoryki. XXI zaj cia (4h) Rachunek prawdopodobie«stwa - denicja klasyczna; metoda drzew. Zadania maturalne z rachunku prawdopodobie«stwa. XXII zaj cia (4h) Rozwi zywanie zada«z arkuszy maturalnych - zadania otwarte. XXIII zaj cia (4h) Autorska matura próbna. XXIV zaj cia (4h) Omówienie wyników matury próbnej. 1.3 Tre±ci ksztaªcenia w zakresie poszczególnych zaj edukacyjnych Tre±ci ksztaªcenia w zakresie poszczególonych zaj edukacyjnych uj te sa w poni»szej tabeli. 5

6 Tematyka zaj (godz. lekcyjne) 1 (4h). Powtórzenie wiadomo±ci o liczbach; pot gi, pierwiastki, pot ga o wykªadniku wymiernym, wzory skróconego mno-»enia, usuwanie niewymierno±ci z mianownika. Tre±ci szczegóªowe Powtórzenie wiadomo±ci o liczbach : poj cie liczby naturalnej, caªkowitej, wymiernej, niewymiernej, rzeczywistej, pierwszej, zªo»onej; cechy podzielno- ±ci liczb; kolejno± wykonywania dziaªa«; dziaªania na uªamkach zwykªych i dziesi tnych; symbole logiczne; powtórzenie nazewnictwa podstawowych dziaªa«matematycznych; dziaªania na pot gach w tym pot ga o wykªadniku wymiernym, dziaªania na pierwiastkach, pierwiastek nieparzystego stopnia z liczb ujemnych, przybli»enia liczb, bª d wzgl dny i bezwzgl dny; wzory skróconego mno»enia: kwadrat sumy, kwadrat ró»nicy, ró»nica kwadratów, sze±cian sumy, sze±cian ró»nicy, suma i ró»nica sze±cianów; usuwanie niewymierno±ci z mianownika; przeprowadzanie prostych dowodów. Poj cie procentu, obliczanie procentu danej liczby, liczby z danego jej procentu, jakim procentem liczby jest liczba, obni»ka, podwy»ka o dany procent, poj cie punktu procentowego, zadania z tre±ci dotycz ce procentów, zadania geometryczne z procentami; procent skªadany. Oczekiwane osi gni cia kursanta po zako«- czonym kursie; kursant: Potra rozró»ni liczby naturalne, caªkowite, wymierne, niewymierne, rzeczywiste; pierwsze. Potra sprawnie wykonywa dziaªania arytmetyczne na liczbach, zna i rozumie prawa dziaªa«na liczbach, potra wykonywa dziaªania na wyra»eniach algebraicznych, zna i rozumie dziaªania na pot gach i pierwiastkach, w tym potra oblicza pot g o wykªadniku wymiernym oraz zapisywa pierwiastek w postaci pot gi oraz pot g za pomoc pierwiastka; sprawnie posªuguje si wzorami skróconego mno»enia, potra usuwa niewymierno± z mianownika; potra przeprowadzi prosty dowód matematyczny. Potra rozwi za zadania maturalne dotycz ce dziaªa«na liczbach i wyra»eniach algebraicznych. 2 (4h). Podstawowe obliczenia procentowe; dziaªania na logarytmach. Potra wykonywa obliczenia procentowe zarówno w zadaniach rachunkowych jak i w zadaniach tekstowych, potra obliczy podwy»k, obni»k, rabat; potra zastosowa obliczenia procentowe w zadaniach z»ycia codziennego; potra obliczy procent prosty i skªadany, zanalizowa kredyty oferowane przez banki i poda argumentacj ich opªacalno±ci, zastosowa równania oraz proporcje do rozwi zywania zada«z procentami. Zna i rozumie poj cie logarytmu oraz stosuje je w obliczeniach oraz zna i stosuje wzory na logarytm iloczynu, ilorazu i logarytm pot gi o wykªadniku naturalnym. 6

7 3 (4h). Dziaªania na zbiorach. Warto± bezwzgl dna liczby rzeczywistej. Zadania maturalne dotycz ce liczb rzeczywistych. 4 (4h). Rozwi zywanie równa«: liniowych, kwadratowych, stopnia wy»- szego ni» 2, wymiernych oraz wykªadniczych. Poj cie zbioru (zbiory sko«czone, niesko«czone, puste, równe, podzbiory); dziaªania na zbiorach, rodzaje przedziaªów liczbowych; warto± bezwzgl dna liczby rzeczywistej - interpretacja geometryczna, wªasno±ci warto±ci bezwzgl dnej, rozwi zywanie równa«i nierówno±ci w oparciu o de- nicj i wªasno±ci. Zadania maturalne dotycz ce licz rzeczywistych. Równania liniowe, kwadratowe zupeªne i niezupeªne z wykorzystaniem delty, wzorów skróconego mno»enia, wyª czaniem czynnika przed nawias, równania dwukwadratowe, równania stopnia wy»szego ni» 2 - metoda grupowania wyrazów, rozkªadu na czynniki liniowe mo»- liwie najni»szego stopnia, rozwi zywanie prostych równa«wymiernych oraz wykªadniczych. Temat poprzednich zaj jest do± obszerny i nie zawsze uda si go zrealizowa na jednych zaj ciach. Rozwi zywanie równa«(c.d.) oraz rozwi zywanie nierówno±ci liniowych i kwadratowych. Rozwi zywanie zada«maturalnych z dotychczas przerobionego materiaªu. Powtórzenie wiadomo±ci o metodach algebraicznych i gracznych rozwi zywania ukªadów równa«liniowych, ilo± rozwi za«ukªadów równa«liniowych oraz interpretacja geometryczna (proste przecinaj ce si, równolegªe, pokrywaj ce si ), nazewnictwo Potra wykona dziaªania na zbiorach i przedzia- ªach liczbowych, poda algorytm rozwi zania i rozwi za równania i nierówno±ci zwarto±ci bezwzgl dn. Potra zastosowa zdobyt wiedze do rozwi zywania zada«maturalnych. Potra rozwi za równania liniowe, kwadratowe wszystkich rodzajów, dwukwadratowe, stopnia wy»szego ni» 2 oraz wymierne i wykªadnicze. 5 (4h). Rozwi zywanie równa«i nierówno±ci. 6 (4h). Ukªady równa«liniowych i kwadratowych - metody rozwi zywania i ilo± rozwi za«. Zadania tekstowe z arkuszy maturalnych Potra rozwi za nierówno±ci liniowe oraz kwadratowe, zna i rozumie interpretacj geometryczn rozwi zania nierówno±ci kwadratowej. Potra rozwi za ukªad równa«liniowych metoda podstawiania (równie» ukªad trzech równa«z trzema niewiadomymi), przeciwnych wspóªczynników, metoda graczn ; zna i rozumie interpretacje graczn ukªadów równa«liniowych, potra zbada ilo± rozwi za«ukªadów równa«liniowych i kwadratowych oraz zna rodzaje ukªadów równa«ze wzgl du na ilo± rozwi za«. 7

8 z zastosowaniem ukªadów równa«liniowych i kwadratowych. 7 (4h). Powtórzenie wiadomo±ci do matury próbnej. Wspólne rozwi zywanie arkusza maturalnego. 8 (4h). Rozwi zywanie arkusza maturalnego c.d. - zadania otwarte. 9 (4h). Poj cie funkcji, sposoby opisywania funkcji, dziedzina, zbiór warto±ci funkcji, miejsce zerowe funkcji. Odczytywanie wªasno±ci funkcji z wykresu i przeksztaªcanie wykresów funkcji. rodzajów ukªadów równa«liniowych w zale»no±ci od ilo±ci rozwi za«; ukªady równa«kwadratowych - metody rozwi zywania. Zadania z tre±ci z zastosowaniem ukªadów równa«liniowych i kwadratowych. Rozwi zywanie zada«z arkusza maturalnego. Rozwi zywanie zada«otwartych z arkuszy maturalnych. Poj cie funkcji, sposoby opisywania funkcji: opis sªowny, graf, tabelka, wykres, wzór, przykªady ró»nych funkcji; poj cie dziedziny, przeciwdziedziny funkcji, zbioru warto±ci funkcji, interpretacja geometryczna i obliczanie miejsca zerowego funkcji; odczytywanie wªasno±ci funkcji z jej wykresu; przeksztaªcanie wykresów funkcji S ox, S oy, S (0,0) oraz przesuni cie wykresu funkcji o wektor. Rysowanie wykresów funkcji liniowej; proste równolegªe i prostopadªe, równanie prostej przechodz cej przez dwa dane punkty; miejsce zerowe funkcji liniowej, wªasno±ci funkcji liniowej. Proste zadania z parametrem. Potra rozwi za zadania z tre±ci z zastosowaniem ukªadów równa«liniowych i kwadratowych. Poznaje jak skonstruowany jest arkusz maturalny, zapoznaje si ze standardami wymaga«egzaminacyjnych, poznaje strategie rozwi zywania testów oraz kryteria oceniania. Jest to równie» forma powtórki materiaªu liceum. Potra samodzielnie rozwi za najcz ±ciej pojawiaj ce si w arkuszach zadania otwarte, poznaje etapy rozwi zywania zada«otwartych, ró»ne metody rozwi zania zada«. Zna i rozumie poj cia funkcji, potra opisa dana funkcj za pomoc opisu sªownego, grafu, tabelki, wzoru czy wykresu, potra odczyta informacje z wykresu, zna i rozumie oraz potra okre±li dziedzin, zbiór warto±ci funkcji oraz obliczy miejsce zerowe funkcji. Potra odczyta wªasno±ci funkcji z wykresu takie jak: dziedzina, zbiór warto- ±ci, miejsca zerowe, punkty przeci cia z osiami ukªadu wspóªrz dnych, monotoniczno±, dla jakich argumentów funkcja przyjmuje warto±ci dodatnie, ujemne, warto± najmniejsz i najwi ksz funkcji. Potra przeksztaªci wykres funkcji przez symetri lub przesun o wektor. Potra narysowa wykres funkcji liniowej, omówi wªasno±ci funkcji z wykresu; wyznaczy równanie prostej równolegªej i prostopadªej oraz przechodz cej przez dwa dane punkty, wyznaczy wzór funkcji liniowej gdy narysowany jest jej wykres. 10 (4h). Funkcja liniowa i jej wªasno- ±ci. 8

9 11 (4h). Funkcja kwadratowa i jej wªasno±ci. Posta ogólna, kanoniczna i iloczynowa funkcji kwadratowej. Powtórzenie wzorów na pierwiastki trójmianu kwadratowego oraz powtórzenie rozwi zywania nierówno±ci kwadratowych. Warto± najmniejsza i najwi ksza funkcji kwadratowej, o± symetrii wykresu, rysowanie wykresów funkcji kwadratowej i odczytywanie wªasno±ci funkcji z jej wykresu. Wyznaczanie wzoru funkcji kwadratowej, gdy narysowany jest jej wykres. Potra narysowa wykres funkcji kwadratowej i opisa jej wªasno±ci ; potra rozpozna trójmian kwadratowy w postaci ogólnej i kanonicznej, potra na podstawie postaci kanonicznej funkcji kwadratowej narysowa wykres, odczyta wspóªrz dne wierzchoªka paraboli; potra zamieni posta ogóln trójmianu kwadratowego na kanoniczn i odwrotnie ; wyznaczanie miejsc zerowych funkcji kwadratowej oraz zbiorów, w których funkcja przyjmuje warto±ci dodatnie oraz ujemne; potra ustali liczb miejsc zerowych trójmianu kwadratowego z zale»no±ci od wyró»- nika trójmianu; potra wyznaczy warto±ci ekstremalne funkcji kwadratowej; potra rozªo»y na czynniki trójmian kwadratowy w ró»nej postaci, potra zapisa trójmian kwadratowy w postaci iloczynowej gdy dane s jego pierwiastki oraz odczyta miejsca zerowe gdy trójmian zapisany jest w postaci iloczynowej, potra rozwi za równanie i nierówno± kwadratow ; potra rozwi za zadanie z tre±ci. Potra rozwi za samodzielnie arkusz maturalny, jest to wiczenie maj ce na celu równie» zapoznanie si ze standardami wymaga«egzaminacyjnych. Rozwi zywanie arkuszy maturalnych odbywa si w trakcie prawie ka»dych zaj. Jest to cz ± arkusza, same zadania zamkni te lub pojedyncze zadania otwarte dotycz ce aktualnie przerabianego materiaªu na zaj ciach. Sprawnie wykonuje dziaªania na wielomianach; stosuje wzory skróconego mno»enia, wyª czanie wspólnego czynnika przed nawias oraz metod grupowania wyrazów przy rozkªadaniu wielomianu na czynniki; potra sprawdzi czy dana liczba jest pierwiastkiem wielomianu; rozwi zuje równania wielomianowe. 12 (4h). Samodzielne rozwi - zywanie arkusza maturalnego. 13 (4h). Omówienie i poprawa arkuszy maturalnych. Wielomiany. Kursant rozwi zuje samodzielnie arkusz maturalny, korzystaj c z wªasnych wiadomo±ci, które nabyª w szkole oraz z wiedzy i umiej tno±ci, które posiadª do tej pory na kursie. Omówienie zada«z arkusza maturalnego, omówienie najcz ±ciej popeªnianych bª dów oraz zada«, które przysporzyªy kursantom najwi cej trudno±ci. Wielomiany: dodawanie, odejmowanie i mno»enie wielomianów. Warto± wielomianu, równo± wielomianu, pierwiastek wielomianu. Rozwi zywanie równa«stopnia wy»szego ni» 2 (przypomnienie) - metoda grupowania wyrazów, 9

10 14 (4h). Funkcja wykªadnicza i logarytmiczna - podstawowe wªasno±ci. Przegl d zada«maturalnych dotycz - cych funkcji. wyª czania wspólnego czynnika przed nawias, korzystanie ze wzorów skróconego mno»enia oraz wprowadzanie pomocniczej niewiadomej. Proste równania i nierówno- ±ci wykªadnicze (przypomnienie); oraz równania i nierówno- ±ci logarytmiczne; wykres i wªasno±ci funkcji wykªadniczej i logarytmicznej. Zadania maturalne dotycz ce funkcji liniowej, kwadratowej, wielomianów oraz funkcji wykªadniczej i logarytmicznej. Miara stopniowa i ªukowa kata; funkcje trygonometryczne w trójk cie prostok tnym, wspóªczynnik kierunkowy prostej a k t nachylenia tej prostej do osi ox; zwi zki mi dzy funkcjami trygonometrycznymi tego samego k ta ostrego w trójk cie prostok tnym; zadania geometryczne z zastosowaniem funkcji trygonometrycznych. To»samo±ci trygonometryczne. 15 (4h). Funkcje trygonometryczne k ta ostrego w trójk cie prostok tnym. Potra narysowa wykres funkcji wykªadniczej i logarytmicznej oraz odczyta wªasno±ci funkcji z jej wykresu; potra sprawdzi czy dany punkt nale»y do wykresu funkcji. Potra rozwi zywa zadania maturalne dotycz ce funkcji w tym funkcji liniowej, kwadratowej, wielomianu, funkcji wykªadniczej i logarytmicznej. Potra sprawnie operowa poj ciami k t prosty, ostry, rozwarty, póªpeªny, peªny, wkl sªy, wypukªy; potra zamieni miar stopniow na ªukowa i odwrotnie; sprawnie rozwi zuje trójk ty prostok tne przy ró»nych danych; potra sprawnie korzysta z tablic warto±ci funkcji trygonometrycznych, potra samodzielnie obliczy warto±ci funkcji trygonometrycznych k tów 30, 60, 45 oraz wyprowadzi wzory na zwi zki mi dzy funkcjami trygonometrycznymi tego samego k ta ostrego ; potra interpretowa wspóªczynnik kierunkowy prostej przechodz cej przez dany punkt i nachylonej do osi ox pod danym k tem; potra wykorzysta zale»no±ci mi dzy funkcjami trygonometrycznymi tego samego k ta ostrego do obliczania brakuj cych warto±ci jego funkcji trygonometrycznych, sprawnie przeksztaªca wyra»enia zawieraj ce funkcje trygonometryczne i dowodzi to»samo±ci trygonometryczne; potra rozwi za zadania geometryczne z»ycia codziennego z wykorzystaniem funkcji trygonometrycznych. 10

11 16 (4h). Ci gi - poj cie ci gu liczbowego. Ci g arytmetyczny i jego wªasno±ci. Ci g geometryczny i jego wªasno±ci. Poj cie ci gu liczbowego, monotoniczno± ci gu. Ci g arytmetyczny i jego wªasno±ci, suma n wyrazów ci gu arytmetycznego; ci g geometryczny i jego wªasno- ±ci, suma n wyrazów ci gu geometrycznego. 17 (4h). Zadania z tre±ci dotycz ce ci gów. Powtórzenie wiadomo±ci z planimetrii. Zadania tekstowe z wykorzystaniem wªasno±ci ci gu arytmetycznego i geometrycznego. Podstawowe wªasno±ci gur geometrycznych na pªaszczy¹nie: czworok ty, trójk ty, wielok ty, koªo i okr g; wzajemne poªo»enie prostej i okr gu; k ty w kole, okr g wpisany i opisany na trójk - cie, zale»no±ci mi dzy bokami i k tami w trójk cie, nierówno± trójk ta, suma miar k tów w trójk cie, czworok cie i wielok - cie foremnym; okr g wpisany i opisany na czworok cie; pola - gur pªaskich; twierdzenie Pitagorasa i twierdzenie do niego odwrotne, twierdzenie Talesa, podobie«stwo gur; wªasno±ci trójk tów prostok tnych o k tach 30, 60, 90 oraz 45, 45, 90. Posta ogólna i kierunkowa prostej; proste równolegªe i prostopadªe, równanie prostej przechodz cej przez dwa dane punkty, symetralna odcinka. Potra oblicza warto±ci wyrazów ci gu na podstawie wzoru; sprawdzanie czy dana warto± jest wyrazem ci gu, sprawdzanie które wyrazy ci gu nale» do danego przedziaªu; potra zbada monotoniczno± ci gu; potra sprawdzi czy ci g jest arytmetyczny, potra ustali wzór ci gu arytmetycznego na podstawie ró»nych danych, potra obliczy sum n-wyrazów ci gu arytmetycznego, rozwi zuje zadania z wykorzystaniem wªasno- ±ci ci gu arytmetycznego oraz wzorów na a n i S n ; potra sprawdzi czy ci g jest geometryczny, ustali wzór ci gu geometrycznego na podstawie ró»nych danych, potra obliczy sum n pocz tkowych wyrazów ci gu geometrycznego, rozwi - zuje zadania z wykorzystaniem wzorów na a n i S n ci gu geometrycznego. Potra okre±la wªasno±ci gur pªaskich oraz zna podstawowe wzory na pola gur pªaskich, przek tna kwadratu, wysoko± i pole trójk ta równobocznego; potra stosowa wªasno±ci gur pªaskich przy rozwi zywaniu zada«; potra okre±la wzajemne poªo»enie prostej i okr gu oraz dwóch okr gów; potra posªugiwa si wªasno±ciami k - tów w kole; zna i rozumie oraz potra zastosowa twierdzenie Pitagorasa i Talesa oraz podobie«stwo gur do rozwi zywania zada«maturalnych oraz zastosowa twierdzenia o wielok tach, wªasno±ci gur do rozwi zywania problemów. 18 (4h). Elementy geometrii analitycznej. Potra odró»ni równanie prostej w postaci ogólnej od kierunkowej; potra obliczy wspóªczynnik kierunkowy i caªe równanie prostej przechodz cej przez dwa dane punkty z zastosowaniem wzoru oraz ukªadu równa«, potra wyznaczy 11

12 19 (4h). Stereometria - obliczanie pola powierzchni i obj to±ci bryª, podstawowe wªasno±ci bryª. Zadania maturalne. Odlegªo± dwóch punktów w ukªadzie wspóªrz dnych. Odlegªo± punktu od prostej, obliczanie pola trójk ta. Równanie okr gu w ukªadzie wspóªrz dnych. Jednostki pola i obj to±ci bryª. K t dwu±cienny. Przypomnienie poj cia pola powierzchni i obj to±ci bryª - podstawowe wzory. Zale»no±ci mi dzy ilo- ±ci kraw dzi podstawy, ilo- ±ci ±cian i wierzchoªków w graniastosªupach i ostrosªupach. Zwi zki miarowe w graniastosªupach i ostrosªupach z zastosowaniem trygonometrii oraz wªasno±ci trójk tów prostok tnych. Podstawowe wªasno±ci bryª obrotowych, pole powierzchni i obj to±ci walca, sto»ka i kuli. Zwi zki miarowe w bryªach obrotowych z zastosowaniem trygonometrii i wªasno±ci trójk tów prostok tnych. Zadania maturalne z zastosowaniem trygonometrii, planimetrii i stereometrii. rednia arytmetyczna, ±rednia wa»ona, mediana, dominanta, wariancja, odchylenie standardowe; wykonywanie i odczytywanie diagramów ilustruj cych wyniki do±wiadcze«losowych. Twierdzenie o mno»eniu, poj cie silni, permutacje, wariacje, kombinacje - zadania maturalne. równanie prostej równolegªej i prostopadªej do danej prostej i przechodz cej przez dany punkt. Potra obliczy równanie symetralnej odcinka; odlegªo± dwóch punktów w ukªadzie wspóªrz dnych oraz odlegªo± punktu od prostej. Potra oblicza pola i obwody gur na pªaszczy¹nie kartezja«skiej. Rozpoznaje równanie okr gu, potra odczyta wspóªrz dne ±rodka i promie«okr gu o danym równaniu oraz zapisa równanie okr gu maj c dane wspóªrz dne ±rodka i promie«okr gu. Potra rozwi zywa zadania maturalne z dziaªu geometria analityczna. Potra poda jednostki pola i obj to±ci bryª i zamieni jednostki pola i obj to±ci; potra poda wªasno±ci graniastosªupów, ostrosªupów oraz bryª obrotowych; potra obliczy pole i obj to± bryª. Potra rozwi za zadania maturalne z zastosowaniem trygonometrii, planimetrii i stereometrii. 20 (4h). Elementy statystyki opisowej i kombinatoryki. Potra obliczy ±redni arytmetyczn, ±redni wa»on, median, wariancj, dominant i odchylenie standardowe danych z próby; potra wykona i odczyta dane z diagramów. Potra zastosowa elementy kombinatoryki w prostych zadaniach, potra obliczy warto± n! oraz warto± kombinacji; potra rozpozna permutacje, wariacje i kombinacje oraz obliczy ich liczb. 12

13 21 (4h). Rachunek prawdopodobie«- stwa - denicja klasyczna. Zdarzenie losowe, zbiór zdarze«elementarnych. Klasyczna i aksjomatyczna denicja prawdopodobie«stwa oraz jego wªasno±ci. Rozwi zywanie zada«maturalnych z rachunku prawdopodobie«stwa; metoda drzew. 22 (4h). Rozwi zywanie zada«z arkuszy maturalnych - zadania otwarte. 23 (4h). Autorska matura próbna. Zadania otwarte z arkuszy maturalnych o ró»nym stopniu trudno±ci. To ju» ostatni arkusz maturalny, który uczniowie samodzielnie rozwi zuj na zaj ciach. Omówienie zada«z próbnej matury. Ostatnie wskazówki dla maturzystów. Potra poda przykªady zdarze«losowych; potra wskaza zdarzenia elementarne w konkretnych do±wiadczeniach oraz oblicza liczb zdarze«elementarnych w konkretnym do±wiadczeniu; potra wykonywa dziaªania na zdarzeniach, potra rozró»ni zna i rozumie poj cie zdarzenia pewnego i niemo»liwego, potra opisa zdarzenie przeciwne do danego zdarzenia losowego, potra obliczy prawdopodobie«stwo zdarzenia losowego z zastosowaniem klasycznej denicji prawdopodobie«stwa, potra zastosowa wzór na prawdopodobie«stwo sumy zdarze«, potra zastosowa wzór na prawdopodobie«stwo zdarzenia przeciwnego. Potra samodzielnie rozwi za zadania otwarte z arkuszy maturalnych, zna strategi i etapy rozwi zywania takich zada«, potra w dokªadny i precyzyjny sposób przenie± na arkusz maturalny tok swojego rozumowania, zapisa prawidªowo rozwi zanie i odpowied¹. Potra samodzielnie rozwi za arkusz maturalny oraz potra korzysta z tablic matematycznych. 24 (4h). Omówienie wyników próbnej matury. 13

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)

Bardziej szczegółowo

MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia

MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia KLASA I (3 h w tygodniu x 32 tyg. = 96 h; reszta godzin do dyspozycji nauczyciela) 1. Liczby rzeczywiste Zbiory Liczby naturalne Liczby wymierne

Bardziej szczegółowo

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku

Bardziej szczegółowo

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymaga egzaminacyjnych Zdaj cy posiada umiej tno ci w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

ZAKRES PODSTAWOWY. Proponowany rozkład materiału kl. I (100 h)

ZAKRES PODSTAWOWY. Proponowany rozkład materiału kl. I (100 h) ZAKRES PODSTAWOWY Proponowany rozkład materiału kl. I (00 h). Liczby rzeczywiste. Liczby naturalne. Liczby całkowite. Liczby wymierne. Liczby niewymierne 4. Rozwinięcie dziesiętne liczby rzeczywistej 5.

Bardziej szczegółowo

MATeMAtyka zakres podstawowy

MATeMAtyka zakres podstawowy MATeMAtyka zakres podstawowy Proponowany rozkład materiału kl. I (100 h) 1. Liczby rzeczywiste 15 1. Liczby naturalne 1 2. Liczby całkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3 4. Rozwinięcie

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek

Bardziej szczegółowo

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy. Klasa I (60 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy. Klasa I (60 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy (według podręczników z serii MATeMAtyka) Temat Klasa I (60 h) Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania

Bardziej szczegółowo

Materiaªy do Repetytorium z matematyki

Materiaªy do Repetytorium z matematyki Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję

Bardziej szczegółowo

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II

Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II 1.Uzupełnienie treści ujętych w działach klasy I. 1.Rozwiązywanie prostych równań i nierówności z wartością bezwzględną

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego. Test matematyczno-przyrodniczy matematyka. Test GM-M1-122,

Analiza wyników egzaminu gimnazjalnego. Test matematyczno-przyrodniczy matematyka. Test GM-M1-122, Analiza wyników egzaminu gimnazjalnego Test matematyczno-przyrodniczy Test GM-M1-122, Zestaw zadań z zakresu matematyki posłużył w dniu 25 kwietnia 2012 r. do sprawdzenia, u uczniów kończących trzecią

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

Rozkład materiału klasa 1BW

Rozkład materiału klasa 1BW Rozkład materiału klasa BW wg podręcznika Matematyka kl. wyd. Nowa Era 2h x 38 tyg. = 76h lekcyjnych LICZBYRZECZYWISTE (7 godz.). Zapoznanie z programem nauczania, wymaganiami edukacyjnymi, zasadami BHP

Bardziej szczegółowo

Rozkład materiału: matematyka na poziomie rozszerzonym

Rozkład materiału: matematyka na poziomie rozszerzonym Rozkład materiału: matematyka na poziomie rozszerzonym KLASA I 105h Liczby (30h) 1. Zapis dziesiętny liczby rzeczywistej 2. Wzory skróconego mnoŝenia 3. Nierówności pierwszego stopnia 4. Przedziały liczbowe

Bardziej szczegółowo

Rozkład materiału KLASA I

Rozkład materiału KLASA I I. Liczby (20 godz.) Rozkład materiału Wg podręczników serii Prosto do matury. Zakres podstawowy KLASA I 1. Zapis dziesiętny liczby rzeczywistej 1 1.1 2. Wzory skróconego mnoŝenia 3 2.1 3. Nierówności

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5. Nr zadania Nr czynno ci... ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Etapy rozwi zania zadania Wprowadzenie oznacze : x, x, y poszukiwane liczby i zapisanie równania: x y lub: zapisanie

Bardziej szczegółowo

Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% C) 5 3 A) B) C) D)

Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% C) 5 3 A) B) C) D) W ka dym z zada.-24. wybierz i zaznacz jedn poprawn odpowied. Zadanie. (0- pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% Zadanie 2. (0- pkt) Wyra enie

Bardziej szczegółowo

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne Arkusz maturalny Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Odwrotno±ci liczby rzeczywistej 1. 9 8 2. 0, (1) 3. 8 9 4. 0, (8) 3 4 4 4 1 jest liczba Odwrotno±ci liczby rzeczywistej 3 4 4 4

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach

Bardziej szczegółowo

Funkcje, wielomiany. Informacje pomocnicze

Funkcje, wielomiany. Informacje pomocnicze Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a

Bardziej szczegółowo

III. STRUKTURA I FORMA EGZAMINU

III. STRUKTURA I FORMA EGZAMINU III. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzającym wiadomości i umiejętności określone w Standardach wymagań egzaminacyjnych i polega na rozwiązaniu zadań

Bardziej szczegółowo

'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+

'()(*+,-./01(23/*4*567/8/23/*98:)2(!./+)012+3$%-4#4$5012#-4#4-6017%*,4.!#$!#%&!!!#$%&#'()%*+,-+ '()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+ Ucze interpretuje i tworzy teksty o charakterze matematycznym, u ywa j zyka matematycznego do opisu

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura

Standardy wymagań maturalnych z matematyki - matura Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania

Bardziej szczegółowo

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany.

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany. MATEMATYKA kurs uzupełniający dla studentów 1. roku PWSZ w ramach»europejskiego Funduszu Socjalnego«Adam Kolany rozkład materiału Projekt finansowany przez Unię Europejską w ramach Europejskiego Funduszu

Bardziej szczegółowo

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki Standardy wymagań na egzaminie maturalnym z matematyki mają dwie części. Pierwsza część opisuje pięć podstawowych obszarów umiejętności matematycznych. Druga część podaje listę szczegółowych umiejętności.

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum LICZBY (20 godz.) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum Wg podręczników serii Prosto do matury KLASA I (60 godz.) 1. Zapis dziesiętny liczby rzeczywistej 1 2. Wzory skróconego

Bardziej szczegółowo

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu. ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie

Bardziej szczegółowo

IV. STRUKTURA I FORMA EGZAMINU

IV. STRUKTURA I FORMA EGZAMINU IV. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzaj cym wiadomo ci i umiej tno ci okre lone w Standardach wymaga egzaminacyjnych i polega na rozwi zaniu zada

Bardziej szczegółowo

83 Przekształcanie wykresów funkcji (cd.) 3

83 Przekształcanie wykresów funkcji (cd.) 3 Zakres podstawowy Zakres rozszerzony dział temat godz. dział temat godz,. KLASA 1 (3 godziny tygodniowo) - 90 godzin KLASA 1 (5 godzin tygodniowo) - 150 godzin I Zbiory Zbiory i działania na zbiorach 2

Bardziej szczegółowo

KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6

KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6 KLASA 3 GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R.

Bardziej szczegółowo

Rozkład materiału KLASA I

Rozkład materiału KLASA I I. Liczby (31 godz.) Rozkład materiału Wg podręczników serii Prosto do matury. Zakres podstawowy i rozszerzony (Na czerwono zaznaczono treści z zakresu rozszerzonego) KLASA I 1. Zapis dziesiętny liczby

Bardziej szczegółowo

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY PIERWSZEJ

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY PIERWSZEJ MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. LICZBY RZECZYWISTE DLA KLASY PIERWSZEJ 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Załącznik nr 4 do PSO z matematyki

Załącznik nr 4 do PSO z matematyki Załącznik nr 4 do PSO z matematyki Wymagania na poszczególne oceny szkolne z matematyki na poziomie rozszerzonym Charakterystyka wymagań na poszczególne oceny: Wymagania na ocenę dopuszczającą dotyczą

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura 2010

Standardy wymagań maturalnych z matematyki - matura 2010 Standardy wymagań maturalnych z matematyki - matura 2010 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Standardy można pobrać (plik pdf) wybierając ten link: STANDARDY 2010 lub

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

ZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied.

ZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied. 2 Przyk adowy arkusz egzaminacyjny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied. Zadanie 1. (1 pkt) Pole powierzchni ca kowitej sze

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 2c: wpisy oznaczone jako: (PI) PLANIMETRIA I, (SA) SUMY ALGEBRAICZNE, (FW) FUNKCJE WYMIERNE, (FWL) FUNKCJE

Bardziej szczegółowo

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony Funkcja wykładnicza i funkcja logarytmiczna. Stopień Wiadomości i umiejętności -definiować potęgę

Bardziej szczegółowo

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie

Bardziej szczegółowo

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom rozszerzony

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom rozszerzony Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. LICZBY RZECZYWISTE Kl. I poziom rozszerzony podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych,

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy LUELSK PRÓ PRZED MTURĄ 08 poziom podstawowy Schemat oceniania Zadania zamknięte (Podajemy kartotekę zadań, która ułatwi Państwu przeprowadzenie jakościowej analizy wyników). Zadanie. (0 ). Liczby rzeczywiste.

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA III TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

Matematyka wykaz umiejętności wymaganych na poszczególne oceny

Matematyka wykaz umiejętności wymaganych na poszczególne oceny Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA I 1.Liczby rzeczywiste 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

Opis założonych osiągnięć ucznia klasy ZSZ (od 2012r.)

Opis założonych osiągnięć ucznia klasy ZSZ (od 2012r.) Opis założonych osiągnięć ucznia klasy ZSZ (od 2012r.) Zastosowanie przez nauczyciela wcześniej opisanych metod nauczania, form pracy i środków dydaktycznych oraz korzystanie z niniejszego programu nauczania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019

WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 Przedmiot Klasa Nauczyciele uczący Poziom matematyka 4e Łukasz Jurczak rozszerzony 2. Elementy analizy matematycznej ocena dopuszczająca ocena dostateczna ocena

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY 1 Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań na oceny 2 Trygonometria Funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym 3-4 Trygonometria Funkcje trygonometryczne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI (zakres podstawowy) Rok szkolny 2017/2018 - klasa 2a, 2b, 2c 1. Funkcja

Bardziej szczegółowo

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,

Bardziej szczegółowo

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku

Bardziej szczegółowo

ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste

ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste CZĘŚĆ I ZAKRES PODSTAWOWY W nawiasach proponowane oceny: 2 poziom konieczny wymagań edukacyjnych 3 poziom podstawowy wymagań edukacyjnych 4 poziom rozszerzający wymagań edukacyjnych 5 poziom dopełniający

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Funkcja liniowa dopuszczającą jeżeli: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy

Bardziej szczegółowo

Kryteria oceniania z matematyki Klasa III poziom podstawowy

Kryteria oceniania z matematyki Klasa III poziom podstawowy Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi

Bardziej szczegółowo

Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji)

Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji) Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji) Od roku 2010 matematyka będzie obowiązkowo zdawana przez wszystkich maturzystów. W ślad za tą decyzją podjęto prace nad

Bardziej szczegółowo

Matematyka Kalendarz przygotowaƒ do matury 2011

Matematyka Kalendarz przygotowaƒ do matury 2011 Matematyka Kalendarz przygotowaƒ do matury 2011 imi i nazwisko zakres podstawowy (wersja dla ucznia) 3 wykonane yg. Dzia ematy Zadania test podręcznik vademecum start 4.10 30 8.10 rzygotowanie do pracy

Bardziej szczegółowo

1. Potęgi. Logarytmy. Funkcja wykładnicza

1. Potęgi. Logarytmy. Funkcja wykładnicza 1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

07_Matematyka ZR_kalendarz-okl 2012_01_04 LOMzrKal_cover :58 Strona 1. Kalendarz przygotowań plan pracy na rok szkolny

07_Matematyka ZR_kalendarz-okl 2012_01_04 LOMzrKal_cover :58 Strona 1. Kalendarz przygotowań plan pracy na rok szkolny 07_Matematyka ZR_kalendarz-okl 2012_01_04 LOMzrKal_cover 11-06-17 11:58 Strona 1 Kalendarz przygotowań plan pracy na rok szkolny ISBN 978-83-7680-389-0 9 788376 803890 rogram Matura z Operonem Lista uczestników

Bardziej szczegółowo

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Egzamin maturalny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Zadanie 1. (1 pkt) Cen nart obni ono o 0%, a po miesi cu now cen obni ono

Bardziej szczegółowo

Wymagania edukacyjne dla klasy 1 Liceum zakres podstawowy i rozszerzony

Wymagania edukacyjne dla klasy 1 Liceum zakres podstawowy i rozszerzony Wymagania edukacyjne dla klasy Liceum zakres podstawowy i rozszerzony Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca (K) ocena dostateczna (K) i (P) ocena

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres podstawowy) klasa 2 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.

Bardziej szczegółowo

Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie:

Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie: WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca P - podstawowy ocena dostateczna (dst.) R - rozszerzający ocena dobra (db.) D

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie

Bardziej szczegółowo

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym 2013-2014 Ocenę celującą otrzymuje uczeń, który: wykorzystuje na lekcjach matematyki wiadomości z innych

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:

Bardziej szczegółowo

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego 1. Liczby rzeczywiste P1.1. Przedstawianie liczb rzeczywistych w różnych postaciach (np. ułamka zwykłego,

Bardziej szczegółowo

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI Kryteria ocen 1. Wymagania edukacyjne na poszczególne oceny: Ocenę celującą otrzymuje uczeń, który: Posiadł wiedzę i umiejętności obejmujące pełny

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM Matematyka z plusem dla gimnazjum WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (dp.) P - podstawowy ocena dostateczna (dst.)

Bardziej szczegółowo

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA 1. FUNKCJE 2. POTĘGI I PIERWIASTKI NaCoBeZu kryteria sukcesu w języku ucznia 1. Wiem, co to jest układ współrzędnych, potrafię nazwać osie układu. 2. Rysuję układ współrzędnych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II Ti ZAKRES PODSTAWOWY i ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II Ti ZAKRES PODSTAWOWY i ROZSZERZONY . ROZUMOWANIE I ARGUMENTACJA stosuje ogólny zapis liczb naturalnych parzystych, nieparzystych, podzielnych przez 3 itp. wykorzystuje dzielenie z resztą do przedstawienia liczby naturalnej w postaci a k

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Klasa pierwsza zakres rozszerzony. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje liczbę do odpowiedniego zbioru

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.

WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych,

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: IV 67 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ

ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-061 POZIOM PODSTAWOWY Czas pracy 10 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 1 stron.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia

Bardziej szczegółowo

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ ALGEBRA Klasa I 3 godziny tygodniowo Klasa II 4 godziny tygodniowo Klasa III 3 godziny tygodniowo A. Liczby (24) 1. Liczby naturalne i całkowite. a. Własności, kolejność

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo