Niepewność w wiedzy. Agnieszka Nowak - Brzezińska

Wielkość: px
Rozpocząć pokaz od strony:

Download "Niepewność w wiedzy. Agnieszka Nowak - Brzezińska"

Transkrypt

1 Realizacja niepewności wiedzy w systemach ekspertowych Instytut Informatyki, Uniwersytet Śląski, ul. Będzinska 39, Sosnowiec, Polska Tel (32) , Fax (32) czerwca 2010

2 Table of contents 1 Wprowadzenie

3 Słowem wstępu... Od zarania dziejów człowiek staje przed koniecznością dokonania wyborów o mniejszym bądź większym znaczeniu. W bardzo złożonych systemach często wkrada się niepewność, której nie można traktować jako losowość, dającą się opisywać klasycznym rachunkiem prawdopodobieństwa bądź statystyką, gdyż ona ma zastosowanie tylko dla zjawisk masowych (często powtarzalnych). Nie ma zaś metod radzenia sobie z przypadkami rzadkimi.

4 ... Wprowadzenie Wiedzą niepewną będziemy określać taką wiedzę, której ekspert tę wiedzę przekazujący ufa w większej części, i zakłada, że w większości przypadków ta wiedza się sprawdza w rzeczywistości. Jednak nie ma on 100% przekonania o tym, że będzie ona prawdziwa w każdej sytuacji. Ekspert przekazuje przecież wiedzę będącą wynikiem jego doświadczeń, nie jest zatem powiedziane, że wszyscy eksperci muszą podzielać takie samo zdanie. Mało tego, specyfika problemu analizowanego przez eksperta może być na tyle trudna do opisania, że jedyne co ekspert może zrobić to określić stopień swojego subiektywnego przekonania o spełnialności tej wiedzy w rzeczywistości. Z niepewnością w wiedzy wiążą się także tzw. pojęcia nieostre oraz po prostu wiedza niespójna.

5 ... Wprowadzenie... pojęcia nieostre, Niepewność pojęcia niespójne, wiedzy jest zagadnieniem bardzo złożonym i powodowana jest wieloma czynnikami. Wiedzą niepewną w bazie wiedzy zarówno w częściach warunkowych jak i decyzyjnych szum informacyjny, reguł, mogą być: dane niekompletne.

6 Pojęcia nieostre Pojęcia nieostre Pojęcia nieostre występują zawsze wtedy gdy wiedza zapisana jest przy użyciu pojęć typu: stan pacjenta stabilny czy odpowiednia dawka leku. Bez odpowiedniego aparatu matematycznego wspomagającego tak zapisaną wiedzę np. w postaci współczynników pewności czy np. probabilistyki, wnioskowanie w takim systemie jest niemożliwe Pojęcia niespójne Niepewność objawia się w ten sposób np., że przy takich samych warunkach w danej bazie wiedzy mamy reguły o innych decyzjach, które uniemożliwiają podjęcie jednoznacznej decyzji. Ten rodzaj niepewności wiedzy rozwiązują doskonale zbiory przybliżone

7 Szum informacyjny Szum informacyjny Jest specyficznym rodzajem niepewności wiedzy, dlatego, że nie istnieje jednoznaczny sposób identyfikacji takiego szumu i sposobów rozwiązania tego problemu. Szum informacyjny może powstawać z winy eksperta przekazującego wiedzę, bądź z winy inżyniera wiedzy, który na etapie akwizycji wiedzy, źle zapisał w systemie ekspertowym wiedzę pobraną od eksperta. Nie są to jedyne przypadki powstania szumu. Źródłem powstania szumu informacyjnego może być chociażby problem techniczny. Mogły zawieść urządzenia zapisujące i odczytujące dane, które przykładowo na etapie 80% transmisji danych uniemożliwią ich dalszą transmisję

8 ... Wprowadzenie Dane niekompletne Zapisanej wiedzy, w której nie dysponujemy pełną informacją, nie można w 100% ufać. W przypadku danych niekompletnych wyróżnia się wiele metod uzupełniania takich braków w danych (poprzez zastępowanie brakujących danych np. wartością średnią w zbiorze) jednak metody takie możliwe są do stosowania jedynie w przypadku gdy takich braków jest stosunkowo mało, zaś obserwacji w zbiorze odpowiednio dużo, by móc np. wartość średnią uznawać za miarodajną.

9 - reprezentacja wiedzy niepewnej w bazach wiedzy Niepewność może występować zarówno w faktach jak i w regułach. Do rozwiązania problemu niepewności w bazach wiedzy wykorzystuje się: prawdopodobieństwo zajścia jakiegoś zdarzenia (faktu), zbiory rozmyte, współczynnik CF, teoria Dempstera-Sheffera, zbiory przybliżone, gdzie wiedza pewna jest określona przez dolne lub górne przybliżenie zbioru, a to, co znajduje się na brzegu reprezentuje wiedzę niepewną (brzeg to różnica między górnym a dolnym przybliżeniem zbioru).

10 Pojęcie nieostre Z pojęciami nieostrymi mamy do czynienia bardzo często w świecie rzeczywistym i przyznamy z pewnością, że każdy człowieka przyjmuje własną interpretację tego typu pojęć. To samo pojęcie dla dwóch różnych ludzi może mieć zupełnie inne znaczenie. Wracając do przykładu naszej bazy wiedzy z regułami rozwiązującymi problem postępowania w przypadku awarii prądu. Z pojęciem nieostrym mielibyśmy do czynienia w przypadku gdyby reguła: będzie miała postać: 2: brak_prądu = Zupelny if dzialaja_gniazdka = Nie and swieci_swiatlo = Nie 2: brak_pradu = Zupełny if dzialaja_gniazdka = Nie and swieci_swiatlo = raczej nie ; bo wówczas, określenie faktu, że świeci_światło z wartością raczej nie nie pozwala nam być do końca pewnym, czy na pewno nie świeci. Wartość raczej nie sprawia, że jesteśmy bardziej skłonni do przyrównania z wartością nie, ale to tylko nasze subiektywne przypuszczenie.

11 Dwa różne podejścia do rozwiązania problemu pojęć nieostrych współczynniki pewności, sieci bayesowskie czy teoria Dempstera-Shafera, bądź logika rozmyta.

12 Dwa różne podejścia do rozwiązania problemu pojęć nieostrych współczynniki pewności, sieci bayesowskie czy teoria Dempstera-Shafera, bądź logika rozmyta.

13 Zbiory rozmyte Zbiory rozmyte wchodzą w kolizję z klasyczną logiką, która oparta jest na prawie wyłączonego środka "tertium non datur", oznaczającego, że zdanie może być albo prawdziwe, albo fałszywe, że dany przedmiot może należeć do zbioru lub nie. W przypadku zbiorów rozmytych owo trzecie wyjście istnieje: przedmiot może bowiem należeć do zbioru w pewnym tylko stopniu (a tym samym jednocześnie w określonym stopniu do niego nie należeć). Dlatego, w teorii zbiorów rozmytych niezwykle istotne są właściwości charakteryzujące obiekty, gdyż to one decydują o przynależności tych obiektów różnych zbiorów obiektów. Właściwość (cecha) dobrze określona wyznacza dla danego zbioru jednoznaczne granice oddzielające elementy należące od nie należących do niego. Jeśli bowiem przyjmujemy, że U to przestrzeń rozważanych obiektów, zbiór taki będziemy mogli określać przez funkcję f wyznaczającą przynależność obiektów do zbioru f w : U {0, 1}, gdzie w oznacza zbiór obiektów. Jeśli teraz oznaczymy przez X zbiór odpowiadający pewnej właściwości, to funkcja przynależności określona jest następująco: lub: f x (u) = 1 dla u X f x (u) = 0 dla u X

14 Niestety, istnieją takie właściwości, dla których trudno jest określić granicę rozdzielającą elementy spełniające tę właściwość od elementów jej nie spełniających. W tym celu wykorzystuje się właśnie funkcję przynależności, która przekształca przestrzeń U w odcinek [0, 1]. Po prostu, zdanie postaci: "Prawdopodobieństwo chłodu w dniu 1 stycznia 2000 wynosi 60 %źnaczy co innego niż stwierdzenie "Tego dnia jest chłodno w 60 % ". Stosując logikę rozmytą możemy tym zdaniem wyrazić stopień naszego przekonania o istniejących, rzeczywistych warunkach atmosferycznych, że jest raczej zimno niż ciepło. Wnioskowanie rozmyte przebiegać powinno zgodnie z algorytmem: wyznaczenie wartości funkcji f dla poszczególnych pojęć rozmytych występujących w warunkach reguł, wyznaczenie obszarów rozmytych na podstawie wartości obliczonych w punkcie pierwszym, zestawienie obszarów rozmytych, wyznaczenie wynikowego obszaru rozmytego, dokonanie defuzyfikacji wynikowego obszaru rozmytego, czyli zamiany tego zbioru na pewną wartość liczbową.

15 Geneza LOGIKI ROZMYTEJ 1 Kamienie milowe znaczące rozwój tej teorii to: koncepcja zbioru rozmytego, zbiory rozmyte a miary prawdopodobieństwa, zmienne lingwistyczne i wnioskowanie przybliżone, rozmyte programowanie dynamiczne i podejmowanie decyzji, rozmyta interpretacja języka, rozmyta algebra, rozmyte procesy stochastyczne i inne prace matematyczne. 2 Twórcy logiki rozmytej (ang. fuzzy logic) powołują się na polskiego matematyka Łukasiewicza, który pierwszy wprowadził logikę wielowartościową. 3 Praktyczne zastosowanie: układy sterowania. Wiele prac konstrukcyjnych i teoretycznych dotyczących doboru reguł sterowania i parametrów sterownika.powstały systemy samoorganizujące się, systemy człowiek-maszyna, których pięknym przykładem jest zbudowany przez japończyków helikopter sterowany głosem, rozumiejący polecenia takie jak: leć trochę wyżej, skręć nieco w lewo,itp. 4 Urządzenia powszechnego użytku, takich jak pralki, odkurzacze, odbiorniki radiowe i telewizyjne. Systemem ogniskowania niektórych modeli kamer Cannon zarządza układ rozmyty, który samodzielnie decyduje co jest obiektem filmowania i odpowiednio ustawia ostrość. W latach japończycy opracowali i wprowadzili do produkcji (firma Omron) pierwszy rozmyty mikroprocesor FP1000. Od tej pory rozmyte układy scalone torują sobie coraz śmielej drogę na rynek, chociaż z pewnym trudem upowszechniają się, gdyż inżynierowie nie znają podstaw nowej techniki.

16 Pojęcie zbioru rozmytego W klasycznej teorii zbiorów obowiązują m.in. dwa prawa: prawo niesprzeczności prawo wyłączonego środka. Inaczej mówiąc, każdy element należy albo do zbioru, albo do jego dopełnienia. Nie może należeć do obu naraz. Jeśli mamy np. pojęcia: dzień i noc, to one się wzajemnie wykluczają. Temperatura otoczenia może być tylko albo ujemna, albo nieujemna. W teorii zbiorów rozmytych przyjmuje, że element może należeć częściowo do zbioru jak i do jego dopełnienia. Stopień przynależności elementu x do zbioru A określa funkcja przynależności, oznaczana zwykle ma(x), o wartościach w przedziale [0, 1].Zbiory rozmyte opisują najczęściej pojęcia lingwistyczne używane często w życiu codziennym jak np. chłodno, gorąco.

17 Chłodno czy gorąco Przykład funkcji przynależności dla zbioru rozmytego chłodno, określonego w przestrzeni temperatur (np C). Sytuacja, gdy ma(x) = 1 oznacza pełną przynależność elementu x do zbioru A. Sytuacja, gdy ma(x) = 0 oznacza brak tej przynależności.

18 Zmienne lingwistyczne Pojęcie zmiennej lingwistycznej,zawdzięczane Zadehowi jest w zasadzie proste i intuicyjne, chociaż formalizm matematyczny jest dość skomplikowany. W potocznej mowie posługujemy się takimi pojęciami jak zimno i gorąco. Możemy utworzyć zmienną lingwistyczną o nazwie temperatura, rozbudowując powyższy przykład następująco: x - temperatura - nazwa zmiennej lingwistycznej, X - przestrzeń temperatur, czyli przedział [-20,+40]0C, {Mróz, Zimno, Chłodno, Ciepło, Gorąco} - wartości zmiennej lingwistycznej, przy czym: - dla temperatur [-20,0] zmienna lingwistyczna przyjmuje wartość mróz, - dla temperatur [-5,10] zmienna lingwistyczna przyjmuje wartość zimno, - dla temperatur [5,20] zmienna lingwistyczna przyjmuje wartość chłodno, - dla temperatur [15,30] zmienna lingwistyczna przyjmuje wartość ciepło, - dla temperatur [25,40] zmienna lingwistyczna przyjmuje wartość gorąco.

19 Temperatura

20 Zmienne lingwistyczne Założymy, że funkcje przynależności poszczególnych zbiorów rozmytych: mróz..gorąco mają kształt trapezowy o parametrach odpowiednio dobranych dla powyższych zbiorów: Dana wartość zmiennej x może należeć jednocześnie do kilku zbiorów rozmytych, z różnym stopniem przynależńości. Na przykład temperatura 14C należy do zbioru chłodno ze stopniem przynależności 0, 4 i zbioru ciepło ze stopniem przynależności 0, 6. Proces wyznaczania nazw zbiorów i stopni przynależności dla danego x nazywa się fuzzyfikacją. Podobnie wzrost człowieka, poziom wody w zbiorniku, możemy traktować jako zmienną lingwistyczn ą wprowadzając wartości lingwistyczne: niski, średni, wysoki oraz określając odpowiednie funkcje przynależności.

21 Zbiory rozmyte

22 Zastosowanie

23 Funkcje przynależności

24 Operacje na zbiorach rozmytych

25 Reguły rozmyte

26 Wnioskowanie rozmyte

27 Schemat przetwarzania danych z wykorzystaniem wnioskowania rozmytego Przetwarzanie wstępne, przetwarzanie końcowe Celem jest przekształcenie danych doprowadzonych do wejścia systemu do formatu akceptowanego przez moduł wnioskowania.analogicznie przetwarzanie końcowe służy do konwersji danych wyjściowych z tego modułu do postaci zgodniej z wymogami układów zewnętrznych.sam moduł wnioskowania oczekuje na wejściu ciągu liczb rzeczywistych i zwraca również ciąg takich liczb (crisp values) fuzyfikacja (rozmywanie): polega na transformacji wartości z dziedziny liczb rzeczywistych na wartości z dziedziny zbiorów rozmytych. w Tym celu dokonuje się wyznaczenia wartości funkcji przynależności dla kolejnych zmiennych lingwistycznych i dla danej rzeczywistej wartości wejściowej.

28 Schemat przetwarzania danych z wykorzystaniem wnioskowania rozmytego interpretacja reguł rozmytych W pierwszej kolejności realizowany jest proces obliczenia mocy reguł. w tym celu dla każdej zmiennej w przesłankach reguły wyznaczane są stopnie przynależności do odpowiedniego zbioru rozmytego. Jeśli moc reguły jest zerowa, uznaje się, że nie nastąpiła aktywacja reguły. Wyznaczany jest też zbiór rozmyty będący rezultatem uaktywnienia reguły. Zależy on od kształtu odpowiedniej funkcji przynależności oraz obliczonej mocy reguły. W najstępnym kroku następuje agregacja aktywnych reguł. Polega ona na sumowaniu rozmytych zbiorów wynikowych ze wszystkich reguł. Otrzymany zbiór rozmyty jest zbiorem wynikowym wnioskowania rozmytego. defuzyfikacja : po zakończeniu procedury agregacji reguł, wynikiem wnioskowania jest zbiór rozmyty. Zadaniem defuzyfikacji (zwanej też wyostrzaniem), jest zatem przekształcenie odwrotne do rozmywania, czyli transformacja wartości z dziedziny liczb rzeczywistych, której to można dokonać na wiele sposobów w zależności od konkretnego zastosowania.

29 Etapy projektowania systemu rozmytego określenie zadania oraz sposobu jego realizacji określenie zmiennych lingwistycznych i odpowiadających ich atrybutów rozmytych określenie funkcji przynależności określenie bazy reguł rozmytych wybór metody defizyfikacji

30 1 Firma ufundowała wakacyjne praktyki dla studentów, którzy uzyskali najlepsze wyniki z przedmiotów ścisłych (elektronika, informatyka, matematyka) oraz z języków (angielski, niemiecki). 2 Słowo najlepszy to wartość lingwistyczna, którą opisano oddzielnie dla przedmiotów ścisłych (NS) i języków (NJ). 3 Celem jest teraz określenie funkcji przynależności...

31 Funkcja przynależności dla zbioru rozmytego NS

32 Funkcja przynależności dla zbioru rozmytego NJ

33

34

35 Szukamy najlepszych studentów w ramach przedmiotów Najlepszy z elektroniki: G 1 = 1 x x x x x x 6

36 Szukamy najlepszych studentów w ramach przedmiotów Najlepszy z informatyki: G 2 = 1 x x x x x x 6

37 Szukamy najlepszych studentów w ramach przedmiotów Najlepszy z matematyki: G 3 = 0.6 x x x x x x 6

38 Szukamy najlepszych studentów w ramach przedmiotów Najlepszy z języka angielskiego: G 4 = 0 x x x x x x 6

39 Szukamy najlepszych studentów w ramach przedmiotów Najlepszy z języka niemieckiego: G 5 = 1 x x x x x x 6

40 Szukamy najlepszych studentów w ramach przedmiotów Najlepszy z elektroniki: Najlepszy z informatyki: Najlepszy z matematyki: G 1 = 1 x x x x x x 6 G 2 = 1 x x x x x x 6 G 3 = x 1 x 2 x 3 x 4 x 5 x 6 Najlepszy z języka angielskiego: G 4 = x 1 x 2 x 3 x 4 x 5 x 6 Najlepszy z języka niemieckiego: G 5 = x 1 x 2 x 3 x 4 x 5 x 6

41 Szukamy najlepszych studentów w ramach przedmiotów Podstawiając dane do wzoru: D = G 1 G 2 G 3 G 4 G 5 Decyzja rozmyta typu minimum jest postaci: D = 0 x x x x x x 6 Czyli x 5 Charakteryzuje się największym stopniem przynależności!

42 Zastosowania sterowniki fuzzy controllers sterowanie swiatlami na wjezdzie na autostrade sprzet powszechnego uzytku (np. pralki) w polaczeniu z innymi narzedziami AI, np. sieciami neuronowymi rozpoznawanie slów (cyfr itp.)

43 Pojęcia niespójne Zbiory przybliżone pozwalają reprezentować niepewność w wiedzy za pomocą pojęć dolnego i górnego przybliżenia zbioru.

44 Sieci bayesowskie łączące w sobie cechy: graficznej reprezentacji pozwalającej przedstawiać zależności przyczynowe oraz warunkowych prawdopodobieństw zmiennych względem ich bezpośrednich przyczyn, cieszą się dość dużą popularnością w pracach związanych z wnioskowaniem w systemach ekspertowych opartych na wiedzy niepewnej. Prekursorem sieci bayesowskich był Judea Pearl, który w 1988 roku zaproponował je jako reprezentację wiedzy niepewnej w sztucznej inteligencji.

45 Prawdopodobieństwo warunkowe - sieci Bayes a Wykorzystuje się w tym celu twierdzenie Bayes a, określające prawdopodobieństwo warunkowe. Jest to oczywiście prawdopodobieństwo zajścia zdarzenia A pod warunkiem zdarzenia B - co odpowiada prostej regule "Jeżeli B to A", którego ogólna postać wygląda następująco: P(B/A) P(A) P(A/B) = P(B) i oznacza, że stwierdzenia A może być uznane jako prawdziwe wtedy, kiedy stwierdzenie B jest uznane jako prawdziwe. Znajomość prawdopodobieństwa warunkowego pozwala na realizację procesów wnioskowania, które polegają na rozpatrywaniu prawdopodobieństwa stwierdzeń traktowanych jako pewne hipotezy.

46 Prawdopodobieństwo warunkowe - sieci Bayes a Aby np. określić prawdopodobieństwo faktu, że dany student ma przyznane stypendium, przy założeniu, że nie posiadamy żadnej wiedzy na ten temat, zgodnie z teorią prawdopodobieństwa musimy określić zdarzenia elementarne dotyczące badanej dziedziny. Zatem jeśli założymy, że istnieją tylko dwa elementarne zdarzenia D = {α, β}, gdzie odpowiednio: α - to zdarzenie polegające na tym, że dany student ma przyznane stypendium, β - to zdarzenie polegające na tym, że dany student nie ma przyznanego stypendium, to wykorzystując rachunek prawdopodobieństwa możemy stwierdzić, że: prawdopodobieństwo zajścia zdarzenia αjest równe prawdopodobieństwu zajścia zdarzenia β i wynosi P(α) = P(β) = 1 2.

47 Prawdopodobieństwo warunkowe - sieci Bayes a Dostosowując się do wzoru Bayes a, w przypadku, gdy mamy dwa fakty: A- jeżdżę na rowerze, oraz B- jest ładna pogoda, gdzie P(A) = 0, 2i P(B) = 0, 4 oraz równocześnie w bazie wiedzy istnieją reguły : R1 : Jeżeli jest ładna pogoda to jeżdżę na rowerze- co po prostu oznacza P(A/B) R2 : Jeżeli jeżdżę na rowerze to jest ładna pogoda- co odpowiednio oznacza P(B/A), to znając prawdopodobieństwo zajścia zdarzenia B pod warunkiem A, tzn., gdy wiemy, że P(B/A) = 0, 8, możemy także określić prawdopodobieństwo zajścia zdarzenia Apod warunkiem B. Korzystając z wzoru Bayes a otrzymujemy wartość P(A/B) = [(0, 8 0, 4)/0, 2] = 0, 4. Wzór ten pozwala nam ustalić pewną hipotezę pod warunkiem, że znamy hipotezę przeciwną.

48 Prawdopodobieństwo warunkowe to prawdopodobieństwo zajścia zdarzenia A pod warunkiem zdarzenia B - co odpowiada prostej regule Jeżeli B to A, którego ogólna postać wygląda następująco: P(B/A) P(A) P(A/B) = P(B) i oznacza, że stwierdzenie A może być uznane jako prawdziwe wtedy, kiedy stwierdzenie B jest uznane jako prawdziwe. Znajomość prawdopodobieństwa warunkowego pozwala na realizację procesów wnioskowania, które polegają na rozpatrywaniu prawdopodobieństwa stwierdzeń traktowanych jako pewne hipotezy. O ich popularności w dużej mierze zadecydowały wydajne metody wnioskowania. Znaleźć można wiele zastosowań w sztucznej inteligencji, ekonomii, medycynie, genetyce czy statystyce. Sieć Bayesa stanowi numeryczny model związków przyczynowo-skutkowych zachodzących pomiędzy elementami zbioru obserwacji i hipotez. Stosując twierdzenie Bayesa, można dokonywać zarówno wnioskowania progresywnego (wnioskowanie w przód), jak i wnioskowania regresywnego (wnioskowanie wstecz).

49 Przetwarzanie wiedzy niepewnej - Zastosowanie teorii prawdopodobieństwa do reprezentacji wiedzy niepewnej wydaje się stosunkowo oczywiste. Określenia w postaci: prawdopodobnie, najczęściej itp. skłaniają do wykorzystania rachunku prawdopodobieństwa. Liczba reprezentująca prawdopodobieństwo odzwierciedla jedynie wiedzę obserwatora o świecie, nie oddaje więc prawdopodobieństwa obiektywnego. Punktem wyjścia dla różnych metod probabilistycznych jest twierdzenie Bayesa. Załóżmy, że mamy zbiór wzajemnie wyłączających się hipotez: dla których jest spełnione H = {h 1,..., h n }, P(h i ) > 0, i = 1, 2,..., n. Mamy również do dyspozycji zbiór obserwacji E = {e 1,..., e m }. Każdy fragment obserwacji e i jest niezależny warunkowo względem każdej hipotezy.

50 Reprezentacja wiedzy niepewnej Rozważmy przykład w którym n = m = 1. Mamy zatem jedną obserwację e oraz jedną hipotezę h. Załóżmy, że interesuje nas związek przyczynowo skutkowy pomiędzy obserwacją e a hipotezą h reprezentowany przez regułę: Jeżeli e To h co może być przedstawione graficznie: e h Obserwacja e oraz hipoteza h są reprezentowane przez wierzchołki grafu, natomiast natomiast wnioskowanie przez krawędź.

51 Reprezentacja wiedzy niepewnej Rozpatrywana reguła może być rozpatrywana w modelu Bayesa następująco: P(h e) = P(e h)p(h) P(e) Powyższy wzór jest szczególnym przypadkiem wzoru Bayesa, który w jednej ze swych postaci może być podany następująco: m P(h i )P(e 1,..., e m h i ) P(h i e 1,..., e m ) = n k=1 P(e 1,..., e m h k )P(h k ) = j=1 P(e j h i ) n m k=1 j=1 P(e j h k )P(h k ) P(h i) co uzyskujemy wykorzystując założoną uprzednio warunkową niezależność każdej obserwacji e i względem każdej hipotezy, co można opisać wzorem: m P(e 1,..., e m h i ) = P(e j h i ), dla i = 1,..., n j=1

52 Reprezentacja wiedzy niepewnej W warunkach rzeczywistych nigdy nie występuje jedna reguła, zatem również zamiast prostego grafu z jedną krawędzią i dwoma wierzchołkami otrzymamy sieć. Taka sieć nazywana siecią wnioskowań może mieć następującą postać: a b d E c F G gdzie: a, b, c, d to obserwacje, zaś E, F, G to hipotezy. Taka sieć wnioskowań może być opisana poprzez zbiór wierzchołków oraz zbiór krawędzi. Każdy wierzchołek reprezentuje obserwację lub hipotezę, każda krawędź jest określona w ten sposób, że podaje się dla niej informacje o wierzchołkach które dana krawędź łączy, oraz ewentualnie dla grafów skierowanych informację o kierunku krawędzi.

53 Definicja sieci Bayesowskiej G to graf określony zbiorem wierzchołków N i krawędzi E. CP to zbiór prawdopodobieństw warunkowych opisujących prawdopodobieństwo przejścia od jednego wierzchołka grafu do drugiego. Pod pojęciem sieci Bayesowskiej rozumieć będziemy trójkę: B = {N, E, CP}, gdzie dwójka {N, E} jest zorientowanym grafem acyklicznym zbudowanym na podstawie zadanych prawdopodobieństw warunkowych zawartych w zbiorze CP.

54 Definicja sieci Bayesa Sieć Bayesa Sieć Bayesa stanowi numeryczny model związków przyczynowo-skutkowych zachodzących między elementami zbioru obserwacji i hipotez. Stosując twierdzenie Bayesa, można dokonywać zarówno wnioskowania progresywnego (wnioskowanie w przód), jak i wnioskowania regresywnego (wnioskowanie wstecz).

55 Przykład syntezy sieci Bayesa A G Niech zbiór pewnych zmiennych identyfikujących obserwacje i hipotezy ma następującą postać: Z = {A, B, C, D, E, F, G, H}, B F H CP = {P(A), P(B A), P(C B), P(C F), P(D C), P(E CH), P(F G), P(G), P(H G)} To pozwala zbudować graf skierowany, który opisuje sieć Bayesa:B = {N, E, CP}, co można C przedstawić graficznie: D E Sieć Bayesa stanowi numeryczny model związków przyczynowo-skutkowych zachodzących pomiędzy elementami zbioru obserwacji i hipotez. Możliwe jest wówczas wnioskowanie progresywne (w przód), jak i wnioskowanie regresywne (wstecz).

56 Podsumowanie Prezentowana metoda reprezentacji i przetwarzania wiedzy niepewnej ma Metoda probabilistyczna ma charakter wybitnie numeryczny. Zarówno struktura sieci Bayes a jak również metody wnioskowania oparte są całkowicie o metody probabilistyczne (czy podobne jak np. teoria Dempster a-shafer a). Wady: realizacja praktyczna takiej reprezentacji wiedzy, umiarkowana zdolność do generowania objaśnień (ang. explanations ) procesu wnioskowania powodowana wybitnie numerycznym jego charakterem, złożoność obliczeniowa i pamięciowa procesu wnioskowania.

57 Problemy wynikające ze stosowania reprezentacji niepewności opartej na probabilistyce Wartość prawdopodobieństwa musi się sumować do jedynki, co oznacza, że jeśli P(a) = 0.3, to P( A) = 1 P(a) = = 0.7. Gdy za pomocą teorii prawdopodobieństwa modelujemy wybrany fragment rzeczywistości (często bardzo złożony), nie możemy się ograniczać do logiki dwuwartościowej i prawa tertium non datur tłumaczonego jako trzeciego wyjścia nie ma. Czasami jesteśmy w stanie jedynie powiedzieć, że prawdopodobieństwo zajścia pewnego zdarzenia wynosi np. 0.7 i, że jest ono możliwe przy zajściu pewnych zdarzeń je warunkujących. Możemy jednak zauważyć, że zdarzenie to zajdzie jeśli choć jedno z tych zdarzeń je warunkujących nastąpi, ale i gdy np. wszystkie trzy zajdą w rzeczywistości. Fakt, że zdarzenia nie są niezależne nie pozwala w łatwy sposób operować rachunkiem prawdopodobieństwa. Twórcą wiedzy w bazie wiedzy jest ekspert z danej dziedziny, który najczęściej nie potrafi posługiwać się statystykami i umiejętnością określania prawdopodobieństwa poprawnie. Ekspert przedstawia tylko swoją subiektywną ocenę.

58 Budowa sieci bayesowskiej dla bazy wiedzy zasilanie.bw Reguły w bazie wiedzy zasilanie.bw są budowane przy użyciu dwójek <atrybut, wartość>. Jeśli podstawimy za zmienne zdania symbolizujące pewne zdarzenia opisywane w tej bazie wiedzy to otrzymamy następujący wejściowy zbiór danych: A: co_zrobic = Zgłosić awarię w rejonie energetycznym B: brak_pradu = Zupełny C: prad_u_sasiadow = Nie mają D: prad_u_sasiadow = Mają E: bezpiecznik_glowny = Bezpiecznik główny włączony F: co_zrobic = Włączyć główny bezpiecznik G: bezpiecznik_glowny = Bezpiecznik główny wyłączony H: co_zrobic = Kontrola bezpiecznika obwodu gniazdek I: brak_pradu = W obwodzie gniazdek J: co_zrobic = Kontrola bezpiecznika obwodu świateł K: brak_pradu = W obwodzie świateł L: co_zrobic = Wszystko działa normalnie M: brak_pradu = Jest jak zawsze N: dzialaja_gniazdka = Nie O: swieci_swiatlo = Nie P: dzialaja_gniazdka = Tak R: swieci_swiatlo = Tak Niepewność ws: wiedzy lodowka_dziala = Nie

59 Analizując reguły w bazie zasilanie.bw możemy wyróżnić zbiory obserwacji i hipotez N, z których będzie można zbudować sieć. Dopiero gdy tę sieć opatrzymy zbiorem prawdopodobieństw warunkowych CP nazwiemy sieć siecią bayesowską - o ile oczywiście spełni ona założenia sieci bayesowskich o grafach acyklicznych i skierowanych. W naszym zbiorze obserwacjami będą: B, C, D, E, G, I, K, M, N, O, P, R, S, T, U oraz V zaś do zbioru hipotez zaliczymy A, F, H, J, L, B, I, K, M, N oraz P. Schemat sieci bayesowskiej (bez uwzględnienia wartości prawdopodobieństw warunkowych) dla takiej bazy wiedzy wygląda następująco:

60 Niech zbiór prawdopodobieństw warunkowych CP dla takich obserwacji i hipotez będzie następujący: CP = {P(A B&C), P(A B&D&E), P(F B&D&G), P(B), P(D), P(G), P(E), P(H D&I), P(I N&R), P(R), P(N S&T), P(S), P(T), P(J K&O), P(P U&V), P(U), P(V), P(O), P(L M), P(M P&R)}.

61 Rozkład prawdopodobieństw: P(A,..., V) = p(a B&C)p(A B&D&E)p(F B&D&G)p(B)p(D)p(G)p(E)p(H D&I)p(I N&R)p(R)p(N S&T) p(s)p(t)p(j K&O)p(P U&V)p(U)p(V)p(O)p(L M)p(M P&R). Jak widać, powstały graf jest grafem skierowanym i acyklicznym, a więc spełnia podstawowe założenia sieci bayesowskiej.

62 Przykład Wprowadzenie 1 A pogoda (słonecznie/pochmurno/deszczowo/wietrznie) 2 B czas wolny (tak/nie) 3 X humor (bardzo dobry/dobry/nietęgi) 4 C zajęcie na zewnątrz (spacer/basen/rower) 5 D zajęcie w domu(komputer/książka/gotowanie)

63 Przykład Wprowadzenie

64 Przykład Wprowadzenie

65 Przykład Wprowadzenie

66 Narzędzia do budowy sieci bayesowskich Bardzo wiele grup naukowców na całym świecie zajmuje się sieciami bayesowskimi, ich budową, analizą i optymalizacją. Ogromne zasługi ma zespół profesora Marka Drużdżela z University of Pittsburgh. Zespół opracował narzędzie SMILE+ (ang. Structural Modeling, Inference, and Learning Engine) dostarczające graficznej metody reprezentacji dla systemów decyzyjnych w postaci sieci bayesowskich. Do zbioru bibliotek stanowiących system SMILE zbudowano interfejs użytkownika GeNIe. Narzędzie cieszy się sporym zainteresowaniem na całym świecie.

67 Inne narzędzia: Microsoft Bayesian Network Editor - narzędzie wspomagające budowę sieci wnioskowań bayesowskich. Realizacja dwóch algorytmów rekomendacji kolejnych kroków w procesie ewaluacji sieci (czyli na przykład wskazują zmienną, której zmiana wartości najbardziej wpłynie na uzyskane wyniki). W praktyce pozwala to na uzyskanie listy zmiennych (węzłów) uporządkowanych według ich wagi i wpływu na proces wnioskowania, co jest możliwe dzięki przypisaniu węzłom pewnych typów decyzyjnych reprezentujących rolę, jaką pełni dany węzeł w sieci. HUGIN EXPERT - narzędzie służące do obliczeń prawdopodobieństw i niepewności parametrów. Dedykowane jest nie tylko na platformę Windows ale również UNIXowe stacje robocze. Dostępna na stronie Netica Bayesian Network Software from Norsys - oprogramowanie, którego wersja demonstracyjna (jest dostępna poprzez witrynę jest zupełnie wystarczająca by zaprojektować sieć bayesowską i przeprowadzić w takiej sieci wnioskowanie.

68 Mycin Wprowadzenie System Mycin, który powstał w latach siedemdziesiątych na Uniwersytecie Stanford i którego autorem jest Edward H. Shortliffe, jest uznawany za wzorcowy (medyczny) system ekspertowy. Prace nad jego powstaniem rozpoczęły się w roku 1972 (i trwały kilka lat) w ramach Projektu Programowania Heurystycznego realizowanego w Stanford University, rozwijanego we współpracy z Zespołem Chorób Infekcyjnych (Infectious Diseases Group) ze Stanford Medical School. Pracę Shortliffe a nadzorował m.in. Bruce Buchanan. System Mycin cechuje się wysokim poziomem kompetencji w zakresie generowanych konkluzji. Jego zadaniem jest diagnoza bakteryjnej choroby krwi i zaproponowanie odpowiedniej terapii. System prowadzi swego rodzaju dialog z lekarzem, w którym lekarz przekazuje swoją wiedzę dotyczącą badanej próbki krwi (m.in. wiek i płeć pacjenta, data pobrania krwi, itp), a system - po zadaniu około pytań - wyświetla wyniki do jakich doszedł. Zaletą systemu była szybkość podejmowania trafnych decyzji, do których nie potrzebuje wyników czasochłonnych badań krwi ani wszystkich odpowiedzi na zadane lekarzowi pytania.

Systemy ekspertowe - wiedza niepewna

Systemy ekspertowe - wiedza niepewna Instytut Informatyki Uniwersytetu Śląskiego lab 8 Rozpatrzmy następujący przykład: Miażdżyca powoduje często zwężenie tętnic wieńcowych. Prowadzi to zazwyczaj do zmniejszenia przepływu krwi w tych naczyniach,

Bardziej szczegółowo

Jeśli X jest przestrzenią o nieskończonej liczbie elementów:

Jeśli X jest przestrzenią o nieskończonej liczbie elementów: Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów

Bardziej szczegółowo

WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte)

WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte) WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte) Motywacje:! przezwyciężenie wad tradycyjnych algorytmów komputerowych, które zawodzą zwłaszcza w sytuacjach, w których człowiek

Bardziej szczegółowo

Systemy ekspertowe. Reprezentacja wiedzy niepewnej i wnioskowanie w warunkach niepewności. Model współczynników pewności.

Systemy ekspertowe. Reprezentacja wiedzy niepewnej i wnioskowanie w warunkach niepewności. Model współczynników pewności. Część siódma Reprezentacja wiedzy niepewnej i wnioskowanie w warunkach niepewności Autor Roman Simiński Model współczynników pewności Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium

Bardziej szczegółowo

Reprezentacja niepewności w wiedzy w systemach ekspertowych

Reprezentacja niepewności w wiedzy w systemach ekspertowych Reprezentacja niepewności w wiedzy w systemach ekspertowych Agnieszka Nowak- Brzezińska 24 stycznia 2014 1 Niepewność w wiedzy - reprezentacja wiedzy niepewnej w bazach wiedzy Niepewność może występować

Bardziej szczegółowo

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO

Bardziej szczegółowo

Systemy ekspertowe. Wnioskowanie w systemach regułowych. Część piąta. Autor Roman Simiński.

Systemy ekspertowe. Wnioskowanie w systemach regułowych. Część piąta.  Autor Roman Simiński. Część piąta Autor Roman Simiński Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi uważnego w nim uczestnictwa.

Bardziej szczegółowo

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do

Bardziej szczegółowo

Systemy ekspertowe. Krzysztof Patan

Systemy ekspertowe. Krzysztof Patan Systemy ekspertowe Krzysztof Patan Wprowadzenie System ekspertowy Program komputerowy, który wykonuje złożone zadania o dużych wymaganiach intelektualnych i robi to tak dobrze jak człowiek będący ekspertem

Bardziej szczegółowo

Sztuczna inteligencja: zbiory rozmyte

Sztuczna inteligencja: zbiory rozmyte Instytut Informatyki Uniwersytetu Śląskiego lab 1 1 Klasyczna teoria zbiorów 2 Teoria zbiorów rozmytych 3 Zmienne lingwistyczne i funkcje przynależności 4 System rozmyty 5 Preprocesing danych Każdy element

Bardziej szczegółowo

Inżynieria wiedzy Wnioskowanie oparte na wiedzy niepewnej Opracowane na podstawie materiałów dra Michała Berety

Inżynieria wiedzy Wnioskowanie oparte na wiedzy niepewnej Opracowane na podstawie materiałów dra Michała Berety mgr Adam Marszałek Zakład Inteligencji Obliczeniowej Instytut Informatyki PK Inżynieria wiedzy Wnioskowanie oparte na wiedzy niepewnej Opracowane na podstawie materiałów dra Michała Berety Wstępnie na

Bardziej szczegółowo

STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI. METODY HEURYSTYCZNE wykład 6. (alternatywa dla s) (zdef. poprzez klasę s) GAUSSOWSKA F.

STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI. METODY HEURYSTYCZNE wykład 6. (alternatywa dla s) (zdef. poprzez klasę s) GAUSSOWSKA F. METODY HEURYSTYCZNE wykład 6 STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI 2 GAUSSOWSKA F. PRZYNALEŻNOŚCI F. PRZYNALEŻNOŚCI KLASY s środek; a określa szerokość krzywej 3 4 F. PRZYNALEŻNOŚCI KLASY π F. PRZYNALEŻNOŚCI

Bardziej szczegółowo

Sztuczna inteligencja : Zbiory rozmyte cz. 2

Sztuczna inteligencja : Zbiory rozmyte cz. 2 Sztuczna inteligencja : Zbiory rozmyte cz. 2 Przemysław Juszczuk Instytut Informatyki Uniwersytetu Śląskiego 1 marca 2012 Funkcja trójkątna: Funkcja trójkątna: Funkcja przynależności γ (gamma): Rysunek:

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 4 (Fuzzy logic) 23 listopad 2011 Plan wykładu 1 Systemy wnioskowania z danymi niepewnymi 2 3 Inteligentne systemy z wiedzą Systemy z wiedzą składają się z dwóch części: 1 Baza wiedzy (KB): zbioru

Bardziej szczegółowo

INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Podstawowe pojęcia z logiki rozmytej Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie

Bardziej szczegółowo

Rozmyte systemy doradcze

Rozmyte systemy doradcze Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu

Bardziej szczegółowo

Systemy uczące się wykład 1

Systemy uczące się wykład 1 Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej

Bardziej szczegółowo

ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE

ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE SYSTEMY ROZMYTE ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 2 965 Lotfi A. Zadeh: Fuzzy sets Metoda reprezentacji wiedzy wyrażonej w języku naturalnym: Temperatura wynosi 29 o C informacja liczbowa - naturalna

Bardziej szczegółowo

6. Zagadnienie parkowania ciężarówki.

6. Zagadnienie parkowania ciężarówki. 6. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można

Bardziej szczegółowo

Temat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Temat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Projektowanie sterownika rozmytego Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

Algorytmy stochastyczne, wykład 08 Sieci bayesowskie

Algorytmy stochastyczne, wykład 08 Sieci bayesowskie Algorytmy stochastyczne, wykład 08 Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-04-10 Prawdopodobieństwo Prawdopodobieństwo Prawdopodobieństwo warunkowe Zmienne

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

Inteligencja obliczeniowa

Inteligencja obliczeniowa Ćwiczenie nr 3 Zbiory rozmyte logika rozmyta Sterowniki wielowejściowe i wielowyjściowe, relacje rozmyte, sposoby zapisu reguł, aproksymacja funkcji przy użyciu reguł rozmytych, charakterystyki przejściowe

Bardziej szczegółowo

Temat: ANFIS + TS w zadaniach. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Temat: ANFIS + TS w zadaniach. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: ANFIS + TS w zadaniach Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1. Systemy neuronowo - rozmyte Systemy

Bardziej szczegółowo

Wnioskowanie rozmyte. Krzysztof Patan

Wnioskowanie rozmyte. Krzysztof Patan Wnioskowanie rozmyte Krzysztof Patan Wprowadzenie Informacja precyzyjna jest to jedyna postać informacji akceptowanej przez konwencjonalne metody matematyczne, najczęściej dostarczana jest przez precyzyjne

Bardziej szczegółowo

Maciej Piotr Jankowski

Maciej Piotr Jankowski Reduced Adder Graph Implementacja algorytmu RAG Maciej Piotr Jankowski 2005.12.22 Maciej Piotr Jankowski 1 Plan prezentacji 1. Wstęp 2. Implementacja 3. Usprawnienia optymalizacyjne 3.1. Tablica ekspansji

Bardziej szczegółowo

7. Zagadnienie parkowania ciężarówki.

7. Zagadnienie parkowania ciężarówki. 7. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można

Bardziej szczegółowo

Systemy ekspertowe : program PCShell

Systemy ekspertowe : program PCShell Instytut Informatyki Uniwersytetu Śląskiego lab 1 Opis sytemu ekspertowego Metody wnioskowania System PcShell Projekt System ekspertowy - system ekspertowy to system komputerowy zawierający w sobie wyspecjalizowaną

Bardziej szczegółowo

Temat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Temat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Projektowanie sterownika rozmytego Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie System

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników

Bardziej szczegółowo

Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska

Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Współczynniki pewności (ang. Certainty

Bardziej szczegółowo

Sieci Bayesa mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Sosnowiec, 2011

Sieci Bayesa mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Sosnowiec, 2011 Sieci Bayesa mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Sosnowiec, 2011 Sieć Bayesowska służy do przedstawiania zależności pomiędzy zdarzeniami bazując na rachunku prawdopodobieństwa.

Bardziej szczegółowo

REGUŁOWO-MODELOWE SKORUPOWE SYSTEMY EKSPERTOWE

REGUŁOWO-MODELOWE SKORUPOWE SYSTEMY EKSPERTOWE REGUŁOWO-MODELOWE SKORUPOWE SYSTEMY EKSPERTOWE Część 3: Systemy elementarne i rozwinięte z ocenami Antoni Niederliński Uniwersytet Ekonomiczny w Katowicach antoni.niederlinski@ue.katowice. pl Koniec pewnego

Bardziej szczegółowo

SID Wykład 7 Zbiory rozmyte

SID Wykład 7 Zbiory rozmyte SID Wykład 7 Zbiory rozmyte Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Wstęp Language Ontological Commitment Epistemological Commitment (What exists in the world) (What an agent

Bardziej szczegółowo

OWO-MODELOWE SKORUPOWE SYSTEMY EKSPERTOWE

OWO-MODELOWE SKORUPOWE SYSTEMY EKSPERTOWE REGUŁOWO OWO-MODELOWE SKORUPOWE SYSTEMY EKSPERTOWE Część 3: Systemy elementarne i rozwinięte z ocenami Antoni Niederliński Uniwersytet Ekonomiczny w Katowicach antoni.niederlinski@ue.katowice. pl Koniec

Bardziej szczegółowo

Sterowanie z wykorzystaniem logiki rozmytej

Sterowanie z wykorzystaniem logiki rozmytej Sterowanie z wykorzystaniem logiki rozmytej konspekt seminarium Paweł Szołtysek 24 stycznia 2009 1 Wstęp 1.1 Podstawy logiki rozmytej Logika rozmyta jest rodzajem logiki wielowartościowej, stanowi uogólnienie

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Technologie i systemy oparte na logice rozmytej

Technologie i systemy oparte na logice rozmytej Zagadnienia I Technologie i systemy oparte na logice rozmytej Mają zastosowania w sytuacjach kiedy nie posiadamy wystarczającej wiedzy o modelu matematycznym rządzącym danym zjawiskiem oraz tam gdzie zbudowanie

Bardziej szczegółowo

Temat: Systemy Ekspertowe i ich zastosowania

Temat: Systemy Ekspertowe i ich zastosowania Temat: Systemy Ekspertowe i ich zastosowania Opracował: mgr inż. Jacek Habel 1. Wprowadzenie do systemów ekspertowych ogólne definicje. System ekspertowy jest pojęciem, które jest przypisywane do pewnej

Bardziej szczegółowo

Inteligencja obliczeniowa

Inteligencja obliczeniowa Ćwiczenie nr 1 Zbiory rozmyte logika rozmyta Tworzenie: termów zmiennej lingwistycznej o różnych kształtach, modyfikatorów, zmiennych o wielu termach; operacje przecięcia, połączenia i dopełnienia 1. Wprowadzenie

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa. Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna

Bardziej szczegółowo

Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań

Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: POZIOM KSZTAŁCENIA: PROFIL KSZTAŁCENIA:

Bardziej szczegółowo

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych. Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą

Bardziej szczegółowo

Transformacja wiedzy w budowie i eksploatacji maszyn

Transformacja wiedzy w budowie i eksploatacji maszyn Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces

Bardziej szczegółowo

ALGORYTM PROJEKTOWANIA ROZMYTYCH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO

ALGORYTM PROJEKTOWANIA ROZMYTYCH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO Szybkobieżne Pojazdy Gąsienicowe (2) Nr 2, 24 Mirosław ADAMSKI Norbert GRZESIK ALGORYTM PROJEKTOWANIA CH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO. WSTĘP

Bardziej szczegółowo

Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska

Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Logika Rozmyta (Fuzzy Logic) Mimo

Bardziej szczegółowo

Układy logiki rozmytej. Co to jest?

Układy logiki rozmytej. Co to jest? PUAV Wykład 14 Co to jest? Co to jest? Logika rozmyta (fuzzy logic) jest to dział matematyki precyzyjnie formalizujący nieprecyzyjne, nieformalne ludzkie rozumowanie. Co to jest? Logika rozmyta (fuzzy

Bardziej szczegółowo

Rachunek prawdopodobieństwa- wykład 2

Rachunek prawdopodobieństwa- wykład 2 Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet

Bardziej szczegółowo

Zadanie 0 gdy nie mamy logiki rozmytej. Zadanie 1- gdy już mamy logikę rozmytą

Zadanie 0 gdy nie mamy logiki rozmytej. Zadanie 1- gdy już mamy logikę rozmytą Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad

Bardziej szczegółowo

Klasyfikacja metodą Bayesa

Klasyfikacja metodą Bayesa Klasyfikacja metodą Bayesa Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski warunkowe i bezwarunkowe 1. Klasyfikacja Bayesowska jest klasyfikacją statystyczną. Pozwala przewidzieć prawdopodobieństwo

Bardziej szczegółowo

Problemy złożone trudno jest analizować precyzyjnie Wiedza eksperta w złożonych przypadkach daje się opisać tylko w sposób nieprecyzyjny, np.

Problemy złożone trudno jest analizować precyzyjnie Wiedza eksperta w złożonych przypadkach daje się opisać tylko w sposób nieprecyzyjny, np. ZBIORY ROZMYTE Problemy złożone trudno jest analizować precyzyjnie Wiedza eksperta w złożonyc przypadkac daje się opisać tylko w sposób nieprecyzyjny, np. W dużym mieście, powinien istnieć regionalny port

Bardziej szczegółowo

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań. Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek

Bardziej szczegółowo

Metody probabilistyczne klasyfikatory bayesowskie

Metody probabilistyczne klasyfikatory bayesowskie Konwersatorium Matematyczne Metody Ekonomii narzędzia matematyczne w eksploracji danych First Prev Next Last Go Back Full Screen Close Quit Metody probabilistyczne klasyfikatory bayesowskie Wykład 8 Marcin

Bardziej szczegółowo

6.4 Podstawowe metody statystyczne

6.4 Podstawowe metody statystyczne 156 Wstęp do statystyki matematycznej 6.4 Podstawowe metody statystyczne Spóbujemy teraz w dopuszczalnym uproszczeniu przedstawić istotę analizy statystycznej. W szczególności udzielimy odpowiedzi na postawione

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

Metoda Tablic Semantycznych

Metoda Tablic Semantycznych Procedura Plan Reguły Algorytm Logika obliczeniowa Instytut Informatyki Plan Procedura Reguły 1 Procedura decyzyjna Logiczna równoważność formuł Logiczna konsekwencja Procedura decyzyjna 2 Reguły α, β,

Bardziej szczegółowo

Zasada rozszerzania. A U A jest zbiorem rozmytym, B jest obrazem zbioru A Przeniesienie rozmytości A w odwzorowaniu f na zbiór B. sup.

Zasada rozszerzania. A U A jest zbiorem rozmytym, B jest obrazem zbioru A Przeniesienie rozmytości A w odwzorowaniu f na zbiór B. sup. Zasada rozszerzania f U V U jest zbiorem rozmytym V = f( ), jest obrazem zbioru Przeniesienie rozmytości w odwzorowaniu f na zbiór v) = ( v)? ( f ( ) = sup ( u) gdy ( v) 0 1 = 1 u f ( v) f( ) ( v) 1 0

Bardziej szczegółowo

W narzędziu typu Excel, Calc czy Gnumeric napisz formułę logiczną która wyznaczy wartośd przynależności dla podanej temperatury do zbioru gorąco.

W narzędziu typu Excel, Calc czy Gnumeric napisz formułę logiczną która wyznaczy wartośd przynależności dla podanej temperatury do zbioru gorąco. Zadanie 0 Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad wartośd funkcji przynależności

Bardziej szczegółowo

Modelowanie niezawodności prostych struktur sprzętowych

Modelowanie niezawodności prostych struktur sprzętowych Modelowanie niezawodności prostych struktur sprzętowych W ćwiczeniu tym przedstawione zostaną proste struktury sprzętowe oraz sposób obliczania ich niezawodności przy założeniu, że funkcja niezawodności

Bardziej szczegółowo

Inżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska

Inżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska Inżynieria Wiedzy i Systemy Ekspertowe Logika rozmyta dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Wyostrzanie Ostateczna, ostra wartość

Bardziej szczegółowo

Reprezentacja rozmyta - zastosowania logiki rozmytej

Reprezentacja rozmyta - zastosowania logiki rozmytej 17.06.2009 Wrocław Bartosz Chabasinski 148384 Reprezentacja rozmyta - zastosowania logiki rozmytej 1. Wstęp Celem wprowadzenia pojęcia teorii zbiorów rozmytych była potrzeba matematycznego opisania tych

Bardziej szczegółowo

Zajęcia wprowadzające W-1 termin I temat: Sposób zapisu wyników pomiarów

Zajęcia wprowadzające W-1 termin I temat: Sposób zapisu wyników pomiarów wielkość mierzona wartość wielkości jednostka miary pomiar wzorce miary wynik pomiaru niedokładność pomiaru Zajęcia wprowadzające W-1 termin I temat: Sposób zapisu wyników pomiarów 1. Pojęcia podstawowe

Bardziej szczegółowo

Cel projektu: Wymogi dotyczące sprawozdania:

Cel projektu: Wymogi dotyczące sprawozdania: W ramach zajęć proszę wykonać sprawozdanie z logiki rozmytej. Sprawozdanie powinno realizować zadanie wnioskowania rozmytego. Cel projektu: Student projektuje bazę wiedzy wnioskowania rozmytego (kilka,

Bardziej szczegółowo

Wykład 9 Wnioskowanie o średnich

Wykład 9 Wnioskowanie o średnich Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i

Bardziej szczegółowo

Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I IDENTYFIKACJA Logika rozmyta podstawy wnioskowania w GUI Fuzzy. Materiały pomocnicze do laboratorium

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 14c 2 Definicje indukcyjne Twierdzenia dowodzone przez indukcje Definicje indukcyjne Definicja drzewa

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI 16/01/2017 WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Repetytorium złożoność obliczeniowa 2 Złożoność obliczeniowa Notacja wielkie 0 Notacja Ω i Θ Rozwiązywanie

Bardziej szczegółowo

Wyszukiwanie binarne

Wyszukiwanie binarne Wyszukiwanie binarne Wyszukiwanie binarne to technika pozwalająca na przeszukanie jakiegoś posortowanego zbioru danych w czasie logarytmicznie zależnym od jego wielkości (co to dokładnie znaczy dowiecie

Bardziej szczegółowo

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym Edward Stachowski Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym W podstawie programowej obowiązującej na egzaminie maturalnym od 05r pojawiły się nowe treści programowe Wśród

Bardziej szczegółowo

Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY.

Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY. Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY. 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przykładowym systemem ekspertowym napisanym w JESS. Studenci poznają strukturę systemu ekspertowego,

Bardziej szczegółowo

Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18

Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18 Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)

Bardziej szczegółowo

Elementy logiki matematycznej

Elementy logiki matematycznej Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria Wykład 5 dr inż. Anna Skowrońska-Szmer zima 2017/2018 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją

Bardziej szczegółowo

Piotr Sobolewski Krzysztof Skorupski

Piotr Sobolewski Krzysztof Skorupski Plan prezentacji Logika rodzaje Logika klasyczna Logika wielowartościowa Logika rozmyta Historia powstania Definicje Zbiory rozmyte Relacje rozmyte Systemy rozmyte Modele Zastosowanie w optymalizacji przykłady

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Metody numeryczne Wykład 4

Metody numeryczne Wykład 4 Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania

Bardziej szczegółowo

Indukowane Reguły Decyzyjne I. Wykład 3

Indukowane Reguły Decyzyjne I. Wykład 3 Indukowane Reguły Decyzyjne I Wykład 3 IRD Wykład 3 Plan Powtórka Grafy Drzewa klasyfikacyjne Testy wstęp Klasyfikacja obiektów z wykorzystaniem drzewa Reguły decyzyjne generowane przez drzewo 2 Powtórzenie

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

Zajęcia nr. 3 notatki

Zajęcia nr. 3 notatki Zajęcia nr. 3 notatki 22 kwietnia 2005 1 Funkcje liczbowe wprowadzenie Istnieje nieskończenie wiele funkcji w matematyce. W dodaktu nie wszystkie są liczbowe. Rozpatruje się funkcje które pobierają argumenty

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria Wykład 5 Anna Skowrońska-Szmer lato 2016/2017 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją jako prawdziwą

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 5 Prof. dr hab. inż. Jan Magott DMT rozwiązuje problem decyzyjny π przy kodowaniu e w co najwyżej wielomianowym czasie, jeśli dla wszystkich łańcuchów wejściowych

Bardziej szczegółowo

Wnioskowanie bayesowskie

Wnioskowanie bayesowskie Wnioskowanie bayesowskie W podejściu klasycznym wnioskowanie statystyczne oparte jest wyłącznie na podstawie pobranej próby losowej. Możemy np. estymować punktowo lub przedziałowo nieznane parametry rozkładów,

Bardziej szczegółowo

Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW

Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW Logika Stosowana Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika

Bardziej szczegółowo

Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości

Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu, z którego pochodzi próbka. Hipotezy dzielimy na parametryczne i nieparametryczne. Parametrycznymi

Bardziej szczegółowo

Systemy uczące się wykład 2

Systemy uczące się wykład 2 Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi: 1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość

Bardziej szczegółowo