Systemy ekspertowe : program PCShell
|
|
- Natalia Domagała
- 8 lat temu
- Przeglądów:
Transkrypt
1 Instytut Informatyki Uniwersytetu Śląskiego lab 1
2 Opis sytemu ekspertowego Metody wnioskowania System PcShell Projekt
3 System ekspertowy - system ekspertowy to system komputerowy zawierający w sobie wyspecjalizowaną wiedzę na temat określonego obszaru ludzkiej działalności, przy czym wiedza ta jest tak zorganizowana, że umożliwia systemowi wejście w interakcyjny dialog z użytkownikiem, w wyniku czego system może oferować rady lub podpowiadał decyzje, jak również objaśniał proces prowadzonego wnioskowania. Inżynieria wiedzy - dziedzina sztucznej inteligencji zajmująca się projektowaniem i realizacją systemów ekspertowych. Inżynier wiedzy projektant SE, osoba łącząca wiedzę na temat technik budowy SE z umiejętnością pozyskiwania i formalizacji wiedzy eksperckiej. Akwizycja wiedzy proces pozyskiwania wiedzy niezbędnej do realizacji systemu ekspertowego. Na proces składają się: rozpoznanie problemu, wywiady z ekspertem, oraz reprezentacja wiedzy eksperta. Akwizycja kończy się w momencie zapisania wiedzy eksperta w bazie wiedzy SE.
4 Rysunek: System ekspertowy
5 Reprezentacje wiedzy: Regułowe bazy wiedzy - wiedza zapisana w postaci reguł : if obiekt = wartość then reguła Tablice decyzyjne - odpowiadają regułom. Zapis w tablicy, gdzie jeden wiersz odpowiada jednej regule. Zawiera atrybuty warunkowe oraz atrybut/atrybuty decyzyjne. Język perceptów - (SKRZYDA : SAMOLOT : X, MA) Język predykatów - Wyższy(Paweł, Piotr) wiedza niepewna (zbiory przybliżone, sieci Bayesa).
6 Moduł komunikacji z użytkownikiem: moduł umożliwiający współpracę z systemem przyjazny dla użytkownika powinien umożliwiać wizualizację uzyskanych wyników Baza danych: zawiera niezbędne dane, które są potrzebne do działania systemu identyczna z bazą danych w systemach tradycyjnych
7 Moduł pozyskiwania wiedzy: Ekspert sam przedstawia wiedzę w postaci reguł (łańcuch przyczynowo-skutkowy): Jeśli coś to wtedy... Zaletą jest czytelność. Liczne wady : czas potrzebny do przekazania wiedzy, konieczność usystematyzowania wiedzy przez eksperta. Ekspert określa prawdopodobieństwo wpływu poszczególnych cech na daną sytuację. Np. Lekarz określający prawdopodobieństwo wystąpienia danego objawu. Zdecydowaną wadą takiego podejścia jest błędne szacowanie prawdopodobieństwa + różni eksperci mogą różnie interpretować pewne fakty. Budowa bazy wiedzy opartej na przykładach. Nie zawsze jednak dla danego problemu istnieje wystarczająca liczba opisanych przypadków.
8 Problem pozyskiwania wiedzy : duża liczba ekspertów. Metody wykorzystujące n ekspertów np. mini metoda delficka: uczestnik niezależnie od innych opracowuje swoją ocenę, przedstawienie wszystkich ocen na forum (anonimowo), dyskusja nad rozbieżnościami, każdy ekspert weryfikuje swoją ocenę, mediana ostatnich wyników przyjmowana jako wynik końcowy.
9 Moduł wnioskowania: Wnioskowanie w przód : wnioskowanie od faktów do celu (wnioskowanie sterowane danymi). Wnioskowanie w tył : wnioskowanie od celu do faktów (wnioskowanie sterowane celem). Wnioskowanie mieszane : cechy wnioskowania w tył i w przód. Np. podział bazy wiedzy na dwie części dla wnioskowania w przód oraz w tył.
10 Przykład wnioskowania: Dana jest baza wiedzy : R1: jeżeli a i b i c to d R2: jezeli a i b to g R3: jeżeli b i c to e R4: jeżeli a i c to f R5: jeżeli e i b i c to f Dane są fakty : a, b, c. Celem wnioskowania jest f.
11 Przykład 2: Dana jest baza wiedzy : R1: jeżeli a i b i c to d R2: jeżeli a i d to g R3: jeżeli a i f to b R4: jeżeli b i g to f R5: jeżeli a i e to f R6: jeżeli e i f to a R7: jeżeli a i b to c Dane są fakty : a i e. Udowodnić hipotezę g.
12 Przykład 3: Dana jest baza wiedzy: R1: jeżeli b i d to f R2: jeżeli a to b R3: jeżeli e i f to g R4: jeżeli b i c to e Fakty: a, c i d. Szukane b
13 Przykład 4: Dana jest baza wiedzy: R1: jeżeli j i k to l R2: jeżeli j to n R3: jeżeli n i m to o R4: jeżeli n i l to m Fakty: j, k, l, p. Szukane p.
14 Przykład 5: Dana jest baza wiedzy: R1: jeżeli j i k to l R2: jeżeli j to n R3: jeżeli n i m to o R4: jeżeli n i l to m Fakty: j, k, l. Szukane p.
15 Przykład 6: Dana jest baza wiedzy: R1: jeżeli l i m to n R2: jeżeli j to o R3: jeżeli j i k to m R4: jeżeli n i o to p Fakty: j, k, l. Szukane p.
16 Etapy tworzenia systemu ekspertowego: analiza problemu, pod kątem, czy kwalifikuje się on do budowy systemu ekspertowego, opracowanie specyfikacji systemu, zdefiniowanie jego zadań i oczekiwanych wyników; przejęcie wiedzy od ekspertów i jej opracowanie; wybór metody reprezentacji wiedzy oraz narzędzi do budowy systemu; organizacja i kodowanie wiedzy (prototyp, pełna wersja); weryfikacja i testowanie systemu.
17 Rysunek: PcShell
18 Rysunek: PcShell
19 Rysunek: PcShell
20 Rysunek: PcShell
21 Rysunek: PcShell
22 Rysunek: PcShell
23 Rysunek: PcShell
24 Rysunek: PcShell
25 Projekt do realizacji: Utworzyć własną bazę wiedzy, przygotować opis oraz reguły. Wnioskowanie minimum na dwóch poziomach (patrz baza grzyby). Do projektu przygotować sprawozdanie. Sprawozdanie powinno zawierać: Tematyka bazy. Np. Klasyfkator utworów literackich jest to baza dotycząca klasyfkacji poszczególnych utworów literackich. Ma ona za zadanie wskazać właściwy gatunek literacki wybranego utworu na podstawie jego cech charakterystycznych. Powód wybrania zagadnienia. Np. w języku polskim 3 rodzaje literackie: liryka, epika dramat + wiele gatunków literackich: powieść, bajka, pieśń, komedia, anegdota, fraszka, farsa, haiku, plankt, dystopia... Program pozwoli użytkownikowi na podstawie cech utworu określić jego przynależność. Proces zbierania inforamcji: wskazać cechy poszczególnych rodzajów literackich. Opisać dlaczego wybrano te gatunki literackie i wskazać ich cechy unikalne. + źródła (książki / strony www ).
26 Proces powstawania: np. początkowym założeniem była identyfikacja dowolnego tekstu, czyli zarówno tekstu literackiego jak i przykładowego zadania z fzyki lub matematyki. Jednak w trakcie przygotowania bazy wyniknął np. problem jednoznaczego odróżnienia tekstu matematycznego od literackiego. Pierwszym krokiem przy projektowaniu bazy było przedstawienie odpowiednich zależności pomi ędzy poszczególnymi gatunkami i rodzajami literackimi w postaci grafu. Tak przygotowane opisy utworów tworzyły reguły w języku naturalnym, które następnie zostały zakodowane w programie PC-Shell 4.0 oraz umieszczone w regułach bazy danych. Zapis naturalny: Przykład: 029: rodzaj = epika if przedstawienie fabuły = opowiada jedna osoba i styl wypowiedzi = proza ; Utwór należy do epiki, jeżli cała fabuła przedstawiana jest z perspektywy jednej osoby - narratora. Kolejnym ważnym czynnikiem jest styl wypowiedzi autora a także osób biorących udział w fabule. Opcjonalnie kod źródłowy. Przykłady wnioskowania.
27 Rysunek: PcShell
28 Rysunek: PcShell
29 Rysunek: PcShell
Systemy ekspertowe i sztuczna inteligencja. dr Agnieszka Nowak Brzezioska
Systemy ekspertowe i sztuczna inteligencja dr Agnieszka Nowak Brzezioska Email: agnieszka.nowak@us.edu.pl Architektura SE Pojęcia z dziedziny systemów ekspertowych Inżynieria wiedzy - dziedzina sztucznej
Systemy uczące się wykład 1
Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej
Systemy eksperowe. Agnieszka Nowak Brzezińska Wykład I
Systemy eksperowe Agnieszka Nowak Brzezińska Wykład I Zakres materiału: Metody wnioskowania w regułowych bazach wiedzy PC-Shell jako narzędzie do budowy szkieletowych systemów ekspertowych (Sprawozdanie
Systemy ekspertowe Część siódma Realizacja dziedzinowego systemu ekspertowego Roman Simiński
Część siódma Autor Roman Simiński Kontakt roman.siminski@us.edu.pl www.us.edu.pl/~siminski Realizacja dziedzinowego systemu ekspertowego Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych
Systemy ekspertowe Część siódma Realizacja dziedzinowego systemu ekspertowego Roman Simiński
Część siódma Autor Roman Simiński Kontakt roman.siminski@us.edu.pl www.us.edu.pl/~siminski Realizacja dziedzinowego systemu ekspertowego Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych
Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY.
Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY. 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przykładowym systemem ekspertowym napisanym w JESS. Studenci poznają strukturę systemu ekspertowego,
Systemy ekspertowe. Krzysztof Patan
Systemy ekspertowe Krzysztof Patan Wprowadzenie System ekspertowy Program komputerowy, który wykonuje złożone zadania o dużych wymaganiach intelektualnych i robi to tak dobrze jak człowiek będący ekspertem
Podstawowe definicje Z czego składa się system ekspertowy? Wnioskowanie: wprzód, wstecz, mieszane
Podstawowe definicje Z czego składa się system ekspertowy? Wnioskowanie: wprzód, wstecz, mieszane Tworzymy system ekspertowy 1. Wstępna analiza i definicja dziedziny problemu. W tym: poznanie wiedzy dziedzinowej
KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Metody drążenia danych D1.3
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Systemy ekspertowe w zarządzaniu firmą Expert systems in enterprise management Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: Rodzaj zajęć: Wyk. Ćwicz. Lab. Sem. Proj.
Proces zbierania informacji przebiegał dwuetapowo:
1 Opis bazy 1.1 Tematyka bazy Klasyfikator utworów literackich jest to baza dotycząca klasyfikacji poszczególnych utworów literackich. Ma ona za zadanie wskazać właściwy gatunek literacki wybranego utworu
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Systemy ekspertowe Expert systems Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: Rodzaj zajęć: Wyk. Ćwicz. Lab. Sem. Proj. Poziom studiów: studia I stopnia forma studiów:
Reguły i fakty zapisz za pomocą perceptów. Metodą wnioskowania w tył, sprawdzić czy mój komputer jest wyposażony w procesor PII.
Reguły i fakty zapisz za pomocą perceptów. Metodą wnioskowania w tył, sprawdzić czy mój komputer jest wyposażony w procesor PII. 1. (cena:komputer:x1,drogi) (cecha:komputer:x1,uniwersalny) ) (obudowa:komputer:x1,duża)
Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski
Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do
PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
Systemy ekspertowe. Wnioskowanie w systemach regułowych. Część piąta. Autor Roman Simiński.
Część piąta Autor Roman Simiński Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi uważnego w nim uczestnictwa.
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
Transformacja wiedzy w budowie i eksploatacji maszyn
Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces
Diagramy ERD. Model struktury danych jest najczęściej tworzony z wykorzystaniem diagramów pojęciowych (konceptualnych). Najpopularniejszym
Diagramy ERD. Model struktury danych jest najczęściej tworzony z wykorzystaniem diagramów pojęciowych (konceptualnych). Najpopularniejszym konceptualnym modelem danych jest tzw. model związków encji (ERM
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE DIAGNOSTYKĘ MEDYCZNĄ Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj zajęć: wykład, projekt
Wprowadzenie do teorii systemów ekspertowych
Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z
KARTA PRZEDMIOTU. (pieczęć wydziału)
(pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: Eksploracja danych w bioinformatyce 2. Kod przedmiotu: EksDaBio 3. Karta przedmiotu ważna od roku akademickiego: 2017/2018 4. Forma kształcenia:
Systemy ekspertowe. PC-Shell. Sprawozdanie z bazy wiedzy
Wydział Informatyki i Nauki o Materiałach Uniwersytet Śląski Systemy ekspertowe PC-Shell Sprawozdanie z bazy wiedzy Zbigniew Kędzior Informatyka inżynierska Studia niestacjonarne Trzeci rok Grupa A 1.
Podstawy sztucznej inteligencji
wykład 4 (Fuzzy logic) 23 listopad 2011 Plan wykładu 1 Systemy wnioskowania z danymi niepewnymi 2 3 Inteligentne systemy z wiedzą Systemy z wiedzą składają się z dwóch części: 1 Baza wiedzy (KB): zbioru
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach PROGRAM KSZTAŁCENIA. Studia III stopnia (doktoranckie) kierunek Informatyka
Uniwersytet Śląski Wydział Informatyki i Nauki o Materiałach PROGRAM KSZTAŁCENIA Studia III stopnia (doktoranckie) kierunek Informatyka (przyjęty przez Radę Wydziału Informatyki i Nauki o Materiałach w
Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Współczynniki pewności (ang. Certainty
Drzewa decyzyjne. 1. Wprowadzenie.
Drzewa decyzyjne. 1. Wprowadzenie. Drzewa decyzyjne są graficzną metodą wspomagania procesu decyzyjnego. Jest to jedna z najczęściej wykorzystywanych technik analizy danych. Drzewo składają się z korzenia
Systemy ekspertowe - wiedza niepewna
Instytut Informatyki Uniwersytetu Śląskiego lab 8 Rozpatrzmy następujący przykład: Miażdżyca powoduje często zwężenie tętnic wieńcowych. Prowadzi to zazwyczaj do zmniejszenia przepływu krwi w tych naczyniach,
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
STUDIA I MONOGRAFIE NR
STUDIA I MONOGRAFIE NR 21 WYBRANE ZAGADNIENIA INŻYNIERII WIEDZY Redakcja naukowa: Andrzej Cader Jacek M. Żurada Krzysztof Przybyszewski Łódź 2008 3 SPIS TREŚCI WPROWADZENIE 7 SYSTEMY AGENTOWE W E-LEARNINGU
Inżynieria oprogramowania II
Wymagania funkcjonalne, przypadki użycia Inżynieria oprogramowania II Problem i cel Tworzenie projektów bez konkretnego celu nie jest dobre Praktycznie każdy projekt informatyczny powstaje z uwagi na jakiś
TWORZENIE BAZ WIEDZY W SYSTEMACH EKSPERTOWYCH GOSPODAROWANIA MAJĄTKIEM OBROTOWYM PREDSIĘBIORSTWA
TWORZENIE BAZ WIEDZY W SYSTEMACH EKSPERTOWYCH GOSPODAROWANIA MAJĄTKIEM OBROTOWYM PREDSIĘBIORSTWA Leszek Kiełtyka, Waldemar Jędrzejczyk Wprowadzenie Systemy ekspertowe (SE) są to komputerowe programy konsultacyjne,
Tabela odniesień efektów kierunkowych do efektów obszarowych (tabele odniesień efektów kształcenia)
Załącznik nr 7 do uchwały nr 514 Senatu Uniwersytetu Zielonogórskiego z dnia 25 kwietnia 2012 r. w sprawie określenia efektów kształcenia dla kierunków studiów pierwszego i drugiego stopnia prowadzonych
METODY ANALIZY DANYCH ORAZ PREZENTACJI INFORMACJI GEOPRZESTRZENNYCH
METODY ANALIZY DANYCH ORAZ PREZENTACJI INFORMACJI GEOPRZESTRZENNYCH Tomasz POTEMPA Instytut Politechniczny, Zakład Informatyki Święto Uczelni Tarnów, 19 Maja 2011 1 Podsystemy 2 Usługi WMS, WFS, WCS oraz
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRODROCZNYCH I ROCZNYCH OCEN Z JĘZYKA POLSKIEGO W KLASIE VII
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRODROCZNYCH I ROCZNYCH OCEN Z JĘZYKA POLSKIEGO W KLASIE VII Na daną ocenę obowiązują ucznia również wymagania na wszystkie oceny niższe oraz
Sztuczna inteligencja : Zbiory rozmyte cz. III
Instytut Informatyki Uniwersytetu Śląskiego lab 3 Notacja Zadeha: symboliczny zapis zbioru rozmytego dla przestrzeni dyskretnej. Dla X jest przestrzenią o skończonej liczbie elementów X = {x 1, x 2,...,
Systemy eksperckie. Plan wykładu Wprowadzenie do sztucznej inteligencji. Wnioski z prób automatycznego wnioskowania w rachunku predykatów
Plan wykładu Systemy eksperckie Dr hab. inż. Joanna Józefowska, prof. pp 1/1 Wnioski z badań nad systemami mi w rachunku predykatów Reguły produkcji jako system reprezentacji Algorytm rozpoznaj-wykonaj
2
1 2 3 4 5 Dużo pisze się i słyszy o projektach wdrożeń systemów zarządzania wiedzą, które nie przyniosły oczekiwanych rezultatów, bo mało kto korzystał z tych systemów. Technologia nie jest bowiem lekarstwem
Temat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Projektowanie sterownika rozmytego Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie
SYSTEMY EKSPERTOWE. Anna Matysek IBiIN UŚ 2008
SYSTEMY EKSPERTOWE Anna Matysek IBiIN UŚ 2008 DEFINICJE SE System ekspertowy to program komputerowy, który wykonuje złożone zadania o dużych wymaganiach intelektualnych i robi to tak dobrze jak człowiek
2/4. informatyka" studia I stopnia. Nazwa kierunku studiów i kod. Informatyka WM-I-N-1 programu wg USOS. Tytuł zawodowy uzyskiwany przez
Załącznik Nr 5 do Uchwały Nr 67/2015 Senatu UKSW z dnia 22 maja 2015 r. Dokumentacja dotycząca opisu efektów kształcenia dla programu kształcenia na kierunku informatyka" studia I stopnia Nazwa kierunku
ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu ID1SII4 Nazwa modułu Systemy inteligentne 1 Nazwa modułu w języku angielskim Intelligent
5. Wprowadzenie do prawdopodobieństwa Wprowadzenie Wyniki i zdarzenia Różne podejścia do prawdopodobieństwa Zdarzenia wzajemnie wykluczające się i
Spis treści Przedmowa do wydania polskiego - Tadeusz Tyszka Słowo wstępne - Lawrence D. Phillips Przedmowa 1. : rola i zastosowanie analizy decyzyjnej Decyzje złożone Rola analizy decyzyjnej Zastosowanie
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
Systemy ekspertowe. Sprawozdanie I. Tworzenie bazy wiedzy w systemie PC- Shell. Wykonali: Wiktor Wielgus Łukasz Nowak
Systemy ekspertowe Sprawozdanie I Tworzenie bazy wiedzy w systemie PC- Shell Wykonali: Wiktor Wielgus Łukasz Nowak 1. Opis systemu System został stworzony w celu pomocy użytkownikowi przy wyborze sprzętu
INFORMATYKA Pytania ogólne na egzamin dyplomowy
INFORMATYKA Pytania ogólne na egzamin dyplomowy 1. Wyjaśnić pojęcia problem, algorytm. 2. Podać definicję złożoności czasowej. 3. Podać definicję złożoności pamięciowej. 4. Typy danych w języku C. 5. Instrukcja
[1] [2] [3] [4] [5] [6] Wiedza
3) Efekty dla studiów drugiego stopnia - profil ogólnoakademicki na kierunku Informatyka w języku angielskim (Computer Science) na specjalności Sztuczna inteligencja (Artificial Intelligence) na Wydziale
PODSTAWY SZTUCZNEJ INTELIGENCJI
Katedra Informatyki Stosowanej Politechnika Łódzka PODSTAWY SZTUCZNEJ INTELIGENCJI Laboratorium PROGRAMOWANIE SYSTEMÓW EKSPERTOWYCH Opracowanie: Dr hab. inŝ. Jacek Kucharski Dr inŝ. Piotr Urbanek Cel ćwiczenia
Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Zastosowanie sztucznych sieci neuronowych Nazwa modułu w informatyce Application of artificial
KARTA PRZEDMIOTU. 2. Kod przedmiotu: SYSTEMY INFORMACYJNE W MEDYCYNIE
(pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: 2. Kod przedmiotu: SYSTEMY INFORMACYJNE W MEDYCYNIE SIwM 3. Karta przedmiotu ważna od roku akademickiego: 2017/2018 4. Forma kształcenia: studia
Nazwa wariantu modułu (opcjonalnie): Laboratorium programowania w języku C++
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, poziom pierwszy Sylabus modułu: Laboratorium programowania (0310-CH-S1-019) Nazwa wariantu modułu (opcjonalnie): Laboratorium programowania
Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 30 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Tomasz Kuszewski Poziom studiów (I lub II stopnia): I stopnia
Systemy eksperowe. Agnieszka Nowak Brzezińska Wykład I
Systemy eksperowe Agnieszka Nowak Brzezińska Wykład I Zakres materiału: Wprowadzenie do sztucznej inteligencji i systemów ekspertowych PC-Shell jako narzędzie do budowy szkieletowych systemów ekspertowych
Ocena nadzoru nad samodzielnością tworzenia prac dyplomowych
Ocena nadzoru nad samodzielnością tworzenia prac dyplomowych XIX Zgromadzenie Plenarne Konferencji Rektorów Publicznych Szkół Zawodowych w Polsce Sulechów, 24 stycznia 2013. Marek Rocki, 24 stycznia 2013
KARTA PRZEDMIOTU. Projekt zespołowy D1_10
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Projekt zespołowy D1_10 Nazwa przedmiotu (j. ang.): Team Project Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia:
PROLOG WSTĘP DO INFORMATYKI. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk PROLOG www.agh.edu.pl Pewnego dnia przyszedł na świat komputer Komputery
KIERUNKOWE EFEKTY KSZTAŁCENIA
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA I STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA NAUK TECHNICZNYCH Dyscyplina
KIERUNKOWE EFEKTY KSZTAŁCENIA
KIERUNKOWE EFEKTY KSZTAŁCENIA WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA II STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych Rodzaj zajęć: wykład, laboratorium BAZY DANYCH I SYSTEMY EKSPERTOWE Database and expert systems Forma
dr Jerzy Pusz, st. wykładowca, Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu
Kod przedmiotu TR.SIK303 Nazwa przedmiotu Probabilistyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne
Podsumowanie wyników ankiety
SPRAWOZDANIE Kierunkowego Zespołu ds. Programów Kształcenia dla kierunku Informatyka dotyczące ankiet samooceny osiągnięcia przez absolwentów kierunkowych efektów kształcenia po ukończeniu studiów w roku
Cykle życia systemu informatycznego
Cykle życia systemu informatycznego Cykl życia systemu informatycznego - obejmuję on okres od zgłoszenia przez użytkownika potrzeby istnienia systemu aż do wycofania go z eksploatacji. Składa się z etapów
Opis. Wymagania wstępne (tzw. sekwencyjny system zajęć i egzaminów) Liczba godzin zajęć dydaktycznych z podziałem na formy prowadzenia zajęć
Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. nazwa SYLABUS A. Informacje ogólne Tę część wypełnia koordynator (w porozumieniu ze wszystkimi prowadzącymi dany przedmiot w jednostce)
zna metody matematyczne w zakresie niezbędnym do formalnego i ilościowego opisu, zrozumienia i modelowania problemów z różnych
Grupa efektów kierunkowych: Matematyka stosowana I stopnia - profil praktyczny (od 17 października 2014) Matematyka Stosowana I stopień spec. Matematyka nowoczesnych technologii stacjonarne 2015/2016Z
KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Projekt zespołowy D1_10
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
SYSTEM EKSPERTOWY WSPOMAGAJĄCY ORGANIZACJĘ PRACY FIRMY SPEDYCYJNEJ
SYSTEM EKSPERTOWY WSPOMAGAJĄCY ORGANIZACJĘ PRACY FIRMY SPEDYCYJNEJ Zbigniew BUCHALSKI Wprowadzenie W dzisiejszych czasach coraz częściej spotykamy się z problematyką inŝynierii wiedzy i systemów ekspertowych
Sztuczna Inteligencja Projekt
Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować
Część II. Zadanie 3.2. (0 3)
Zadanie 3.2. (0 3) Zdający opracowuje i przeprowadza wszystkie etapy prowadzące do otrzymania poprawnego rozwiązania problemu: od sformułowania specyfikacji problemu po testowa nie rozwiązania (5.7.).
Analiza i projektowanie obiektowe 2016/2017. Wykład 10: Tworzenie projektowego diagramu klas
Analiza i projektowanie obiektowe 2016/2017 Wykład 10: Tworzenie projektowego diagramu klas Jacek Marciniak Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 Plan wykładu 1. Projektowy
Sylabus modułu kształcenia na studiach wyższych. Nazwa Wydziału. Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia
Załącznik nr 4 do zarządzenia nr 12 Rektora UJ z 15 lutego 2012 r. Sylabus modułu kształcenia na studiach wyższych Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Wydział Matematyki
Projektowanie oprogramowania. Wykład Weryfikacja i Zatwierdzanie Inżynieria Oprogramowania Kazimierz Michalik
Projektowanie oprogramowania Wykład Weryfikacja i Zatwierdzanie Inżynieria Oprogramowania Kazimierz Michalik Agenda Weryfikacja i zatwierdzanie Testowanie oprogramowania Zarządzanie Zarządzanie personelem
Konspekt lekcji języka polskiego w klasie szóstej szkoły podstawowej. Temat: DLACZEGO POWIEŚĆ HISTORYCZNA NIE JEST PODRĘCZNIKIEM HISTORII?
Konspekt lekcji języka polskiego w klasie szóstej szkoły podstawowej Temat: DLACZEGO POWIEŚĆ HISTORYCZNA NIE JEST PODRĘCZNIKIEM HISTORII? Cele ogólne: kształcenie umiejętności wskazywania cech, podobieństw
Nakład pracy studenta bilans punktów ECTS Obciążenie studenta
Lp. Element Opis 1 Nazwa Przekład literacki 2 Typ obowiązkowy 3 Instytut Instytut Nauk Humanistyczno-Społecznych i Turystyki 4 Kod PPWSZ-FA-1-412t-s/n Kierunek, kierunek: filologia 5 specjalność, specjalność:
QualitySpy moduł persystencji
Projektowanie oprogramowania Instytut Informatyki, Automatyki i Robotyki, Politechnika Wrocławska QualitySpy moduł persystencji Testy akceptacyjne Nazwa pliku: /QualitySpy/modules/qualityspypersistence/src/test/java/pl/wroc/pwr/qualityspy/persistence
JAKOŚĆ DANYCH Z PERSPEKTYWY SYSTEMÓW WSPOMAGANIA DECYZJI KLINICZNYCH. Dr hab. inż. Szymon Wilk Politechnika Poznańska Instytut Informatyki
JAKOŚĆ DANYCH Z PERSPEKTYWY SYSTEMÓW WSPOMAGANIA DECYZJI KLINICZNYCH Dr hab. inż. Szymon Wilk Politechnika Poznańska Instytut Informatyki Warszawa, 28.11.2011 Konferencja ekspercka dotycząca e-zdrowia
Liczba godzin/tydzień: 2W, 2L
Nazwa przedmiotu: Bazy wiedzy i systemy ekspertowe w ekonomice Knowledge basis and ekspert systems in economy Kierunek: Forma studiów: Informatyka Stacjonarne Rodzaj przedmiotu: Poziom przedmiotu: obowiązkowy
Inżynieria wiedzy Wnioskowanie oparte na wiedzy niepewnej Opracowane na podstawie materiałów dra Michała Berety
mgr Adam Marszałek Zakład Inteligencji Obliczeniowej Instytut Informatyki PK Inżynieria wiedzy Wnioskowanie oparte na wiedzy niepewnej Opracowane na podstawie materiałów dra Michała Berety Wstępnie na
Opracował: mgr inż. Marcin Olech
Laboratorium 1. i 2. Strona 1 z 8 Spis treści: 1. Podstawy pracy w zintegrowanym pakiecie sztucznej inteligencji AITECH Sphinx. 2. Szkieletowy system ekspertowy PC Shell 4.0 3. Tworzenie bazy wiedzy w
T. Łuba, B. Zbierzchowski Układy logiczne Podręcznik WSISiZ, Warszawa 2002.
Książkę: T. Łuba, B. Zbierzchowski Układy logiczne Podręcznik WSISiZ, Warszawa 2002. Można zakupić po najniższej cenie w księgarni Wyższej Szkoły Informatyki Stosowanej i Zarządzania ul. Newelska 6 pok.
OCENIANIE - JĘZYK POLSKI GIMNAZJUM Opracowała Dorota Matusiak
OCENIANIE - JĘZYK POLSKI GIMNAZJUM Opracowała Dorota Matusiak Ocenie podlegają następujące elementy pracy ucznia: - ustne w czasie lekcji, - prezentacje przygotowane w domu, - notatki tworzone na podstawie
Rys. 7.1: Okno główne modułu Dia_Sta
Rozdział 7 Stosowanie sieci stwierdzeń Krzysztof PSIUK 7.1. W prowadzenie W rozdziale Konstruowania sieci stwierdzeń opisano zagadnienia związane z przygotowaniem sieci stwierdzeń [7.2] do przeprowadzenia
Sztuczna inteligencja: zbiory rozmyte
Instytut Informatyki Uniwersytetu Śląskiego lab 1 1 Klasyczna teoria zbiorów 2 Teoria zbiorów rozmytych 3 Zmienne lingwistyczne i funkcje przynależności 4 System rozmyty 5 Preprocesing danych Każdy element
Prezentacja przygotowana przez uczniów w uczęszczaj
Prezentacja przygotowana przez uczniów w uczęszczaj szczającychcych na zajęcia realizowane w projekcie To Lubię...... w ramach Sektorowego Programu Operacyjnego Rozwój j Zasobów w Ludzkich 2004-2006 2006
Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia
Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia Numeryczne rozwiązywanie równań różniczkowych zwyczajnych Wydział Matematyki
MiASI. Modele, perspektywy, diagramy UML. Piotr Fulmański. 7 grudnia 2009. Wydział Matematyki i Informatyki, Uniwersytet Łódzki, Polska
MiASI Modele, perspektywy, diagramy UML Piotr Fulmański Wydział Matematyki i Informatyki, Uniwersytet Łódzki, Polska 7 grudnia 2009 Spis treści 1 Modele, perspektywy, diagramy Czym jest model? Do czego
SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa
Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH
Sztuczna inteligencja : Algorytm KNN
Instytut Informatyki Uniwersytetu Śląskiego 23 kwietnia 2012 1 Algorytm 1 NN 2 Algorytm knn 3 Zadania Klasyfikacja obiektów w oparciu o najbliższe obiekty: Algorytm 1-NN - najbliższego sąsiada. Parametr
KIERUNKOWE EFEKTY KSZTAŁCENIA
KIERUNKOWE EFEKTY KSZTAŁCENIA WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA II STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Wnioskowanie logiczne i systemy eksperckie Systemy posługujące się logiką predykatów: część 3/3 Dzisiaj Uogólnienie Poprawność i pełność wnioskowania
Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Opis przedmiotu. Karta przedmiotu - Probabilistyka I Katalog ECTS Politechniki Warszawskiej
Kod przedmiotu TR.NIK304 Nazwa przedmiotu Probabilistyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: PROGNOZOWANIE Z WYKORZYSTANIEM SYSTEMÓW INFORMATYCZNYCH Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU
Załącznik 1a. TABELA ODNIESIEŃ EFEKTÓW KIERUNKOWYCH DO EFEKTÓW OBSZAROWYCH
Załącznik 1a. TABELA ODNIESIEŃ EFEKTÓW KIERUNKOWYCH DO EFEKTÓW OBSZAROWYCH Efekty kształcenia dla kierunku studiów PRODUCT & PROCESS MANAGEMENT studia drugiego stopnia (po studiach licencjackich) poziom
LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów
LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów Łukasz Piątek, Jerzy W. Grzymała-Busse Katedra Systemów Ekspertowych i Sztucznej Inteligencji, Wydział Informatyki
Opis podstawowych funkcji PC- SHELLa
Opis podstawowych funkcji PC- SHELLa addfact - instrukcja addfact umożliwia utworzenie i dodanie faktu do bazy wiedzy - w sposób dynamiczny - podczas wykonywania programu z bloku control. neditbox - Instrukcja
Spis treści. Analiza i modelowanie_nowicki, Chomiak_Księga1.indb :03:08
Spis treści Wstęp.............................................................. 7 Część I Podstawy analizy i modelowania systemów 1. Charakterystyka systemów informacyjnych....................... 13 1.1.
Opis przedmiotu: Probabilistyka I
Opis : Probabilistyka I Kod Nazwa Wersja TR.SIK303 Probabilistyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka prowadząca
Efekty uczenia się na kierunku. Logistyka (studia pierwszego stopnia o profilu praktycznym)
Efekty uczenia się na kierunku Załącznik nr 2 do uchwały nr 412 Senatu Uniwersytetu Zielonogórskiego z dnia 29 maja 2019 r. Logistyka (studia pierwszego stopnia o profilu praktycznym) Tabela 1. Kierunkowe
Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka
Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej