LABORATORIUM SILNIKÓW SPALINOWYCH Materiały pomocnicze Korekcja mocy do warunków normalnych
|
|
- Marta Ciesielska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Oowł: Adm Ustzki Kted Silników Slinowh i Tnsotu Nomlne wunki odniesieni LABORATORIUM SILNIKÓW SPALINOWYCH Mteił omonize Koekj mo do wunków nomlnh W elu wznzeni mo i zuŝi liw zez silnik slinow nleŝ zstosowć nstęująe nomlne wunki odniesieni [1]: łkowite iśnienie tmosezne: 100 kp, temetu owietz: T 298 K (t 25 C), wilgotność względn: φ 30 %, temetu znnik hłodząego łdunek owietz: T 298 K (t 25 C). Wunki tmosezne w tkie bdni owinn mieśić się w nstęująh zkesh wtośi gniznh [1]: ) temetu, T dl silników o złonie iskowm: 288 K T 308 K dl silników o złonie smoznnm (diesel): 283 K T 313 K b) iśnienie owietz suhego, d ( d - φ s ) dl wszstkih silników: 90 kp d 110 kp Koekj mo W elu koekji zmiezoną (okeśloną) mo w wunkh otozeni nująh odzs omiu nleŝ omnoŝć zez wsółznnik, zgodnie z nstęująmi zleŝnośimi: dl silników o złonie iskowm [1]: P α P (1) dl silników o złonie smoznnm (diesel) P α P (2) P - mo uŝtezn w nomlnh wunkh odniesieni, kw P, - mo uŝtezn w wunkh otozeni odzs bdni, kw α - wsółznnik koekji mo dl silników o złonie iskowm, α - wsółznnik koekji mo dl silników o złonie smoznnm (diesel). Wsółznnik koekji α dl wolnossąh i dołdownh silników o złonie iskowm (z hłodzeniem owietz dołdownego lub bez) Wsółznnik koekji α nleŝ oblizć z nstęująego ównni [1]: α φ s s T 0,6 100 zli: T s α (3) φ s nomlne łkowite iśnienie tmosezne odniesieni, kp,, - łkowite iśnienie tmosezne odzs bdni, kp, s, - nomlne iśnienie odniesieni nsonej wodnej, kp, s - iśnienie nsonej wodnej otozeni odzs bdni, kp. T - nomln temodnmizn temetu odniesieni otzjąego owietz, K, T - temodnmizn temetu otzjąego owietz odzs bdni, K, φ - nomln wilgotność względn odniesieni, %, φ - wilgotność względn otozeni odzs bdni, %, 0,6 Wdził Budow Mszn i Lotnitw Politehnik Rzeszowsk
2 Oowł: Adm Ustzki Kted Silników Slinowh i Tnsotu Równnie (3) m zstosownie do silników zsilnh z omoą gźników i innh silników, w któh ukłd zsilni liw jest zojektown w elu zewnieni eltwnie stłej wtośi wsółznnik skłdu miesznki (wsółznnik liwo/owietze) w zdku zmin wunków otozeni. Wsółznnik koekji α owinien zwieć się w gnih: 0,96 α 1,06 JeŜeli owŝsze gnie zostną zekozone, nleŝ odć w swozdniu z bdni skogowną wtość uzsknej mo i ezjnie okeślić wunki bdni (temetuę i iśnienie). Wsółznnik koekji α dl silników o złonie smoznnm (diesel) Wsółznnik koekji (α ) dl silników o złonie smoznnm dl stłh wtośi metów zsilni silnik liwem (zdne dostznie liw) obliz się n odstwie nstęująej zleŝnośi [1]: ( ) m α (4) - wsółznnik tmosezn, m - met hktestzn dl kŝdego odzju silnik i nstw ilośi dostznego liw. Wsółznnik tmosezn Wsółznnik tmosezn hktezuje włw wunków śodowisk (iśnienie, temetu i wilgotność) owietz zssnego zez silnik. Wsółznnik óŝni się w zleŝnośi od tu silnik i owinien bć oblizn n odstwie ównni (5), (6) lub (7) [1]: dl silników wolnossąh i dołdownh mehniznie: T s 100 T s φ s 298 zli: φ s (5) dl silników tubodołdownh bez hłodzeni owietz dołdownego lub z hłodzeniem z omoą hłodni tu owietze/owietze: T s 100 zli: T s (6) φ s φ s 298 dl silników tubodołdownh z hłodzeniem owietz dołdownego z omoą hłodni tu owietze-wod: φ s s T zli: - oznzeni jk we wzoze (3) Wsółznnik silnik m 100 φ s s T 298 Wsółznnik m zleŝ od tu silnik oz stosunku ilośi liw i ilośi owietz, odowidjąego dnej nstwie dwki liw. Wsółznnik silnik m jest unkją skogownej jednostkowej dwki liw q i obliz się go zgodnie z ównniem (8) [1]: (7) Wdził Budow Mszn i Lotnitw Politehnik Rzeszowsk
3 Oowł: Adm Ustzki Kted Silników Slinowh i Tnsotu m 0,036 q 1,14 (8) w któm q q (9) q - jednostkow dwk liw w miligmh n kl n lit objętośi skokowej silnik [mg/(lkl)] okeśln n odstwie nstęująej zleŝnośi: z V& q (10) v n H Z dl silników 4-suwowh, Z dl silników dwusuwowh, V& - ntęŝenie zełwu, g/s, V H - objętość skokow, dm 3, n - ędkość obotow, ob/min, - wsółznnik wŝją iloz bsolutnego iśnieni sttznego owietz n wloie ze sęŝki i iśnieni owietz n doloie do sęŝki w nomlnh wunkh odniesieni ( 1 dl silników wolnossąh). Dl dołdowni dwustoniowego, jest łkowitm ilozem iśnień, stnowią wsółznnik iśnieni łkowitego. Równnie (8) obowiązuje, jeŝeli jest sełnion wunek w zkesie wtośi q (mg/lkl): 37,2 q 65 Dl wtośi q mniejszh niŝ 37,2, nleŝ zstosowć stłą wtość m ówną 0,2 ( m 0,2). Dl wtośi q większh niŝ 65 nleŝ zstosowć stłą wtość, m ówną ( m ; tz s. 1). Rs. 1. Wsółznnik silnik m w zleŝnośi od skogownej jednostkowej dwki liw q Równnie wsółznnik koekji (4) nleŝ stosowć tlko wted, gd 0,96 α 1,06 JeŜeli owŝsze wtośi gnizne zostną zekozone, w swozdniu z bdni nleŝ odć skogowną wtość uzsknej mo i ezjnie okeślić wunki bdni (temetuę i iśnienie). Wdził Budow Mszn i Lotnitw Politehnik Rzeszowsk
4 Oowł: Adm Ustzki Kted Silników Slinowh i Tnsotu Wznznie iśnieni wodnej W tbli 1 odno wtośi iśnieni wodnej (φ x sx ) w kp dl óŝnh wtośi temetu owietz t x, wŝonej w C, i względnej wilgotnośi owietz φ x. Tbli 1. Wtośi iśnieni wodnej wg PN-ISO :2009 [2] Ciśnienie wodnej (φ x sx )[kp] t x [ C] Wilgotność względn φ x [%] ,30 0,27 0,24 0,21 0,18 0,15 0,12 0,09 0,06-9 0,30 0,29 0,26 0,23 0,20 0,16 0,13 0,10 0,07-8 0,35 0,32 0,28 0,25 0,21 0,18 0,14 0,11 0,07-7 0,38 0,34 0,30 0,27 0,23 0,19 0,15 0,11 0,08-6 0,41 0,36 0,32 0,28 0,24 0,20 0,16 0,12 0,08-5 0,43 0,39 0,35 0,30 0,26 0,22 0,17 0,13 0,09-4 0,46 0,41 0,37 0,32 0,28 0,23 0,18 0,14 0,09-3 0,49 0,44 0,39 0,34 0,30 0,25 0,20 0,15 0,10-2 0,53 0,47 0,42 0,37 0,32 0,26 0,21 0,16 0,10-1 0,50 0,50 0,45 0,39 0,34 0,28 0,22 0,17 0,11 0 0,60 0,54 0,48 0,42 0,36 0,30 0,24 0,18 0,12 1 0,60 0,58 0,51 0,45 0,39 0,32 0,26 0,19 0,13 2 0,69 0,62 0,55 0,48 0,41 0,34 0,28 0,21 0, ,66 0,59 0,52 0,44 0,37 0,30 0,22 0, ,63 0,55 0,47 0,40 0,32 0,24 0,16 5 0,85 6 0,68 0,59 0,51 0,42 0,34 0,25 0,17 6 0,91 0,82 3 0,64 0,55 0,46 0,36 0,27 0,18 7 0,98 0,88 8 0,68 0,59 0,49 0,39 0,29 0,20 8 1,05 0,94 0,84 3 0,63 0,52 0,42 0,31 0,21 9 1,12 1,01 0,90 8 0,67 0,56 0,45 0,34 0, ,08 0,96 0,84 2 0,60 0,48 0,36 0, ,16 1,03 0,90 7 0,64 0,51 0,39 0, ,37 4 1,10 0,96 0,82 0,69 0,55 0,41 0, ,47 1,32 1,17 1,03 0,88 3 0,59 0,44 0, ,57 1,41 5 1,10 0,94 8 0,63 0,47 0, ,67 1,51 1,34 1,17 1,00 0,84 0,67 0,50 0, ,79 1,61 1,43 5 1,07 0,89 1 0,54 0, ,90 1,71 1,52 1,33 1,14 0,95 6 0,57 0, ,03 1,83 1,62 1,42 2 1,01 0,81 0,61 0, ,16 1,94 1,73 1,51 1,30 1,08 0,86 0,65 0, ,30 2,07 1,84 1,61 1,38 1,15 0,92 0,69 0, ,45 2,20 1,96 1,71 1,47 2 0,98 3 0, ,60 2,34 2,08 1,82 1,56 1,30 1,04 8 0, ,77 2,49 2,21 1,94 1,66 1,38 1,11 0,83 0, ,94 2,65 2,35 2,06 1,76 1,47 1,18 0,88 0, ,12 2,81 2,50 2,19 1,87 1,56 5 0,94 0, ,32 2,98 2,65 2,32 1,99 1,66 1,33 0,99 0, ,52 3,17 2,82 2,46 2,11 1,76 1,41 1, ,73 3,36 2,99 2,61 2,24 1,87 1,49 1, ,96 3,56 3,17 2,77 2,38 1,98 1,58 1, ,20 3,78 3,36 2,94 2,52 2,10 1,68 6 0, ,45 4,01 3,56 3,12 2,67 2,23 1,78 1,34 0, ,72 4,25 3,78 3,30 2,83 2,36 1,89 1,42 0, ,00 4,50 4,00 3,50 3,00 2,50 2,00 1,50 1, ,29 4,76 4,24 3,71 3,18 2,65 2,12 1,59 1, ,60 5,04 4,48 3,92 3,36 2,80 2,24 1,68 1, ,93 5,34 4,74 4,15 3,56 2,97 2,37 1,78 1, ,27 5,64 5,02 4,39 3,76 3,14 2,51 1, ,63 5,97 5,30 4,64 3,98 3,32 2,65 1,99 1, ,01 6,31 5,61 4,90 4,20 3,50 2,80 2,10 1, ,40 6,66 5,92 5,18 4,44 3,70 2,96 2,22 1, ,81 7,03 6,25 5,47 4,69 3,91 3,12 2,34 1, ,24 7,42 6,59 5,77 4,94 4,12 3,30 2,47 1, ,69 7,82 6,95 6,08 5,21 4,34 3,47 2,61 1, ,15 8,24 7,32 6,41 5,49 4,58 3,66 2,75 1, ,63 8,67 7,71 6,74 5,78 4,82 3,85 2,89 1, ,13 9,12 8,11 7,09 6,08 5,07 4,05 3,04 2, ,65 9,58 8,52 7,45 6,39 5,33 4,26 3,20 2, ,18 10,07 8,95 7,83 6,71 5,59 4,47 3,36 2, ,73 10,56 9,39 8,21 7,04 5,87 4,69 3,52 2, ,30 11,07 9,84 8,61 7,38 6,15 4,92 3,69 2,46 Wdził Budow Mszn i Lotnitw Politehnik Rzeszowsk
5 Oowł: Adm Ustzki Kted Silników Slinowh i Tnsotu Litetu [1] PN-ISO : Silniki slinowe tłokowe - Okeślnie i metod omiu mo silnik - Wmgni ogólne. PKN, Wszw [2] PN-ISO : Silniki slinowe tłokowe - Osiągi Część 1: Deklj mo, zuŝi liw i oleju smująego oz metod bdń Dodtkowe wmgni dotząe silników ogólnego zstosowni. PKN, Wszw Wdził Budow Mszn i Lotnitw Politehnik Rzeszowsk
dr inż. Zbigniew Szklarski
Wkłd 3: Kinemtk d inż. Zbigniew Szklski szkl@gh.edu.pl http://le.uci.gh.edu.pl/z.szklski/ Wstęp Opis uchu KINEMATYKA Dlczego tki uch? Pzczn uchu DYNAMIKA MECHANIKA 08.03.018 Wdził Infomtki, Elektoniki
Wyznaczanie reakcji strumienia cieczy na płaską płytkę
Ć w i z e i e 9 Wzzie ekji stumiei iez łską łtkę. Cel ćwizei Celem ćwizei jest doświdzle okeśleie ekji wwieej zez stumień wod łską łtkę, stęie oówie wików doświdzei z wtośią ekji uzską dodze teoetzo-oblizeiowej..
Równania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3)
ownn oznczkowe Równn óżnczkowe. Wstę Równne óżnczkow nzw ównne zwejące funkcje newdoe zenne nezleżne oz ocodne funkcj newdoc lu c óżnczk. Pzkłd d 5 d d sn d. d d e d d d. z z z z. ównne óżnczkowe zwczjne
Mechanika kwantowa. Mechanika kwantowa. dx dy dz. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Równanie Schrödingera. zasada zachowania energii
Mecnik kwntow Jk opisć tom wodou? Jk opisć inne cąstecki? Mecnik kwntow Równnie Scödinge Ĥ E ψ H ˆψ = Eψ opeto óżnickow Hmilton enegi funkcj flow d d d + + m d d d opeto enegii kinetcn enegi kinetcn elektonu
Ł Ż Ó Ó Ż Ó Ę Ó Ó Ó Ó Ó Ę Ą Ż Ż Ż Ż Ż Ź Ó Ż Ó Ż Ż Ż Ą Ą Ż Ą ć Ż Ż Ó Ą Ó Ż Ó Ó Ą Ó Ż Ą Ż Ó Ó Ó Ę Ó Ż Ż Ż Ż Ż Ó Ą Ó Ą Ż Ź Ó Ż Ó Ó ÓŹ Ż Ć Ó Ó Ż Ź Ż Ó Ó Ą Ó Ź Ż Ż ź ź Ż ć ć Ó Ż Ó Ó Ż ź ć ź Ź ź Ż ź ć ć Ó ź
ż Ś ń ń ć Ś ć ó ó ń ń ń ó Ś ń ó ń Ś ź ó ź ń Ś ń ń ó ó ń ó ó ó ż ó Ź ó ó ó ó ó ó ó ż ń ó ż ó ć ó ć ó ń ń ó ć ó ź ć Ó ć ć ż ó ó ź ó Ś ć Ó ó ń ć ż ć ó ó ć ń ć ó ó ć ż Ó ó ń ć ń ń ż ó Ś ć ó ó ż ń ó ż ń ż ó
ć Ó Ó Ń ź Ą Ą Ć Ż Ń Ą Ó Ó Ó Ą Ż Ć Ż ć ć Ż Ó Ó Ć ć Ą Ą Ó Ą Ó Ź ć Ó Ó Ó Ż ć ń ń ń ć Ż Ź ć ń ó ó Ź Ó Ó Ó Ż Ó Ó ć Ó Ó Ż Ż Ż Ó Ż Ó Ą Ó Ó Ź Ż Ó Ą Ź ć Ą Ż Ż Ó Ń Ż Ó Ó Ź Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ż Ó Ż Ż Ą
Ś Ł Ś Ł Ś Ś Ę Ą Ó Ś Ó Ś Ę Ł Ś Ł Ś Ż ć ć Ż Ć Ó Ó ż Ó Ż Ó Ó ć Ś Ź Ó Ó ć Ó Ą Ó Ó Ó Ą Ó Ś Ę Ż ż Ń Ń ż ć Ę Ć Ń Ś Ź ż ż Ó ż Ó Ó Ó Ś Ż Ó Ś Ń Ś Ź Ą Ę Ł Ż Ż Ó Ż Ż Ó Ż Ó Ś Ę Ó Ą Ż ÓŻ Ó Ż Ś Ó Ó ż Ą ż Ś Ć Ł Ś Ó Ą
Ę ć Ć Ś Ó Ó Ś Ł Ą Ą Ż ż Ł Ł Ż Ż ż Óż Ż ż ż Ę ż Ó ż Ę ć ż Ę Ź ż Ż ż ż ż ń ń ć ć ż ż Ż Ż Ś ż ż ń ż ń ż ż ń ż Ą ż ż Ę ć ć ć ż ń Ż Ż Ż ż Ę Ż ć ń Ż Ż ć Ę Ą Ą ć ć Ł Ą Ę Ą ć ż ć ż ć ć ż ć ć ż Ż ć Ą ż ć Ą Ą Ż
Ś Ó Ą Ą Ą Ą Ż Ć Ł Ś ć ż Ł ż Ł ź Ś Ą Ł Ś Ż ź Ó Ś Ą Ó Ś ź Ł Ł ź Ł ź ć Ć Ą Ą Ą Ą ć ź Ą Ą Ż ż ć ć Ć Ą Ą Ą Ł Ó Ż Ó Ź Ń ź Ń ź Ą Ś Ż Ą Ł ż Ś Ś Ó ź ź Ń Ł ź Ż ź ź Ą ż ż Ą Ś Ą Ą Ą Ą Ą ź Ą Ą Ó ź Ś Ł Ł Ł ź
Ń ź Ś Ó Ó ć Ś Ś ć ć Ę ć ć ć ć ć ć Ś ć ć Ś ć Ó ć ć Ść Ść Ś Ś ć Ć ć ć Ó Ą ć Ć ć Ź ć Ź ć Ź Ł Ł ć Ó Ó ć Ó Ó ć ć ć ć ć ć ć ć Ź Ś ć Ę ć ć ć ć Ł Ł ć Ź Ą Ę Ł Ó Ś Ą Ł Ł Ó Ć Ś Ś Ą Ź ć Ź Ś Ś Ś ć Ś Ś ć ć ć ć ć ć ź
Ę ó ó ó Ó ź óź óź ó ć ó ó ó ó ń ó ń ć ó ć ń ó ć ó ć ó Ł ó ó ó Ą Ę ó ó ó ń ó ó ó ŚĆ ó ó ó ó ć ó ó ó ć ń ó ó ć ć ó ó ó ź ó ń ó ó ó ó ć ó ó ń ć ó ó ó ń ć ó ó ć ó ó ć ń ć ó ó ć ó ó ó ó ć ó ó ó ó ó ć ó ó ć
Ą Ą Ś Ą Ł ż ż Ł Ł Ł Ł Ą ć ź Ą ż ż ć ć Ą ć ć Ł ź ż ż Ł Ł ź ź ż ż ć ć ż ż ż ż ć ż ż ż ż ć ż ż ż Ą ż ż ż ż ż ć ż ć ć Ł ż ż ż ż ż Ą ż ż ć ż ć ć ć Ó Ł ć ż Ł Ś Ś Ą Ł ź ć Ł ć Ś ź ż ć ź ź ź ż ż ź ż ż ć ż ć ż ć
ż Ó ż ć ż Ź Ż ć Ż Ż Ż ż Ó ć Ż ć ż ż ć ż Ó ż ć ż ż ć Ż Ż Ą ć ć ć Ż ć Ż Ż ć ć ż Ż ć ć ć Ż Ż ć Ł ć Ą ć ć ć ć ć ć ć ż ż ć ć ć ÓŻ ć ć Ż ć Ó ć ć ć ć ć ć ć Ł ć ć Ż Ż ż Ą ć ć ć Ż ć Ż Ą ć Ż ć Ż Ż ć Ż Ż ż Ż ż ć
Ś ÓŹ ż Ś ń Ś Ś Óż Ż Ś Ś Ś Ś Ś Ś ń Ó Ó Ż ż Ż ń Ż Ś Ó ń Ś Ą Ą Ą Ś Ś Ź ń Ż ż Ż Ż Ę ż Ś Ś ż ń ń ń ż Ó Ż Ż ż ń ż ż Ż ż Ó ż ń ż ń ń Ż Ż Ś ń ń ż ż ń ń Ź Ż ń ż Ż Ę ń Ż ż Ź Ź ń ż Ź ż Ź ż ż Ż Ż Ó Ż Ż Ź ż Ż Ż Ż Ę
Ó Ó Ó Ś Ó Ą Ż ć Ą Ś Ś Ś Ł ć Ż Ż Ó ć Ę Ś Ó Ł Ę Ę Ż Ś Ł Ś Ó Ó Ó ź Ż Ó Ą Ę Ź ź Ą Ę Ó Ę Ż Ż ź Ó Ść Ż Ś Ś Ź Ż Ó Ś ŚĆ ć Ó Ż Ć Ó Ś Ż Ó Ę ć Ę ć Ó ć Ą Ó Ś Ł Ś ć Ż ź Ż Ó Ó Ż Ś Ó ć ć Ń Ę Ść Ó Ó Ó ÓŹ ź Ś Ś Ś ć Ś Ś
Ó ż ż ż ż ż ż ż ż ć Ń Ą ż ż Ó Ź Ó Ą Ń ć ż ż ż ć ż ć ż ż ż ż ć ć ż ż ć Ą ż ż ć ć ż Ż Ą ż ć ź ć ć Ą ć ć ć Ą ć Ą ż Ł ż Ó ć ć Ź ż ć ż ź ż ż Ż ć Ó Ź Ó Ą ż Ó Ą ć Ą ż ć Ą Ó ż Ś Ś Ż Ś Ł Ń Ś ź Ó ć ż Ś ż ć ź Ś Ś
Ą Ń Ż ź Ń Ą Ń Ą Ą ź ź Ó Ż ź ź Ó Ó Ć Ó Ó Ó Ć Ć ź ź Ż ź Ą Ź ź Ć Ć Ć Ó Ó Ó Ó Ó Ó ź Ó Ę Ó Ó Ę Ó Óź ź ź Ó Ó Ó Ó Ó Ó Ń Ź Ę ź ź Ó ź Ń Ę Ę Ę Ń ź Ę Ź Ó Ó Ó ź Ó Ę Ą Ó ź ź Ó Ó Ó Ó Ó ź Ó Ń Ó Ę ź Ż Ó Ó Ó Ę Ę Ó Ę Ć
LABORATORIUM SILNIKÓW SPALINOWYCH
LABORATORIUM SILNIKÓW SPALINOWYCH Materiały pomocnicze Wykonywanie charakterystyk silnika wg BN-79/1374-03 Silniki samochodowe Badania stanowiskowe Wykonywanie charakterystyk Charakterystyka silnika -
Prędkość i przyspieszenie punktu bryły w ruchu kulistym
Pędkość i pzyspieszenie punktu były w uchu kulistym Położenie dowolnego punktu były okeślmy z pomocą wekto (o stłej długości) któego współzędne możemy podć w nieuchomym ukłdzie osi x y z ) z b) ζ ζ η z
a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy
04 6. Ztoownie metod hemtów lokowh do nliz włśiwośi ukłdów utomtki Shemt lokow ukłdu utomtki jet formą zpiu mtemtznego modelu dnego ukłdu, n podtwie której, wkorztują zd przedtwione rozdzile 3.7, możn
Zadania do rozdziału 7.
Zdni do ozdziłu 7. Zd.7.. wiezchołkch kwdtu o okch umieszczono ednkowe łdunku. Jki łdunek o znku pzeciwnym tze umieścić w śodku kwdtu y sił wypdkow dziłąc n kżdy łdunek ył ówn zeu? ozwiąznie: ozptzmy siły
Momenty bezwładności figur płaskich - definicje i wzory
Moment ezwłnośi figu płski - efinije i wzo Dn jest figu płsk o polu oz postokątn ukł współzęn Momentem ezwłnośi figu wzglęem osi jest Momentem ezwłnośi figu wzglęem osi jest Momentem ewijnm figu wzglęem
Ś Ń ź Ś ź Ś Ś Ś Ś Ś Ś Ś Ą Ś Ż ż ż Ż ć ć ź ź ÓĆ ć Ż Ą ć Ż ż ć Ą Ł Ś Ń ć Ś Ą Ą ż Ż Ą ź Ą ź Ą ż Ś Ń Ł Ś Ś Ó Ą ż ż Ś Ń Ł Ś ż ź ź Ą ć ż ż ć ć ż ć ż Ą ż Ł ż ć ż ż Ż ż ż ż ć Ąć ż ż ż Ż Ż ż ż ć ż ć ż ż ż Ż ż ż
ANALIZA WP YWU STA YCH FIZYCZNYCH I GEOMETRYCZNYCH NA DEFORMACJE WALCOWYCH KONSTRUKCYJNYCH ELEMENTÓW GUMOWYCH
Gónictwo i Geoin yniei Rok 3 Zeszyt Min Pluch*, Mich Betlej* ANALIZA WP YWU STA YCH FIZYCZNYCH I GEOMETRYCZNYCH NA DEFORMACJE WALCOWYCH KONSTRUKCYJNYCH ELEMENTÓW GUMOWYCH. Wst p Pzedmiotem pcy jest nliz
Układ elektrohydrauliczny do badania siłowników teleskopowych i tłokowych
TDUSZ KRT TOMSZ PRZKŁD Ukłd elektrohydruliczny do bdni siłowników teleskopowych i tłokowych Wprowdzenie Polsk Norm PN-72/M-73202 Npędy i sterowni hydruliczne. Cylindry hydruliczne. Ogólne wymgni i bdni
KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p
KRT WZORÓW MTEMTYZNY WŁSNOŚI DZIŁŃ Pwo pzemiennośi dodwni + = + Pwo łąznośi dodwni + + = ( + ) + = + ( + ) Pwo zemiennośi mnoŝeni = Pwo łąznośi mnoŝeni = ( ) = ( ) Pwo ozdzielnośi mnoŝeni względem dodwni
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM
Konkusy w województwie podkpkim w oku szkolnym 0/0 KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Kluz odpowiedzi do ETAPU WOJEWÓDZKIEGO Akusz zwie tylko zdni otwte, któe nleży oenić według zmieszzonego poniżej
Dla danego czynnika termodynamicznego i dla określonej przemiany ciepło właściwe w ogólności zależy od dwóch niezależnych
Ciepło włśiwe Nieh zynnik ermodynmizny m sn określony przez emperurę orz iśnienie p. Dl dowolnej elemenrnej przeminy zzynjąej się od ego snu możemy npisć dq [J/kg] ( Równnie ( wiąże pohłninie lub oddwnie
2. Tensometria mechaniczna
. Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki
RURA GRUBOŚCIENNA W STANIE UPLASTYCZNIENIA. dr inŝ. Jan Lewiński
RURA GRUBOŚCIENNA W STANIE UPLASTYCZNIENIA d inŝ. Jn Lwiński CEL OPRACOWANIA Clm oowni jst zdstwini sosou olizń wytzymłośiowyh uy guośinnj, oddnj iśniniu wwnętznmu, znjdująj się w łskim stni odksztłni,
Czarnodziurowy Wszechświat a dwu-potencjalność pola grawitacyjnego
Zbiniew Osik Cznodziuowy Wszehświt dwu-potenjlność pol wityjneo.07.08 Cznodziuowy Wszehświt dwu-potenjlność pol wityjneo Zbiniew Osik E-mil: zbiniew.osik@mil.om http://oid.o/0000-000-5007-06x http://vix.o/utho/zbiniew_osik
6. Kinematyka przepływów
6. Kinemk pepłwów Podswowe deinije To jekoi elemenu płnu jes o miejse geomene kolejnh położeń pousjąego się elemenu płnu upłwem su. Równnie óżnikowe ou elemenu płnu: d d d d Lini pądu o lini spełniją wunek
Przetworniki Elektromaszynowe st. n. st. sem. V (zima) 2018/2019
Kolokwium główne Wrint A Przetworniki lektromszynowe st. n. st. sem. V (zim 018/019 Trnsormtor Trnsormtor trójzowy m nstępujące dne znmionowe: S 00 kva 50 Hz HV / LV 15 ±x5% / 0,4 kv poł. Dyn Pondto widomo,
DZIAŁANIA W ZAKRESIE ZMNIEJSZENIA BEZROBOCIA
DZIŁNI W ZKESIE ZMNIEJSZENI BEZOBOCI DZIŁNI W ZKESIE ZMNIEJSZENI BEZOBOCI Utwozenie podstefy ó Włbzyskiej Spejlnej Stefy Ekonoiznej INVEST PK oz spzedż znjdująyh się w jej gnih nieuhoośi kwieień 9. Zhęty
Wspomaganie obliczeń za pomocą programu MathCad
Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f
Prawo Coulomba i pole elektryczne
Prwo Coulomb i pole elektryczne Mciej J. Mrowiński 4 pździernik 2010 Zdnie PE1 2R R Dwie młe kulki o msie m, posidjące ten sm łdunek, umieszczono w drewninym nczyniu, którego przekrój wygląd tk jk n rysunku
ZADANIA DO SAMODZIELNEGO ROZWIĄZANIA
ZNI SMZIELNE RZWIĄZNI łski ukłd sił zbieżnych Zdnie 1 Jednoodn poziom belk połączon jest pzegubowo n końcu z nieuchomą ściną oz zwieszon n końcu n cięgnie twozącym z poziomem kąt. Znleźć ekcję podpoy n
2.3.1. Iloczyn skalarny
2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi
Mechanika techniczna
Mechnik techniczn pzykłdowe pytni i zdni sttyk. Zcytowć i ziustowć zsdę ównoegłooku (zsd sttyki).. Kiedy dwie siły pzyłożone do cił sztywnego ównowżą się?. okzć, że w sttyce siły pzyłożone do cił sztywnego
ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7
Próbn egzmin mturln z mtemtki Numer zdni ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etp rozwiązni zdni Liczb punktów Podnie wrtości b: b = Sporządzenie wkresu funkcji g Uwgi dl egzmintorów 4 Krzw
PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 1
PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA Wykłd 1 PODSTAWY CHEMII Wykłdow Prof. dr hb. inż. Mrt Rdek, B-6, III. 306, tel (1) (617) 5-6 e-mil: rdek@gh.edu.l Stron www: htt://glxy.ui.gh.edu.l/~rdek/ htt://www.gh.edu.l/
Nina Bątorek-Giesa*, Barbara Jagustyn*
Ochon Śodowisk i Zsobów Ntulnych n 40, 2009. Nin Bątoek-Gies*, Bb Jgustyn* Zwtość chlou w biomsie stłej stosownej do celów enegetycznych Chloine content in solid biomss used fo powe industy Słow kluczowe:
Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx
Wydził Mtemtyki Stosownej Zestw zdń nr 5 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 3 listopd 6r. Cłk nieoznczon Cłkownie. Podstwowe metody cłkowni Zdnie. Oblicz cłki:
ć Ł Ą Ź Ś Ó Ó ŚĆ Ó Ż ż Ó Ó Ć Ó Ś Ą Ą Ź Ś Ś Ź Ź Ó ż Ó Ź Ś ż Ę ć ż Ę Ź ÓŻ Ś ż Ą Ó Ą Ś ż ź Ó ż ć Ż Ź Ó Ó ć ż ć ć ż ć Ą Ż Ż Ó ć Ź Ż ć Ę ć Ó Ż ć Ś ć ć Ó Ó Ą ć ć Ść ć ć Ż ż ż Ó Ż ż ć Ż ć ć ć ć ć Ó Ż ć Ę ć Ó
Ć ę ą ą ę ó ó ó ó ą ęść ę ó ę ó ą ó ś ą ę ś ó ó ą Ć ą ą ę ó ą ą ę Ę ś ę ę ę ś ó ę ą ą ę ś ę ę ą ę ę ęś ą ę ó ń Ł ń ę ę ó ą ę ń ą ń ęś ą ą ę ó ś ę ó ęś ę ó ó ęś ść ć Ć ę ó ą Ę óż ą ć ą Ć ć ść ć ę ó ć ś
system identyfikacji wizualnej forma podstawowa karta A03 część A znak marki
krt A03 część A znk mrki form podstwow Znk mrki Portu Lotniczego Olsztyn-Mzury stnowi połączenie znku grficznego (tzw. logo) z zpisem grficznym (tzw. logotypem). Służy do projektowni elementów symboliki
Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa
Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut
KSIĘGA ZNAKU. Znak posiada swój obszar ochronny i w jego obrębie nie mogą się znajdować żadne elementy, nie związane ze znakiem.
KSIĘGA ZNAKU KSIĘGA ZNAKU Poniżej przedstwion jest chrkterystyk znku 7 lt Uniwersytetu Łódzkiego. Wszystkie proporcje i sposób rozmieszczeni poszczególnych elementów są ściśle określone. Wprowdznie jkichkolwiek
Zadania otwarte. 2. Matematyka. Poziom rozszerzony Próbna Matura z OPERONEM i Gazetą Wyborczą n n. 2n n. lim 10.
Vdemecum Mtemtyk KRYTERIA OCENIANIA OPOWIEZI Póbn Mtu z OPERONEM mtemtyk ZAKRES ROZSZERZONY VAEMECUM MATURA 06 kod wewnątz Mtemtyk Poziom ozszezony Zcznij zygotowni do mtuy już dziś Listod 05 skle.oeon.l/mtu
PROJEKT BUDOWLANY. Obiekt: Budynek istniejący C Na terenie kompleksu szpitalnego Przy ul. Staszica 16 73-110 Stargard Szczeciński
PROJEKT BUDOWLANY Relizcj etpu przebudowy i modernizcji 3 piętr Oddziłu Rehbilitcyjnego polegjącego n budowie szybu windowego, montżu windy szpitlnej orz niezbędnej rozbudowie obiektu budynku C znjdującego
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom rozszerzony. Listopad Wskazówki do rozwiązania zadania
Vdemecum Mtemtyk KRYTERIA OCENIANIA OPOWIEZI Póbn Mtu z OPERONEM mtemtyk ZAKRES ROZSZERZONY VAEMECUM MATURA 06 kod wewnątz Mtemtyk Poziom ozszezony Zcznij zygotowni do mtuy już dziś Listod 0 Zdni zmknięte
! "#$ %&'! '$! ( )!! "#$%&' ()*+,*"-./01 $%1! 2#34 567! $%1 8/9:;% + &BCD:;E 9 $%1 F$%GHI# JKLMNO & # PQRST"JKUV9 A# $%WXE%Y $%"#%(1 7! ; Z
! "#$ %&'! '$! ( )!! "#$%&' ()*+,*"-./01 $%1! 2#34 567! $%1 8/9:;% + ?@+A#$% &BCD:;E 9 $%1 F$%GHI# JKLMNO & # PQRST"JKUV9 A# $%WXE%Y $%"#%(1 7! ; Z # M[ $%1 \ # %]^!X 34 M[; ^ _` abc Z ; #E%bc;W% W%
Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,
Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,
ó óź óź óź ó ó ć ó ó ó ó Ą ó ó ó Ż ó ó ń Ą Ą Ą ó ó Ż ź Ś Ż Ż Ś Ż Ż Ż Ś Ż Ą ź ź Ą ź ź Ż Ż Ż Ś Ż ź Ż Ż Ż ć Ś Ż Ś ć Ł Ś Ś Ś Ł ć Ł Ś ó ó ó ó ó ó ó ó ó ó ń ń ń ó Żń ź ó ó ó ó ó Ż ó Ś ó ó ó ć ó ó ó ó ć ń Ż
A r promień wektor. r = f 1 (t), φ = f 2 (t) y r φ. x, = 0
1 Ruchem cił wm chodącą w csie mię jego położei wględem iego cił, któe umowie pjmujem ieuchome. Rówi uchu puktu we współędch postokątch l pomień wekto W ppdku gd pukt pous się, cli miei upłwem csu swoje
Ó ć ć Ł ć ć Ó ć ć ć ć ć Ć ć ź ć ć ć ź ć ć Ó Ó ć Ó Ó Ą Ó Ź Ó Ł Ó Ó Ó Ź Ó Ó ć Ć ć Ó Ł ć ć ć Ć ć ć Ó Ó ć ć Ó Ć ć ć Ą ć Ó Ć Ó ć ć Ć Ć Ó Ź ć Ó Ą ć ć ć ź ć Ś ć ź Ć ć ć Ć Ź ĄĄ Ą Ó Ć ć Ć Ć Ć ć Ć Ć Ć Ą ĄĄ ź Ą Ś
Ą Ą Ł ś ś Ł ś Ę Ę Ś Ś Ó Ę ź ś ś ś ś ś ń Ł Ą Ę ś ś ś Ś ń Ś ś Ę Ó Ź ś ś ś ś Ś ń ń ś ś Ś ń ź Ą ś ś Ł ź Ź Ś ś Ś ś ś ń ś Ś Ś ś Ł ś Ć ź ź ś Ś ś ś Ś ń Ć Ł Ą Ę ś ś ś Ś ść Ź ś Ś ś ś ś ń Ę ś Ś ś Ą Ó ś ś Ę Ł Ź ś
RACHUNEK WEKTOROWY W FIZYCE
Wdił EAIiE Kieunek: Elektotechnik Pedmiot: Fik RACHUNEK WEKTOROWY W FIZYCE Mteił do wkłdu 2 2010/2011, im 1 Wdił EAIiE Kieunek: Elektotechnik Pedmiot: Fik Pln Pojęcie wekto Diłni ni n wektoch Wekto w ktejńskim
Logo w wersji podstawowej występuje w wariantach: PODSTAWOWA WERSJA LOGO TOWARZYSTWA BIZNESOWE SA
Księg Logo PODSTAWOWA WERSJA LOGO TOWARZYSTWA BIZNESOWE SA Logo w wersji podstwowej występuje w wrintch: bordowe n biłym tle biłe n bordowym tle w ksztłcie kwdrtu LOGO W WERSJI DODATKOWEJ TOWARZYSTWA BIZNESOWE
Sieć odwrotna. Fale i funkcje okresowe
Sieć odwotn Fle i funkcje okesowe o Wiele obiektów w pzyodzie d; o Różne fle ozchodzą się w pzestzeni (zówno w póżni jk i w mteii); o Aby mtemtycznie opisć tkie okesowe zminy stosuje się funkcje sinus
RÓWNOWAGA CHEMICZNA. Reakcje chemiczne: nieodwracalne ( praktycznie nieodwracalne???) reakcje wybuchowe, np. wybuch nitrogliceryny: 2 C H 2
RÓWNOWG CHEMICZN N O 4 NO Rekje hemizne: nieowrlne ( rktyznie nieowrlne???) rekje wyuhowe, n. wyuh nitroglieryny: C 3 H 5 N 3 O 9 6 CO + 3 N + 5 H O + / O rekje rozu romieniotwórzego, n. roz urnu gy jeen
ź Ł Ą ź ż ź ż ż ć ż ć ź ć Ą ć Ź ć Ą ż Ś Ą ż ź ń ź Ź ż Ą ż ć ć ż ń ż Ś ż ż ż ć ń ż ż Ź ń Ś ć ć ź Ą ż ć ń ż ż ż Ź ń ć Ę ż ż ń Ź ż ż ć ż ć ć ż ń Ś ć Ć ć ń ć ć ż ć ń ż Ś ż Ó ń Ś Ś Óż Ą Ą Ą ń ż Ń Ń Ł ż Ś Ą
ń óź óź Ę ć Ą Ą ó Ę ć ć Ł Ś Ł Ą ź ó Ź ź ń ó ź ź ź ó ó ź ź ź ź ó ć ź ó ć ó Ź ź ń Ę ó Ź ź ź Ę ź ó Ź ź ź Ź ź ń Ą Ą Ę Ą Ę ć Ą Ą Ę Ą Ź Ą ź Ł Ę Ł ó ź ć ć Ę Źó ó ó ź Ś Ą ź ó ó ń ź Ę ó Ą Ś ź ó Ę ó ź ó ź ź ź ź
Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna
lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci
smart hp 4,9 46,2 kw CHŁODZENIE 5,9 56,0 kw GRZANIE R410A PLATE A C E C wytwornice wody lodowej chłodzone powietrzem z pompą ciepła
185 h wytwornice wody lodowej chłodzone powietrzem z pompą ciepła 4,9 46,2 kw HŁODZENIE 5,9 56,0 kw GRZNIE R410 PLTE E RGROUP Sp 19632013 fiftycoolyears 1 9 6 3 2 0 1 3 fiftycoolyears 186 DNE GENERLNE
TORY PLANET (Rozważania na temat kształtów torów ruchu planety wokół stacjonarnej gwiazdy)
Rysz Chybicki TORY PLANET (Rozwżni n tet ksztłtów toów uchu lnety wokół stcjonnej gwizy) (Posługiwnie się zez osoby tzecie ty tykułe lub jego istotnyi fgenti bez wiezy uto jest wzbonione) MIELEC Plnecie
REZONATORY MIKROFALOWE
RZONATORY MIKROFALOW Reonto mikofow jest to pewien obs mknięt. Pe obs mknięt oumie się obs pe bei któeo nie m pepłwu eneii, tn. wunki beowe wmusją w kżdm punkcie beu niknie skłdowej stcnej po eektcneo
Wyznacznik macierzy. - wyznacznik macierzy A
Wzncznik mcierz Uwg Wzncznik definiujem tlko dl mcierz kwdrtowch:,,,,,, =,,,,,, n n n n nn n,,, det = n,,, n n nn - mcierz - wzncznik mcierz Wzncznik mcierz to wzncznik n wektorów, które stnowią kolumn
ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Fuzja danych nawigacyjnych w przestrzeni filtru Kalmana
ISSN 733-867 ZESZ NAUKOWE NR (83) AKADEMII MORSKIEJ W SZCZECINIE IV MIĘDZNARODOWA KONFERENCJA NAUKOWO-ECHNICZNA E X L O - S H I 6 Andrzej Stteczny, Andrzej Lsj, Chfn Mohmmd Fzj dnych nwgcyjnych w przestrzen
Jak wykorzystać stacje radiowe ELF do badań geofizycznych?
Obsewtoium Astonomiczne UJ Zkłd Fizyki Wysokich Enegii Instytut Fizyki UJ Zkłd Doświdczlnej Fizyki Komputeowej Akdemi Góniczo-Hutnicz Kted Elektoniki Andzej Kułk AGH/OA UJ Zenon Nieckz -IF UJ Jezy Kubisz,
Środek masy i geometryczne momenty bezwładności figur płaskich 1
Środek ms geometrzne moment bezwłdnoś fgur płskh Środek ms fgur płskej Zleżnoś n współrzędne środk ms, fgur płskej złożonej z fgur regulrnh rs.. możem zpsć w nstępują sposób: gdze:. pole powerzhn -tej
Ż Ę Ą Ą Ż ć Ź Ż ń ń Ó Ó Ą Ę ń ń Ż ń Ę ń ż Ę ć Ę Ż ń ć ż ć ń ż Ż ż ć Ż ć ż ń ć Ź ć ć ć ń Ć Ą ż ć ź ż ż ć ć ż Ż Ż ż ń ć ć Ż ć Ó ń ć Ś Ż ć ć ć ń ć ż ń ć ć ć ć ć ż ć Ś ć ć ć ć Ż Ó ńą ć Ż Ż ż ż ć ż Ż ć ż ń
Aby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej.
2. Struktury i pierwistki N zjęcich zjmiemy się pierwistkmi i strukturmi krystlicznymi. O ile w przypdku tych pierwszych, temt poruszny był w trkcie wykłdu, to drugie zgdnienie może wymgć krótkiego przybliżeni/przypomnieni.
Klasyfikacja trójkątów
9.. WŁASNOŚCI TRÓJKĄTÓW Klsyfikj trójkątów odził trójkątów ze względu n oki róŝnoozny równormienny równoozny odził trójkątów ze względu n kąty ostrokątny rostokątny rozwrtokątny Sum kątów wewnętrzny trójkąt
= przy założeniu iż wartość momentu pędu ciała jest różna od zera: 0. const. , co pozwala na określenie go w sposób jednoznaczny.
Z 6 sei I ozszezone Chce znleźć to ch cił n któe ził sił centln: F, pz złożeni iż wtość oent pę cił jest óżn o ze: Do ozwiązni ożn wkozstć np wzó l ównowżn je wzó const ± spowzjąc pole po wpowzeni postwini
ź Ź Ź Ź ć Ł Ę Ź ć Ź ć Ń Ź Ź Ź Ź ć ć ć ź ć ź Ę ć Ź Ź Ł Ł Ł ć Ł Ą ć ć Ź Ś ć Ź ć Ę Ź ź ć Ź ć ź ć Ę ć Ą ć ć ć Ł ć ć ć ć Ą ć Ź ć ć Ź Ą Ź Ą ź Ń Ą ć Ą ć ć ć Ź ć ć ć ć ć Ą Ą Ą ć Ł Ń ć ć Ź Ł ć Ź Ź Ę Ź ć ć ć ć
VIESMANN. Mieszacze dla instalacji grzewczych wraz z siłownikami. Dane techniczne MIESZACZE DLA INSTALACJI GRZEW- CZEJ SIŁOWNIKI DLA MIESZACZY
VIESMANN Mieszcze dl instlcji grzewczych wrz z siłownikmi dl mieszczy Dne techniczne Numer ktlog. i ceny: ptrz cennik MIESZACZE DLA INSTALACJI GRZEW- CZEJ Mieszcz 4-drogowy, DN 20 do DN 50 i R ¾ do R 1¼
WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:
YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą
METODY HODOWLANE - zagadnienia
METODY HODOWLANE METODY HODOWLANE - zgdnieni. Mtemtyczne podstwy metod odowlnyc. Wtość cecy ilościowej i definicje pmetów genetycznyc. Metody szcowni pmetów genetycznyc 4. Wtość odowln cecy ilościowej
WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:
WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość
Ś ń Ż Ą Ó Ó Ż Ó ń Ó ń Ą ń Ż Ż Ź Ź Ł Ą Ą Ó Ó ń ń Ź ń Ź Ź ń ź Ó Ę Ó Ś ń ń Ż ń Ż ń ĘĘ Ą ń Ę Ą Ę Ż Ś Ó ń ź Ę Ł Ę Ż ń Ż Ż Ż Ć Ó Ś ń ń Ę Ż Ż Ź Ż ń ń ń ń Ł Ó Ą Ż Ź ń ń ń ń ń ź ń ń ń ń ń Ę Ą Ę Ó Ś ÓŻ Ą Ż Ś Ó
Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I
Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk
Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH
Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.
Ą Ł ń Ł ś ś Ą ś Ę Ś ś ź Ę ń Ę Ę ń ź Ę ź ś ń ś ś Ś ś ń Ó Ó ś ś ś Ę ś ń Ę Ó Ę ś ś Ą Ź Ę ń ś ś Ó ść ś ś ń Ę Ł Ą ź Ę ś Ś ś Ą Ą Ó ń ś ś Ę Ź ń Ę Ó Ę Ź ź ś ś ś śń ś ń Ó Ł Ł Ą ś ś Ę ś Ę Ę Ó ś ś Ę Ł ń Ó ś ś Ę Ó
WPŁYW WĘGLIKÓW PIERWOTNYCH NA INICJACJĘ MIKROPĘKNIĘĆ W STALI SZYBKOTNĄCEJ
MODELOWANIE INśYNIERKIE IN 896-77X 36, s. 307-3, Gliwice 008 WPŁYW WĘGLIKÓW PIERWOTNYCH NA INICJACJĘ MIKROPĘKNIĘĆ W TALI ZYBKOTNĄCEJ JERZY WODECKI Kted Budowy Mszyn, Politechnik Śląsk e-mil: jezy.wodecki@polsl.pl
Ł ć óż ć ó ż ć ż ó ć ó ó ó ć ć ć ć ć ć ń Ę ń ż ó ć ó ć Ą Ć Ć ż ó ż ć ó ć Ł ż Ń óż Ę ć ć ó ń ń ó ć ć ć Ł ć ó ć ż ć ć ż Ę ć ż ć ż ż ó ó ó óż ó ż ż ż Ę ó ć Ę Ę ó Ę ć Ę ó Łć Ę Ę ó Ę Ę Ę ó ó Ę ó Ą Ę ż ó ż ż
Ę Ł Ż Ż ŻŻ Ą Ą ć ż Ó ć ż ć Ż Ś ż Ż ć Ć Ó Ż Ś ć ÓŹ Ź Ó Ż Ó Ż Ś Ą Ó Ś Ąć Ż Ż Ó ć Ż ć Ę Ż Ó Ó Ó Ó Ż ć Ó Ó Ó Ż Ó Ó Ó Ł Ź Ó Ó Ó Ó Ó Ł Ś ć ć ć Ó Ó Ó Ó Ó Ś Ó Ó Ż Ó Ż Ś ż ć Ę ż Ż Ę Ż Ż ć ż ż Ż ć Ę ć ż ż ż ć ć