Tematy zadań sprawdziany klasa III poziom rozszerzony
|
|
- Ludwik Stankiewicz
- 8 lat temu
- Przeglądów:
Transkrypt
1 Tematy zadań sprawdziany klasa III poziom rozszerzony Funkcja potęgowa, wykładnicza i logarytmiczna Sprawdzian a) Dla jakiej wartości parametru m wykresy funkcji g() m przecinają się w punkcie o odciętej? f() m oraz b) Dla znalezionej wartości parametru m naszkicuj wykresy obu funkcji we wspólnym układzie współrzędnych RozwiąŜ: a) równanie 6 7, b) nierówność 5 RozwiąŜ nierówność: ( )( ) > 9 5 Dla jakich wartości parametru m R, równanie m ma tylko jedno rozwiązanie? 5 WykaŜ, Ŝe jest liczbą naturalną Sprawdzian RozwiąŜ równania: 5 0,6 5 9 b) Wyznacz zbiór A\B, jeśli: a) ( ) { : C } A Wyznacz zbiór A\B, jeśli: A { : C }, B { : R 6 } 7 > 8 9, B { : R 6 } 7 > 8 9 Dla jakich wartości parametru m, m R, równanie 9 ( m) ma dwa róŝne rozwiązania rzeczywiste? 5 Oblicz wartość sumy, wiedząc, Ŝe Sprawdzian Uporządkuj malejąco następujące liczby: log 5 a log5 7 log7 65 log5, b log 7 9, c, d log log RozwiąŜ: log(5 ) a) równanie: log(5 ) 6 b) nierówność: log ( ) < log Dla jakich R log, log, log 9 w podanej kolejności, tworzą ciąg arytmetyczny? Wyznacz róŝnicę tego ciągu Zaznacz zbiór punktów płaszczyzny, których współrzędne,y spełniają nierówność: log y < log, liczby ( ) ( ) ( ) y y
2 5 RozwiąŜ układ równań: logy log y log y Sprawdzian W prostokątnym układzie współrzędnych zaznacz zbiór tych punktów płaszczyzny, których współrzędne,y spełniają warunek: ( log )( log y) ( log y ) RozwiąŜ równania: a) log log log 8 b) ; log log( ) log RozwiąŜ graficznie nierówność: log > RozwiąŜ nierówność: log ( ) 5 Ciąg ( ) n n a określony jest wzorem rekurencyjnym: a, a ( ) Oblicz lim ( a a a ) n n n log a Sprawdzian 5 W prostokątnym układzie współrzędnych przedstaw zbiór tych wszystkich punktów, których współrzędne,y spełniają warunek: y y 5 6 y y Wyznacz dziedzinę funkcji: f() Naszkicuj wykres funkcji rozwiązań równania RozwiąŜ równania: log 5 a) ( ) log ( 5) b) log ( ) log ( ) 9 f(), a następnie na jego podstawie zbadaj liczbę m 5 Udowodnij, Ŝe jeŝeli ciąg (,b,c) to ciąg ( log a,log b,logc) jest ciągiem arytmetycznym Trygonometria Sprawdzian π a) Wiedząc, Ŝe α π, π, β, π, oraz cos( α β) w zaleŝności od wartości parametru m ( m R) a jest ciągiem geometrycznym o wyrazach dodatnich, sin α i cosβ sin0 cos 0 cos0 sin 0 b) Oblicz wartość wyraŝenia: cos9 cos sin9 sin Sprawdź, czy prawdziwa jest następująca toŝsamość, podaj konieczne załoŝenia: sin α cos α α tg cos α cos α a) Wyznacz zbiór wartości funkcji y cos sin, R, oblicz
3 π b) Narysuj wykres funkcji: y sin, ( π, π) 6 RozwiąŜ równanie sin sin cos 5 RozwiąŜ równanie: log0,5cos sin Sprawdzian 5 Oblicz sin α π, jeśli tg α i α π, π RozwiąŜ równania: a) cos cos 0 b) sin cos cos WykaŜ, Ŝe sin0 sin 0 sin 50 sin 70 6 Dla jakich wartości parametru m ( m R), równanie sin cos m ma rozwiązanie? π 5 Oblicz ( tgα) ( tgβ), jeśli α β Kombinatoryka i rachunek prawdopodobieństwa Sprawdzian Ile róŝnych słów (mających sens lub nie) moŝna utworzyć, przestawiając litery w wyrazie RENEGOCJACJE? Odpowiedź uzasadnij Na peronie czeka na pociąg 0 osób NadjeŜdŜa skład złoŝony z 6 wagonów Jakie jest prawdopodobieństwo, Ŝe te osoby zajmą miejsca w dwóch wagonach, po 5 osób w kaŝdym wagonie (zakładamy, Ŝe wszystkie rozmieszczenia pasaŝerów w wagonach pociągu są jednakowo prawdopodobne)? Ania i Krzysiek wymyślili taką grę: Ania rzuci losowo dwiema symetrycznymi monetami i jedną sześcienną kostką do gry Jeśli wypadnie co najmniej jeden orzeł i liczba oczek większa od, to wygrywa Ania Jeśli wypadną dwie reszki lub oczko na kostce, to wygrywa Krzysiek Natomiast w pozostałych przypadkach będzie remis a) Porównaj szanse wygrania Ani i Krzyśka b) Oblicz prawdopodobieństwo otrzymania remisu Wiadomo, Ŝe P (A') 0,7 ; P(A B) 0,6 ; P(A' B') 0, 9 Oblicz P (B \ A) 5 Ile rozwiązań złoŝonych z liczb całkowitych dodatnich ma równanie a b c d 0? Sprawdzian Niesforny Kubuś rozrzucił siedmiotomową encyklopedię na podłogę Przestraszony, szybko ustawił ją na półce, zupełnie nie zwracając uwagi na kolejność tomów Jakie jest prawdopodobieństwo, Ŝe tomy i nie stoją obok siebie? W klasie jest 5 chłopców Ile jest co najwyŝej dziewcząt, jeŝeli prawdopodobieństwo wybrania dwuosobowej delegacji składającej się wyłącznie z dziewcząt jest mniejsze od? W przedziale jest 8 ponumerowanych miejsc po w kaŝdym rzędzie Do tego przedziału wsiadło 6 pasaŝerów Jakie jest prawdopodobieństwo, ze zajmując losowo
4 miejsca, usiądą w taki sposób, Ŝe będą tylko dwie pary osób siedzących naprzeciw siebie? Ze zbioru liczb {,,5,6,7,8,9} wylosowano kolejno, ze zwracaniem, dwie liczby i utworzono z nich liczbę dwucyfrową Oblicz prawdopodobieństwo, Ŝe utworzona liczba jest podzielna przez lub przez 5 Dany jest wielomian W() w postaci iloczynowej: W () ( ) ( ) Wielomian ten został wymnoŝony i uporządkowany Jaki współczynnik jest przy jednomianie 0? Odpowiedź uzasadnij Sprawdzian Z talii 5 kart losujemy jednocześnie dwie karty Jakie jest prawdopodobieństwo, Ŝe co najmniej jedna karta jest damą, jeśli wiadomo, Ŝe Ŝadna z nich nie jest waletem? Rzucamy sześć razy dwiema kostkami do gry Oblicz prawdopodobieństwo, Ŝe otrzymamy sumę oczek podzielną przez : a) tylko cztery razy, b) co najwyŝej jeden raz Koparka pracuje w warunkach normalnych z prawdopodobieństwem 0,9, a w warunkach trudnych z prawdopodobieństwem 0, Prawdopodobieństwo awarii w trakcie pracy w warunkach normalnych wynosi 0,05, a w trakcie pracy w warunkach trudnych 0, Oblicz prawdopodobieństwo awarii koparki Wiadomo, Ŝe zdarzenia A i B są niezaleŝne, oraz P ( A' B' ), P(A) 8 a) Oblicz P(B) b) Czy zdarzenia A i B są rozłączne? Odpowiedź uzasadnij 5 Urządzenie elektryczne U składa się z czterech jednakowych elementów E, E, E,, połączonych jak na rysunku poniŝej E Prawdopodobieństwo, Ŝe kaŝdy element będzie pracował bezawaryjnie wynosi 9 Elementy ulegają uszkodzeniu niezaleŝnie od siebie 0 Oblicz prawdopodobieństwo bezawaryjnej pracy urządzenia U Sprawdzian Dwóch strzelców oddało po jednym strzale do tego samego celu Pierwszy z nich trafia średnio 9 razy na strzałów, a drugi 8 razy na 0 strzałów Oblicz prawdopodobieństwo, Ŝe: a) cel został trafiony dwa razy, b) cel został trafiony przynajmniej raz 9 Oblicz P (B / A), wiedząc, Ŝe P (A' B), P(A' B'), P(A B) Z talii 5 kart losujemy dwie karty Oglądamy je i wkładamy z powrotem do talii Tak postępujemy sześć razy Jakie jest prawdopodobieństwo, Ŝe dwa razy otrzymamy jednego pika lub jednego kiera? W sklepie znajdują się soki jabłkowe pewnej firmy z trzech zakładów Z, Z, Z Stosunek ilości soku (w sklepie) wyprodukowanego przez te zakłady jest równy odpowiednio :: Poza tym wiadomo, Ŝe pierwszego gatunku jest 80% soku z zakładu Z, 90% z zakładu Z i 75% z zakładu Z Ekspedientka sprzedała losowo
5 wzięty karton tego soku Jakie jest prawdopodobieństwo, Ŝe był to sok w pierwszym gatunku? 5 Okazało się, Ŝe sprzedany sok (patrz zadanie ) był pierwszego gatunku Jakie jest prawdopodobieństwo, Ŝe został wyprodukowany przez zakład Z? Stereometria Sprawdzian Wysokość ostrosłupa prawidłowego czworokątnego jest dwa razy dłuŝsza od krawędzi jego podstawy Przekrój ostrosłupa płaszczyzną przechodzącą przez przekątną podstawy i wierzchołek ostrosłupa jest trójkątem o polu 6 cm Oblicz cosinus kąta między ścianą boczną a płaszczyzną podstawy oraz pole powierzchni bocznej tego ostrosłupa NajdłuŜsza przekątna graniastosłupa prawidłowego sześciokątnego ma długość p i tworzy z krótszą przekątną podstawy wychodzącą z tego samego wierzchołka kąt o mierze α Oblicz objętość graniastosłupa Dla jakich α zadanie ma rozwiązanie? Oblicz pole powierzchni kuli wpisanej w stoŝek o tworzącej długości l i kącie rozwarcia α W trójkącie ABC bok AB ma długość a, natomiast kąty ostre do niego przyległe mają miary α i β Trójkąt ten obracamy wokół osi równoległej do boku AB i przechodzącej przez wierzchołek C Oblicz objętość otrzymanej bryły obrotowej 5 W trójkącie ABC bok AB ma długość a, natomiast kąty ostre do niego przyległe mają miary α i β Trójkąt ten obracamy wokół osi równoległej do boku AB i przechodzącej przez wierzchołek C Oblicz objętość otrzymanej bryły obrotowej Sprawdzian Krawędź boczna prawidłowego ostrosłupa trójkątnego jest dwa razy dłuŝsza od krawędzi podstawy Oblicz cosinus kąta między sąsiednimi ścianami bocznymi tego ostrosłupa Podstawą graniastosłupa prostego jest romb o boku a i kącie ostrym α DłuŜsza przekątna graniastosłupa tworzy z płaszczyzną podstawy kąt β Oblicz objętość walca wpisanego w ten graniastosłup Wysokość trójkątnego ostrosłupa prawidłowego ma długość h, a krawędzie boczne są do siebie prostopadłe Wyznacz długość promienia i pole powierzchni kuli opisanej na tym ostrosłupie StoŜek o promieniu podstawy długości 6 cm i tworzącej długości 9 cm przecięto płaszczyzną przechodzącą przez jego wierzchołek i nachyloną do płaszczyzny podstawy pod kątem o mierze π Oblicz pole otrzymanego przekroju 5 Siatkę ostrosłupa tworzą dwa przystające trójkąty prostokątne o przyprostokątnej długości 8 cm i dwa trójkąty równoboczne Oblicz objętość ostrosłupa, przyjmując za podstawę trójkąt prostokątny Ciągłość i pochodna funkcji Sprawdzian Wyznacz równania wszystkich asymptot wykresu funkcji f(), R \ { } Oblicz granicę (o ile istnieje) Jeśli nie istnieje granica, zbadaj, czy istnieją granice jednostronne w podanym punkcie a) lim ( 5 )
6 9 8 b) lim 8 6 c) lim 6 9 Wyznacz te wartości parametru m, dla których funkcja f jest ciągła: 9 dla < f() m m dla 9 dla > 5 6 Na podstawie definicji (Heinego) granicy funkcji w punkcie, wykaŝ, Ŝe nie istnieje 5 granica lim W okrąg o danym promieniu R wpisujemy n-kąty foremne Wyznacz pole S(n) sin takiego n-kąta Oblicz lim S(n) Wskazówka: lim n 0 Sprawdzian Oblicz granicę (o ile istnieje): a) lim b) lim cos c) lim 8 d) lim ( ) f 0 posiada asymptoty Jeśli tak, wyznacz ich równania Zbadaj, czy istnieje granica lim Zilustruj zadanie rysunkiem Zbadaj, czy wykres funkcji (), R \ { 0,} Wyznacz największy podzbiór zbioru R, w którym ciągła jest funkcja: dla < dla,0) f() dla 0 dla > 0 5 Dla jakich wartości parametru a ( R) równa? a, granica lim ( ) a jest
7 Sprawdzian Wyznacz przedziały monotoniczności i ekstrema lokalne funkcji: f(), R \ {,} Na podstawie definicji zbadaj róŝniczkowalność funkcji f() 9, R w punkcie: a) 0 b) 0 Naczynie w kształcie walca o promieniu podstawy 6 cm i wysokości cm zawierające pewną substancję chemiczną wpisano w naczynie w kształcie stoŝka Podstawa walca zawiera się w podstawie stoŝka, a okrąg górnej podstawy walca zawiera się w powierzchni bocznej stoŝka Jaką długość powinien mieć promień podstawy stoŝka o najmniejszej objętości? a 5 Punkt P(,7) naleŝy do wykresu funkcji f(), gdzie b Styczna do b wykresu funkcji f, poprowadzona w punkcie P jest prostopadła do prostej o równaniu y 0 Oblicz współczynniki a i b, oraz napisz równanie tej stycznej 5 Wyznacz te wartości parametru m, dla których wielomian W () 6 6m ma tylko jedno ekstremum lokalne Sprawdzian Dana jest funkcja f (),, ) a) Korzystając z definicji, oblicz pochodną funkcji f w punkcie 0 b) Napisz równanie prostej prostopadłej do stycznej do wykresu funkcji f w punkcie 0 i przechodzącej przez punkt o odciętej 5 a dla 0 Dla jakich wartości a i b, ( a,b R), funkcja f() jest ciągła b dla > 0 i róŝniczkowalna w R? Wyznacz najmniejszą i największa wartość funkcji f() w przedziale 0, Objętość graniastosłupa prawidłowego czworokątnego jest równa 7 cm Pole powierzchni całkowitej graniastosłupa jest funkcją długości jego krawędzi podstawy Napisz wzór tej funkcji i wyznacz jej przedziały monotoniczności 5 Zbadaj róŝniczkowalność funkcji y [], R w punkcie 0 0
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI PRACA KONTROLNA nr 1 październik 1999 r 1. Stop składa się z 40% srebra próby 0,6, 30% srebra próby 0,7 oraz 1 kg srebra próby 0,8. Jaka jest waga i jaka
KORESPONDENCYJNY KURS Z MATEMATYKI. PRACA KONTROLNA nr 1
KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 październik 000r 1. Suma wszystkich wyrazów nieskończonego ciągu geometrycznego wynosi 040. Jeśli pierwszy wyraz tego ciągu zmniejszymy o 17, a jego
Ostrosłupy ( ) Zad. 4: Jedna z krawędzi ostrosłupa trójkątnego ma długość 2, a pozostałe 4. Znajdź objętość tego ostrosłupa. Odp.: V =
Ostrosłupy Zad 1: W ostrosłupie prawidłowym trójkątnym kwadrat długości krawędzi podstawy, kwadrat długości wysokości ostrosłupa i kwadrat długości krawędzi bocznej są kolejnymi wyrazami ciągu arytmetycznego
Tematy: zadania tematyczne
Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.
TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH )
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH ) PAKIET ZADAŃ (zadania wybrano ze zbiorów autorów i wydawnictw: Kiełbasa, Res Polona,
Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015
Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY MARZEC 2019 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 12
ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.
ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla
5. Oblicz pole powierzchni bocznej tego graniastosłupa.
11. STEREOMETRIA Zad.11.1. Oblicz pole powierzchni całkowitej sześcianu, wiedząc Ŝe jego objętość wynosi 16 cm. Zad.11.. Oblicz długość przekątnej sześcianu, jeśli jego pole powierzchni całkowitej wynosi
Zadanie 01 Zaznacz w układzie współrzędnych zbiory : A = { (x, y) ; x R i y R i x + y 1 } oraz. B m = { (x, y) ; x R i y R i 4x 2 + 4y 2 4x 4m+1 }
Zadanie 0 Zaznacz w układzie współrzędnych zbiory : A = { (x, y) ; x R i y R i x + y } oraz B = { (x, y) ; x R i y R i 4x + 4y 4x 5 } Zaznacz osobno zbiór B-A ( ) Niech m N. Oznaczmy zbiory : A m = { (x,
ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE TRZECIEJ.
ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE TRZECIEJ. I. Kombinatoryka i rachunek prawdopodobieństwa ) Ile liczb pięciocyfrowych można utworzyć, wykorzystując wszystkie cyfry liczby 476? ) Pięciu przyjaciół
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 194057 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) { 21x 14y = 28 Rozwiazaniem
Zad. 1 Liczba jest równa A B C D. Zad. 2 Liczba log16 jest równa A 3log2 + log8 B log4 + 2log3 C 3log4 log4 D log20 log4
Zad. 1 Liczba jest równa A B C D Zad. Liczba log16 jest równa A 3log + log8 B log4 + log3 C 3log4 log4 D log0 log4 Zad. 3 Rozwiązaniem równania jest liczba A B 18 C 1, D 6 Zad. 4 Większą z dwóch liczb
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 015 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera
Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +
Badanie funkcji Zad : Funkcja f jest określona wzorem f( ) = + a) RozwiąŜ równanie f() = 5 b) Znajdź przedziały monotoniczności funkcji f c) Oblicz największą i najmniejszą wartość funkcji f w przedziale
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 10 MARCA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 4 7 8 25 0, 5
Zadania do samodzielnego rozwiązania zestaw 11
Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4
postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n
Propozycje pytań na maturę ustną ( profil podstawowy ) Elżbieta Kujawińska ZESTAW Podaj wzory na postać kanoniczną i iloczynową funkcji kwadratowej Sprowadź do postaci kanonicznej i iloczynowej trójmiany:
I. FUNKCJA WYKŁADNICZA I LOGARYTMY 1. POTĘGI Zad.1. Zapisz za pomocą potęgi o podanej podstawie:
Strona 1 z 9 I. FUNKCJA WYKŁADNICZA I LOGARYTMY 1. POTĘGI Zapisz za pomocą potęgi o podanej podstawie: 5 4 ( 27) ( ) a), podstawa : ( ) b) 6 ( 9) c), podstawa: (5) d) Oblicz: a) 1 6 4 2 1 1 1 2 (0,25)
KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale
Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy
Równania prostych i krzywych; współrzędne punktu
Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM ROZSZERZONY 8 KWIETNIA 2017 CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Funkcja f określona
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A05 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Ułamek 5+2 5 2 ma wartość: A.
ARKUSZ X
www.galileusz.com.pl ARKUSZ X W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 3 2 jest równa A) 5 2 B) 6 2 C) 6 2 D) 2 Zadanie 2. (0-1 pkt) Kurtka zimowa
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 maja 017 r.
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 162005 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Na rysunku przedstawiono
MATERIAŁ ĆWICZENIOWY Z MATEMATYKI
MATERIAŁ ĆWICZENIOWY Z MATEMATYKI STYCZEŃ 0 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 0 stron.. W zadaniach od. do 0. są podane odpowiedzi: A, B, C, D,
LUBELSKA PRÓBA PRZED MATURĄ poziom podstawowy MATEMATYKA LUTY Instrukcja dla zdającego. Czas pracy: 170 minut
MATEMATYKA LUTY 04 Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od do są podane 4 odpowiedzi: A, B,
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 49988 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT) Odległość punktu A =
PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM
PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 13 Zadania stereometria
1 TEST WSTĘPNY 1. (1p) Graniastosłup ma 12 wierzchołków. Liczba krawędzi tego graniastosłupa to: A. 12 B. 18 C. 24 D. 36 2. (1p) Pole powierzchni jednej ściany sześcianu jest równe 9. Objętość tego sześcianu
VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH
VIII. ZIÓR PRZYKŁDOWYCH ZDŃ MTURLNYCH ZDNI ZMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0.. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa.. 9 C. D. 5 Zadanie. ( pkt) Liczba log jest równa.
A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla
Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 01 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)
Rozwiązaniem nierówności A. B. C. 4 D. 2
(Kod ucznia).... /50 pkt. (Liczba uzyskanych punktów) Matura próbna z matematyki KLASA III poziom podstawowy Czas trwania 170 minut Liczba punktów do uzyskania - 50 Zadanie 1. (0-1) Liczba jest równa A)
Zestaw VI. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. (x + 1) 2 > 18 B. (x 1) 2 < 5 C. (x + 4) 2 < 50 D.
Zestaw VI Zadanie. ( pkt) Wskaż nierówność, którą spełnia liczba π A. (x + ) 2 > 8 B. (x ) 2 < C. (x + 4) 2 < 0 D. (x 2 )2 8 Zadanie 2. ( pkt) Pierwsza rata, która stanowi 8% ceny roweru, jest równa 92
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie
STEREOMETRIA. Poziom podstawowy
STEREOMETRIA Poziom podstawowy Zadanie ( 8 pkt ) W stożku tworząca o długości jest nachylona do powierzchni podstawy pod kątem, którego tangens jest równy Oblicz stosunek pola powierzchni bocznej do pola
PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ
KOD ZDAJĄCEGO WPISUJE ZDAJĄCY symbol klasy symbol zdającego PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ MATEMATYKA-POZIOM PODSTAWOWY dysleksja Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.
ZADANIA ZAMKNIĘTE W zadaniach -5 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie. ( pkt) Wskaż rysunek, na którym zaznaczony jest zbiór wszystkich liczb rzeczywistych spełniających nierówność
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
MARZEC ROK 08 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron (zadania 34). Ewentualny brak zgłoś
Zadania z treścią na ekstrema funkcji
Zadania z treścią na ekstrema funkcji Zad. 1: W trójkąt równoramienny, którego boki zawierają się w prostych: AB o równaniu y =, AC o równaniu x y + 1 = 0 i BC o równaniu x + y 6 = 0, wpisano równoległobok
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 78353 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 4 jest
Matura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3
Matura 2011 maj Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x + 2 3 4 D. x 1 3 3 Zadanie 2. (1 pkt) Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI P-1 POZIOM PODSTAWOWY Czas pracy: 170 minut Za rozwiązanie wszystkich zadań można uzyskać łącznie 50 punktów BRUDNOPIS Zadanie 1. (1 pkt) ZADANIA ZAMKNIĘTE
Indukcja matematyczna
Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY (TECHNIKUM) 7 MARCA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) ( 5 Liczba
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Instrukcja dla zdającego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1 stron (zadania
MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r.
MATEMATYKA ZBIÓR ZADAŃ MATURALNYH Lata 010 019 Poziom podstawowy Uzupełnienie 019 Zadania z sesji poprawkowej z sierpnia 019 r. Opracował Ryszard Pagacz Spis treści Zadania maturalne.........................................................
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 2018 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16
Uniwersytet Mikołaja Kopernika w Toruniu. Egzamin wstępny z matematyki
Uniwersytet Mikołaja Kopernika w Toruniu Egzamin wstępny z matematyki lipca 2006 roku Zestaw I wariant A Czas trwania egzaminu: 240 minut 1. Dane są zbiory liczbowe A = {x; x R x < 2}, B = {x; x R x +
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 011 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zad. 1 (2 pkt) Rozwiąż równanie Zad.2 (2 pkt) 2 3x 1 = 1 2x 2 Rozwiąż układ równań x +3y =5 2x y = 3 Zad.3 (2 pkt) 2 Rozwiąż nierówność x + 6x 7 0 Zad.4 (2 pkt) 3 2
MATERIAŁ ĆWICZENIOWY Z MATEMATYKI
Materiał ćwiczeniowy zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Materiał ćwiczeniowy chroniony jest prawem autorskim. Materiału nie naleŝy powielać ani udostępniać w Ŝadnej formie
PRACA KONTROLNA nr 1
XXXIII KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 październik 2003r. 1. Podstawą trójkąta równoramiennego jest odcinek AB o końcach A( 1, 3), B(1, 1), a wierzchołek C tego trójkąta leży na
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 14 KWIETNIA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 30 2 3 5
PRACA KONTROLNA nr 1
KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 październik 2002r 1. Narysować wykres funkcji y = 4 + 2 x x 2. Korzystając z tego wykresu określić liczbę rozwiązań równania 4+2 x x 2 = p w zależności
W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla oraz kalkulatora.
Egzamin maturalny od roku szkolnego 2014/2015 Matematyka Poziom rozszerzony Przykładowy zestaw zadań dla osób słabowidzących (A4) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych,
Ostatnia aktualizacja: 30 stycznia 2015 r.
Ostatnia aktualizacja: 30 stycznia 2015 r. Spis treści 1. Funkcja liniowa 5 2. Funkcja kwadratowa 7 3. Trygonometria 11 4. Ciagi liczbowe 13 5. Wielomiany 15 6. Funkcja wykładnicza 17 7. Funkcja wymierna
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY
Prace semestralne luty 2011 czerwiec Z każdej pracy wybieramy jeden poziom i robimy zadania TYLKO z tego poziomu
Prace semestralne luty 2011 czerwiec 2011 Z każdej pracy wybieramy jeden poziom i robimy zadania TYLKO z tego poziomu Praca semestralna nr 1a Semestr II Funkcje, funkcja liniowa. Zadania na ocenę dopuszczającą:
Przykładowe zestawy pytań maturalnych z matematyki na egzamin ustny.
Przykładowe zestawy pytań maturalnych z matematyki na egzamin ustny Zestaw I 1) Przedstaw i omów postać kanoniczną i iloczynową funkcjikwadratowej Daną funkcję przedstaw w postaci kanonicznej: y = ( )(
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 142395 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Które z podanych
Matematyka. dla. Egzamin. Czas pracy będzie
Egzamin maturalny od roku szkolnego 2014/2015 Matematyka Poziom podstawowy Przykładowy zestaw zadań dla osób słabowidzących (A4) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych,
EGZAMIN MATURALNY OD ROKU SZKOLNEGO
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB SŁABOSŁYSZĄCYCH (A3) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych,
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 155104 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Objętość stożka o
EGZAMIN MATURALNY OD ROKU SZKOLNEGO
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 204/205 MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ (A) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla
KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale
Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy
Egzamin wstępny z Matematyki 1 lipca 2011 r.
Egzamin wstępny z Matematyki 1 lipca 011 r. 1. Mamy 6 elementów. Ile jest możliwych permutacji tych elementów jeśli: a) wszystkie elementy są różne, b) dwa elementy wśród nich są identyczne, a wszystkie
ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI
ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI SEMESTR I ZESTAW. Podaj liczbę przeciwną i odwrotną do liczby 2 2. Jak zmieniła się cena wyrobu po podwyżce o 20%, a następnie po obniżeniu otrzymanej ceny o
MATERIAŁ ĆWICZENIOWY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły POZNAŃ MATERIAŁ ĆWICZENIOWY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera 18 stron (zadania 1 11). Ewentualny
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 15 MARCA 2014 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 43256232a2 jest
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB Z AUTYZMEM, W TYM Z ZESPOŁEM ASPERGERA (A) W czasie trwania egzaminu zdający może korzystać z
Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Marzec 2017 we współpracy z 1. Sprawdź, czy arkusz egzaminacyjny
EGZAMIN MATURALNY OD ROKU SZKOLNEGO
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 204/205 MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB Z AUTYZMEM, W TYM Z ZESPOŁEM ASPERGERA (A2) W czasie trwania egzaminu zdający może korzystać z
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 22 KWIETNIA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 2 8 7 3 6 7
ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Centralna Komisja Egzaminacyjna ARKUSZ ĆWICZENIOWY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz ćwiczeniowy zawiera strony (zadania 1 3).. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 25 MARCA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Najmniejsza liczba całkowita
Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 13 Teoria stereometria
1 GRANIASTOSŁUPY i OSTROSŁUPY wiadomości ogólne Aby tworzyć wzory na OBJĘTOŚĆ i POLE CAŁKOWITE graniastosłupów musimy znać pola figur płaskich a następnie na ich bazie stosować się do zasady: Objętość
ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY
Centralna Komisja Egzaminacyjna ARKUSZ ĆWICZENIOWY Z MATEMATYKI POZIOM PODSTAWOWY MARZEC 2012 Instrukcja dla zdającego 1. Sprawdź, czy arkusz ćwiczeniowy zawiera 28 stron (zadania 1 32). 2. Odpowiedzi
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 157994 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) W ciagu arytmetycznym
Stereometria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie
Stereometria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W ostrosłupie prawidłowym czworokątnym ściana boczna o polu równym 10 jest nachylona do płaszczyzny podstawy
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
MARZEC ROK 017 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 4 strony (zadania 1 34). Ewentualny brak
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. (dla klas trzecich liceum i klas czwartych technikum)
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. WPISUJE UCZEŃ KOD PESEL PRZEDMATURALNA DIAGNOZA KSZTAŁTUJĄCA Z MATEMATYKI POZIOM PODSTAWOWY MARZEC 018 (dla klas trzecich liceum
PDM 3. Zakres podstawowy i rozszerzony. Plan wynikowy. STEREOMETRIA (22 godz.) W zakresie TREŚCI PODSTAWOWYCH uczeń potrafi:
PDM 3 Zakres podstawowy i rozszerzony Plan wynikowy STEREOMETRIA ( godz.) Proste i płaszczyzny w przestrzeni Kąt nachylenia prostej do płaszczyzny wskazać płaszczyzny równoległe i płaszczyzny prostopadłe
Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury
STEREOMETRIA Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH B D C A B B A B A C D A
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH Nr zad Odp. 1 2 3 4 5 6 7 8 9 10 11 12 B D C A B B A B A C D A Nr zad Odp. 13 14 15
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRZED MATURĄ MAJ 2016 POZIOM PODSTAWOWY Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania 1 31). 2. Rozwiązania zadań wpisuj
PDM 3 zakres podstawowy i rozszerzony PSO
PDM 3 zakres podstawowy i rozszerzony PSO STEREOMETRIA wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny odróżnić proste równoległe
MATURA PRÓBNA - odpowiedzi
MATURA PRÓBNA - odpowiedzi Zadanie 1. (1pkt) Zbiorem wartości funkcji = + 6 7 jest przedział: A., B., C., D., Zadanie. (1pkt) Objętość kuli wpisanej w sześcian o krawędzi długości 6 jest równa: A. B. 4
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R_P-08 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 008 Czas pracy 80 minut Instrukcja