Wykład 7 i 8. Przeszukiwanie z adwersarzem. w oparciu o: S. Russel, P. Norvig. Artificial Intelligence. A Modern Approach
|
|
- Andrzej Szczepaniak
- 8 lat temu
- Przeglądów:
Transkrypt
1 (4g) Wykład 7 i 8 w oparciu o: S. Russel, P. Norvig. Artificial Intelligence. A Modern Approach P. Kobylański Wprowadzenie do Sztucznej Inteligencji 177 / 226
2 (4g) gry optymalne decyzje w grach algorytm minimax alfa-beta cięcia gry stochastyczne gry z niepełną informacją przegląd grających programów komputerowych P. Kobylański Wprowadzenie do Sztucznej Inteligencji 178 / 226
3 (4g) Gry środowisko wieloagentowe, w którym trzeba brać pod uwagę działania innych agentów działania innych agentów są nieprzewidywalne konflikt interesów teoria gier: gry deterministyczne,turowe,dla dwóch graczy,z sumą zerową, zpełną informacją sztuczna inteligencja: środowisko deterministyczne i w pełni obserwowalne, dwaj agenci działają na zmianę, funkcje użyteczności agentów równe ale przeciwne P. Kobylański Wprowadzenie do Sztucznej Inteligencji 179 / 226
4 (4g) Gry: sformułowanie problemu Gra to problem przeszukiwania, w którym: S 0 to stan początkowy PLAYER(s) definiuje, który gracz wykonuje ruch w stanie s ACTIONS(s) zwraca jakie ruchy są dopuszczalne w stanie s RESULT(s, a) model przejścia, który definiuje rezultat ruchu TERMINAL-TEST(s) test zakończenia, który zachodzi jeśli gra kończy się w stanie s (stany końcowe to te, które spełniają test zakończenia) UTILITY(s, p) funkcja użyteczności (celu albo wypłaty) definiuje końcową wartość numeryczną w stanie końcowym s dla gracza p (np. wszachach0przegrana,1wygrana, 1 2 remis) P. Kobylański Wprowadzenie do Sztucznej Inteligencji 180 / 226
5 (4g) Gry: drzewo gry MA () MIN (O) MA () O O O... MIN (O) O O O TERMINAL Utility O O O O OO O O O O P. Kobylański Wprowadzenie do Sztucznej Inteligencji 181 / 226
6 (4g) Optymalne decyzje w grach w problemie przeszukiwania rozwiązaniem jest sekwencja akcji prowadzących do stanu końcowego przeszukiwanie z adwersarzem wymaga uwzględnienia działań przeciwnika optymalna decyzja jest strategią najlepszych reakcji na ruchy przeciwnika poszukiwanie strategii jest analogiczne do przeglądu drzewa AND-OR (węzeł OR odpowiada decyzji gracza a AND decyzji przeciwnika) przy poszukiwaniu strategii zakłada się nieomylność przeciwnika dla danego drzewa gry, optymalna strategia jest zdeterminowana wartością minimax obliczoną dla każdego z węzłów drzewa P. Kobylański Wprowadzenie do Sztucznej Inteligencji 182 / 226
7 (4g) Optymalne decyzje w grach Niech UTILITY(s) =UTILITY(s, PLAYER(s)). Wówczas MINIMA(s) = 8 < : UTILITY(s) max a2actions(s) MINIMA(RESULT(s, a)) min a2actions(s) MINIMA(RESULT(s, a)) gdy TERMINAL-TEST(s) gdy PLAYER(s) =MA gdy PLAYER(s) =MIN P. Kobylański Wprowadzenie do Sztucznej Inteligencji 183 / 226
8 (4g) Optymalne decyzje w grach Drzewo gry z węzłami 4 gracza MA i węzłami 5 gracza MIN: MA 3 A a 1 a 2 a 3 MIN 3 B 2 C 2 D b 1 b 2 b 3 c 1 c 2 c 3 d 1 d 2 d P. Kobylański Wprowadzenie do Sztucznej Inteligencji 184 / 226
9 (4g) Optymalne decyzje w grach Example (Gra osaczony w języku Prolog) win(, G, Y) :- select((, Y), G, G1), \+win(y, G1, _).?- win(1, [(1,2),(1,3),(2,3),(3,4),(4,1),(4,2)], ). = 3 ; false. P. Kobylański Wprowadzenie do Sztucznej Inteligencji 185 / 226
10 (4g) Optymalne decyzje w grach Example (Gra NIM w języku Prolog) Ze stosu kamieni należy wziąć 1, 2 lub 3 kamienie. Przegrywa kto weźmie ostatni kamień. nim(n, I) :- result(n, I, N1), N1 > 0, \+ nim(n1, _). result(n, I, N1) :- between(1, 3, I), N1 is N-I, N1 >= 0.?- nim(15, ). = 2 ; false.?- nim(13, ). false. P. Kobylański Wprowadzenie do Sztucznej Inteligencji 186 / 226
11 (4g) Optymalne decyzje w grach Example (Szkic programu w języku Prolog) Dwa wzajemnie rekurencyjne predykaty wyznaczające strategię w grze bez remisu: primus(state, none) :- winner(state, primus). primus(state, Action) :- result(state, Action, NewState), \+ secundus(newstate, _). secundus(state, none) :- winner(state, secundus). secundus(state, Action) :- result(state, Action, NewState), \+ primus(newstate, _). P. Kobylański Wprowadzenie do Sztucznej Inteligencji 187 / 226
12 (4g) Algorytm minimax algorytm minimax oblicza decyzję minimax dla danego stanu algorytm rekurencyjnie oblicza wartości minimax dla każdego następnika bezpośrednio implementując równanie definiujące wartość MINIMA(s) jeśli głębokością drzewa gry jest m iwkażdymniekońcowymstanie jest b dopuszczalnych ruchów, to czasowa złożoność algorytmu minimax jest O(b m ),natomiastzłożonośćpamięciowajesto(bm) gdy generuje się wszystkie ruchy na raz lub O(m) jeśli generuje się kolejno po jednym ruchu dla rzeczywistych gier algorytm minimax jest niepraktyczny z powodu złożoności P. Kobylański Wprowadzenie do Sztucznej Inteligencji 188 / 226
13 (4g) Algorytm minimax function MINIMA-DECISION(state) returns an action return arg max a2actions(state) MIN-VALUE(RESULT(state, a)) function MA-VALUE(state) returns autilityvalue if TERMINAL-TEST(state) then return UTILITY(state) v 1 for each a in ACTIONS(state) do v MA(v, MIN-VALUE(RESULT(state, a))) return v function MIN-VALUE(state) returns autilityvalue if TERMINAL-TEST(state) then return UTILITY(state) v 1 for each a in ACTIONS(state) do v MIN(v, MA-VALUE(RESULT(state, a))) return v P. Kobylański Wprowadzenie do Sztucznej Inteligencji 189 / 226
14 (4g) Algorytm minimax Przykładowe obliczenia w grze dla wielu graczy z wektorami ocen: to move A (1, 2, 6) B (1, 2, 6) (1, 5, 2) C (1, 2, 6) (6, 1, 2) (1, 5, 2) (5, 4, 5) A (1, 2, 6) (4, 2, 3) (6, 1, 2) (7, 4,1) (5,1,1) (1, 5, 2) (7, 7,1) (5, 4, 5) P. Kobylański Wprowadzenie do Sztucznej Inteligencji 190 / 226
15 (4g) Alfa-beta cięcia do prostego algorytmu minimax dodano oszacowania wartości optymalnej decyzji na podstawie dotychczas znalezionych faktycznych wartości UTILITY jeśli górne oszacowanie węzła jest gorsze niż dolne oszacowanie jego rodzica, to nie kontynuuje się analizy kolejnych następników tego węzła P. Kobylański Wprowadzenie do Sztucznej Inteligencji 191 / 226
16 (4g) Alfa-beta cięcia (a) [, + ] A (b) [, + ] A [, 3] B [, 3] B (c) [3, + ] A (d) [3, + ] A [3, 3] B [3, 3] B [, 2] C (e) [3, 14] A (f) [3, 3] A [3, 3] [, 2] [, 14] B C D [3, 3] [, 2] [2, 2] B C D P. Kobylański Wprowadzenie do Sztucznej Inteligencji 192 / 226
17 (4g) Alfa-beta cięcia Załóżmy, że dwa nieocenione węzły będące następnikami węzła C z poprzedniego rysunku, mają wartości x i y, wówczas: MINIMA(root) = max(min(3, 12, 8), min(2, x, y), min(14, 5, 2)) = max(3, min(2, x, y), 2) = max(3, z, 2) gdzie z = min(3, z, 2) apple 2 = 3 Zatem wartość korzenia jest niezależna od ocen x i y. P. Kobylański Wprowadzenie do Sztucznej Inteligencji 193 / 226
18 (4g) Alfa-beta cięcia algorytm MINIMA jest algorytmem przeszukiwania wgłąb zatem w dowolnej chwili rozpatrywane są jedynie węzły na jednej ścieżce od korzenia do danego węzła możliwe jest wycinanie całych fragmentów przeglądanego drzewa, przy czym odcinanie sterowane jest dwoma parametrami: wartość najlepszego wyboru (najwyższa) jaki znaleziono dotychczas w dowolnym rozgałęzieniu na ścieżce dla gracza MA wartość najlepszego wyboru (najniższa) jaki znaleziono dotychczas w dowolnym rozgałęzieniu na ścieżce dla gracza MIN P. Kobylański Wprowadzenie do Sztucznej Inteligencji 194 / 226
19 (4g) Alfa-beta cięcia Player Opponent m Player Opponent n Jeśli gracz ma lepszy wybór m w bezpośrednim lub pośrednim poprzedniku gorszego wyboru n, to wybór n nigdy nie będzie wykonywany podczas gry. P. Kobylański Wprowadzenie do Sztucznej Inteligencji 195 / 226
20 (4g) Alfa-beta cięcia: algorytm function ALPHA-BETA-SEARCH(state) returns an action v MA-VALUE(state, 1, +1) return the action in ACTIONS(state) with value v function MA-VALUE(state,, ) returns autilityvalue if TERMINAL-TEST(state) then return UTILITY(state) v 1 for each a in ACTIONS(state) do v MA(v, MIN-VALUE(RESULT(state, a),, )) if v then return v MA(, v) return v function MIN-VALUE(state,, ) returns autilityvalue if TERMINAL-TEST(state) then return UTILITY(state) v +1 for each a in ACTIONS(state) do v MIN(v, MA-VALUE(RESULT(state, a),, )) if v apple then return v MIN(, v) return v P. Kobylański Wprowadzenie do Sztucznej Inteligencji 196 / 226
21 (4g) Alfa-beta cięcia: kolejność ruchów efektywność algorytmu w istotny sposób zależy od kolejności analizowanych ruchów w pierwszej kolejności powinno się rozpatrywać następniki, które wydają się najlepsze jeśli możliwe jest ustalenie kolejności ruchów, to liczba węzłów jakie należy zbadać zmniejsza się od O(b m ) dla algorytmu minimax do O(b m/2 ) efektywny wskaźnik rozgałęzienia zmniejsza się wówczas z b do p b (np. w szachach z 35 do około 6) kiedy następniki analizowane są w losowej kolejności, to liczba badanych węzłów wynosi O(b 3m/4 ) wszachachkolejnośćruchówmogłabybyćnastępująca:bicie, podwójne uderzenie, ruchy do przodu, ruchy do tyłu P. Kobylański Wprowadzenie do Sztucznej Inteligencji 197 / 226
22 (4g) Alfa-beta cięcia: kolejność ruchów "Some care must be taken in the implementation of this algorithm. In the Second Annual Computer Chess Championship (Chicago, 1971) a chess program using this algorithm discovered amateintwomovesandterminanteditssearch.afterthe opponent moved, the program began the search again, discovering first a mate in three. It immediately pruned and made the first move of this sequence, missing the possible mate on the move. It continued finding mates in more than one move until due to another bug if finally lost the game." Samuel H. Fuller; John G. Gasching; Gillogly, "Analysis of the alpha-beta pruning algorithm" (1973). Computer Science Department Paper P. Kobylański Wprowadzenie do Sztucznej Inteligencji 198 / 226
Sztuczna Inteligencja i Systemy Doradcze
Sztuczna Inteligencja i Systemy Doradcze Przeszukiwanie przestrzeni stanów gry Przeszukiwanie przestrzeni stanów gry 1 Gry a problemy przeszukiwania Nieprzewidywalny przeciwnik rozwiązanie jest strategią
Sztuczna Inteligencja i Systemy Doradcze
Sztuczna Inteligencja i Systemy Doradcze Przeszukiwanie przestrzeni stanów algorytmy ślepe Przeszukiwanie przestrzeni stanów algorytmy ślepe 1 Strategie slepe Strategie ślepe korzystają z informacji dostępnej
SID Wykład 4 Gry Wydział Matematyki, Informatyki i Mechaniki UW
SID Wykład 4 Gry Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Gry a problemy przeszukiwania Nieprzewidywalny przeciwnik rozwiazanie jest strategia specyfikujac a posunięcie dla każdej
Algorytmy dla gier dwuosobowych
Algorytmy dla gier dwuosobowych Wojciech Dudek Seminarium Nowości Komputerowe 5 czerwca 2008 Plan prezentacji Pojęcia wstępne (gry dwuosobowe, stan gry, drzewo gry) Algorytm MiniMax Funkcje oceniające
Podstawy sztucznej inteligencji
wykład II Problem solving 03 październik 2012 Jakie problemy możemy rozwiązywać? Cel: Zbudować inteligentnego agenta planującego, rozwiązującego problem. Szachy Kostka rubika Krzyżówka Labirynt Wybór trasy
Teoria gier. Teoria gier. Odróżniać losowość od wiedzy graczy o stanie!
Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), 2-osobowe(np. szachy, warcaby, go, itp.), wieloosobowe(np. brydż, giełda, itp.); wygraną/przegraną:
Teoria gier. Wykład7,31III2010,str.1. Gry dzielimy
Wykład7,31III2010,str.1 Gry dzielimy Wykład7,31III2010,str.1 Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), Wykład7,31III2010,str.1 Gry
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Rozwiązywanie problemów-i Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Rozwiązywanie problemów Podstawowe fazy: Sformułowanie celu -
Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2
Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.
Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279
Wykład 8 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 sformułowanie problemu przegląd drzewa poszukiwań przykłady problemów wybrane narzędzia programistyczne J. Cichoń, P. Kobylański
Sztuczna Inteligencja i Systemy Doradcze
ztuczna Inteligencja i ystemy Doradcze Przeszukiwanie przestrzeni stanów Przeszukiwanie przestrzeni stanów 1 Postawienie problemu eprezentacja problemu: stany: reprezentują opisy różnych stanów świata
Wyznaczanie strategii w grach
Wyznaczanie strategii w grach Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Definicja gry Teoria gier i konstruowane na jej podstawie programy stanowią jeden z głównych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z
Heurystyki. Strategie poszukiwań
Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja
9.9 Algorytmy przeglądu
14 9. PODSTAWOWE PROBLEMY JEDNOMASZYNOWE 9.9 Algorytmy przeglądu Metody przeglądu dla problemu 1 r j,q j C max były analizowane między innymi w pracach 25, 51, 129, 238. Jak dotychczas najbardziej elegancka
Mixed-UCT: Zastosowanie metod symulacyjnych do poszukiwania równowagi Stackelberga w grach wielokrokowych
Mixed-UCT: Zastosowanie metod symulacyjnych do poszukiwania równowagi Stackelberga w grach wielokrokowych Jan Karwowski Zakład Sztucznej Inteligencji i Metod Obliczeniowych Wydział Matematyki i Nauk Informacyjnych
WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI
POLITECHNIKA WARSZAWSKA WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA MEL WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI NS 586 Dr inż. Franciszek Dul 6. GRY POSZUKIWANIA W OBECNOŚCI PRZECIWNIKA Gry Pokażemy, w jaki
Partition Search i gry z niezupełną informacją
MIMUW 21 stycznia 2010 1 Co to jest gra? Proste algorytmy 2 Pomysł Algorytm Przykład użycia 3 Monte Carlo Inne spojrzenie Definicja Co to jest gra? Proste algorytmy Grą o wartościach w przedziale [0, 1]
Tworzenie gier na urządzenia mobilne
Katedra Inżynierii Wiedzy Teoria podejmowania decyzji w grze Gry w postaci ekstensywnej Inaczej gry w postaci drzewiastej, gry w postaci rozwiniętej; formalny opis wszystkich możliwych przebiegów gry z
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD III: Problemy agenta
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD III: Problemy agenta To już było: AI to dziedzina zajmująca się projektowaniem agentów Określenie agenta i agenta racjonalnego Charakterystyka PAGE
TEORIA GIER DEFINICJA (VON NEUMANN, MORGENSTERN) GRA. jednostek (graczy) znajdujących się w sytuacji konfliktowej (konflikt interesów),w
TEORIA GIER GRA DEFINICJA (VON NEUMANN, MORGENSTERN) Gra składa się z zestawu reguł określających możliwości wyboru postępowania jednostek (graczy) znajdujących się w sytuacji konfliktowej (konflikt interesów),w
Gry. wykład 5. dr inż. Joanna Kołodziejczyk. Zakład Sztucznej Inteligencji ISZiMM. ESI - wykład 5 p. 1
Gry wykład 5 dr inż. Joanna Kołodziejczyk jkolodziejczyk@wi.ps.pl Zakład Sztucznej Inteligencji ISZiMM ESI - wykład 5 p. 1 Plan wykładu Adversarial search jak postępować, gdy inni agenci sa naszymi przeciwnikami,
prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325
PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj
Sztuczna inteligencja w programowaniu gier
ztuczna inteligencja w programowaniu gier Algorytmy przeszukiwania przestrzeni rozwiązań Krzysztof Ślot Wprowadzenie Ogólna charakterystyka zagadnienia Cel przeszukiwania: znaleźć element będący rozwiązaniem
Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH
Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Przeszukiwanie przestrzeni rozwiązań, szukanie na ślepo, wszerz, w głąb. Spis treści: 1. Wprowadzenie 3. str. 1.1 Krótki Wstęp
Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel
Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach
3. MINIMAX. Rysunek 1: Drzewo obrazujące przebieg gry.
3. MINIMAX. Bardzo wygodną strukturą danych pozwalającą reprezentować stan i przebieg gry (szczególnie gier dwuosobowych) jest drzewo. Węzły drzewa reprezentują stan gry po wykonaniu ruchu przez jednego
Porządek symetryczny: right(x)
Porządek symetryczny: x lef t(x) right(x) Własność drzewa BST: W drzewach BST mamy porządek symetryczny. Dla każdego węzła x spełniony jest warunek: jeżeli węzeł y leży w lewym poddrzewie x, to key(y)
Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne
Algorytmy mrówkowe H. Bednarz Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne 13 kwietnia 2015 1 2 3 4 Przestrzeń poszukiwań Ograniczenia
Adam Meissner. SZTUCZNA INTELIGENCJA Gry dwuosobowe
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Gry dwuosobowe Literatura [1] Sterling
Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303
Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp
Uczenie ze wzmocnieniem
Uczenie ze wzmocnieniem Maria Ganzha Wydział Matematyki i Nauk Informatycznych 2018-2019 Temporal Difference learning Uczenie oparte na różnicach czasowych Problemy predykcyjne (wieloetapowe) droga do
Wprowadzenie do Sztucznej Inteligencji
Wprowadzenie do Sztucznej Inteligencji Wykład Informatyka Studia InŜynierskie Przeszukiwanie przestrzeni stanów Przestrzeń stanów jest to czwórka uporządkowana [N,[, S, GD], gdzie: N jest zbiorem wierzchołków
Teoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 4 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1
Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,
3.2 Wykorzystanie drzew do generowania pytań
Algorithm 3.2 Schemat prostego przycinania drzewa function przytnij_drzewo( T: drzewo do przycięcia, P: zbiór_przykładów) returns drzewo decyzyjne begin for węzły n drzewa T: T* = w drzewie T zastąp n
Problem 1 prec f max. Algorytm Lawlera dla problemu 1 prec f max. 1 procesor. n zadań T 1,..., T n (ich zbiór oznaczamy przez T )
Joanna Berlińska Algorytmika w projektowaniu systemów - ćwiczenia 1 1 Problem 1 prec f max 1 procesor (ich zbiór oznaczamy przez T ) czas wykonania zadania T j wynosi p j z zadaniem T j związana jest niemalejąca
Alfa-beta Ulepszenie minimax Liczba wierzchołk ow w drzewie gry. maksymalnie wd. minimalnie wbd/2c + wdd/2e Algorytmy przeszukiwania drzewa gry 5
Zastosowanie metody Samuela doboru współczynników funkcji oceniajacej w programie grajacym w anty-warcaby Daniel Osman promotor: dr hab. inż. Jacek Mańdziuk 1 Spis treści Algorytmy przeszukiwania drzewa
Rozwiązywanie problemów metodą przeszukiwania
Rozwiązywanie problemów metodą przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Reprezentacja problemu w przestrzeni stanów Jedną z ważniejszych metod sztucznej
Algorytmy z powrotami. Algorytm minimax
Algorytmy z powrotami. Algorytm minimax Algorytmy i struktury danych. Wykład 7. Rok akademicki: 2010/2011 Algorytm z powrotami rozwiązanie problemu budowane jest w kolejnych krokach, po stwierdzeniu (w
Wprowadzenie do Sztucznej Inteligencji
Wprowadzenie do Sztucznej Inteligencji Wykład Studia Inżynierskie Przeszukiwanie przestrzeni stanów Przestrzeń stanów jest to czwórka uporządkowana [N,[, S, GD], gdzie: N jest zbiorem wierzchołków w odpowiadających
Wprowadzenie do Sztucznej Inteligencji
Wprowadzenie do Sztucznej Inteligencji Wykład Informatyka Studia InŜynierskie Przeszukiwanie przestrzeni stanów Przestrzeń stanów jest to czwórka uporządkowana [N,, S, GD], gdzie: N jest zbiorem wierzchołków
Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA 3.2. Ćwiczenia komputerowe
SZTUCZNA INTELIGENCJA
Instytut Automatyki, Robotyki i Informatyki Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis Literatura SZTUCZNA INTELIGENCJA Modelowanie problemów za
Wykład2,24II2010,str.1 Przeszukiwanie przestrzeni stanów powtórka
Wykład2,24II2010,str.1 Przeszukiwanie przestrzeni stanów powtórka DEFINICJA: System produkcji M zbiórst.zw.stanów wyróżnionys 0 St.zw.stanpoczątkowy podzbiórg St.zw.stanówdocelowych zbiórot.zw.operacji:
Wykład 6. Drzewa poszukiwań binarnych (BST)
Wykład 6 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST
WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI
POLITECHNIKA WARSZAWSKA WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA MEL WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI NS 586 Dr inż. Franciszek Dul Poziomy sztucznej inteligencji Sztuczna świadomość? Uczenie się
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06
Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek
Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 12. PRZESZUKIWANIE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska ROZWIĄZYWANIE PROBLEMÓW JAKO PRZESZUKIWANIE Istotną rolę podczas
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium 7. 2 Drzewa poszukiwań binarnych
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Algorytmy i struktury danych Laboratorium Drzewa poszukiwań binarnych 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie studentów
Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów
Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.
Planowanie drogi robota, algorytm A*
Planowanie drogi robota, algorytm A* Karol Sydor 13 maja 2008 Założenia Uproszczenie przestrzeni Założenia Problem planowania trasy jest bardzo złożony i trudny. W celu uproszczenia problemu przyjmujemy
Podejście memetyczne do problemu DCVRP - wstępne wyniki. Adam Żychowski
Podejście memetyczne do problemu DCVRP - wstępne wyniki Adam Żychowski Na podstawie prac X. S. Chen, L. Feng, Y. S. Ong A Self-Adaptive Memeplexes Robust Search Scheme for solving Stochastic Demands Vehicle
Przykładowe B+ drzewo
Przykładowe B+ drzewo 3 8 1 3 7 8 12 Jak obliczyć rząd indeksu p Dane: rozmiar klucza V, rozmiar wskaźnika do bloku P, rozmiar bloku B, liczba rekordów w indeksowanym pliku danych r i liczba bloków pliku
Heurystyczne metody przeszukiwania
Heurystyczne metody przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Pojęcie heurystyki Metody heurystyczne są jednym z ważniejszych narzędzi sztucznej inteligencji.
ALGORYTMY GENETYCZNE (wykład + ćwiczenia)
ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Metody przeszukiwania
Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania
Data Mining Wykład 5. Indukcja drzew decyzyjnych - Indeks Gini & Zysk informacyjny. Indeks Gini. Indeks Gini - Przykład
Data Mining Wykład 5 Indukcja drzew decyzyjnych - Indeks Gini & Zysk informacyjny Indeks Gini Popularnym kryterium podziału, stosowanym w wielu produktach komercyjnych, jest indeks Gini Algorytm SPRINT
Kolejka priorytetowa. Często rozważa się kolejki priorytetowe, w których poszukuje się elementu minimalnego zamiast maksymalnego.
Kolejki Kolejka priorytetowa Kolejka priorytetowa (ang. priority queue) to struktura danych pozwalająca efektywnie realizować następujące operacje na zbiorze dynamicznym, którego elementy pochodzą z określonego
Technologie informacyjne Wykład VII-IX
Technologie informacyjne -IX A. Matuszak 19 marca 2013 A. Matuszak Technologie informacyjne -IX Rekurencja A. Matuszak (2) Technologie informacyjne -IX Gotowanie jajek na miękko weż czysty garnek włóż
Wysokość drzewa Głębokość węzła
Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.
Drzewa poszukiwań binarnych
1 Cel ćwiczenia Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet ielonogórski Drzewa poszukiwań binarnych Ćwiczenie
Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV
Algorytmy grafowe Wykład 2 Przeszukiwanie grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów 3. Spójność grafu,
Wstęp do programowania
Wstęp do programowania Stosy, kolejki, drzewa Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. VII Jesień 2013 1 / 25 Listy Lista jest uporządkowanym zbiorem elementów. W Pythonie
Kognitywne podejście do gry w szachy kontynuacja prac
Kognitywne podejście do gry w szachy kontynuacja prac Stanisław Kaźmierczak Opiekun naukowy: prof. dr hab. Jacek Mańdziuk 2 Agenda Motywacja Kilka badań Faza nauki Wzorce Generowanie ruchów Przykłady Pomysły
Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika
Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Napisanie programu komputerowego: Zasada rozwiązania zadania Stworzenie sekwencji kroków algorytmu Przykłady algorytmów z życia codziennego (2/1 6)
Rekurencja. Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów.
Rekurencja Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów. Zgodnie ze znaczeniem informatycznym algorytm rekurencyjny to taki który korzysta z samego
operacje porównania, a jeśli jest to konieczne ze względu na złe uporządkowanie porównywanych liczb zmieniamy ich kolejność, czyli przestawiamy je.
Problem porządkowania zwanego również sortowaniem jest jednym z najważniejszych i najpopularniejszych zagadnień informatycznych. Dane: Liczba naturalna n i ciąg n liczb x 1, x 2,, x n. Wynik: Uporządkowanie
Ogólne wiadomości o grafach
Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,
Wykład 8. Rekurencja. Iterować jest rzeczą ludzką, wykonywać rekursywnie boską. L. Peter Deutsch
Wykład 8 Iterować jest rzeczą ludzką, wykonywać rekursywnie boską. Smok podsuszony zmok (patrz: Zmok). Zmok zmoczony smok (patrz: Smok). L. Peter Deutsch Stanisław Lem Wizja lokalna J. Cichoń, P. Kobylański
Programowanie deklaratywne
Języki i paradygmaty programowania Lista (elementy języka Oz) Przemysław Kobylański Zaprogramuj w języku Oz rozwiązania poniższych zadań. Na ocenę dostateczną trzeba rozwiązać wszystkie zadania bez gwiazdek.
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Przeszukiwanie Przeszukiwanie przestrzeni stanów Motywacja Rozwiązywanie problemów: poszukiwanie sekwencji operacji prowadzącej do celu poszukiwanie
procesów Współbieżność i synchronizacja procesów Wykład prowadzą: Jerzy Brzeziński Dariusz Wawrzyniak
Wykład prowadzą: Jerzy Brzeziński Dariusz Wawrzyniak Plan wykładu Abstrakcja programowania współbieżnego Instrukcje atomowe i ich przeplot Istota synchronizacji Kryteria poprawności programów współbieżnych
Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy
Sztuczna Inteligencja Projekt
Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować
TEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr 5: Sieci, drogi ekstremalne w sieciach, analiza złożonych przedsięwzięć (CPM i PERT) dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl
Zastosowanie sztucznej inteligencji w testowaniu oprogramowania
Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Problem NP Problem NP (niedeterministycznie wielomianowy, ang. nondeterministic polynomial) to problem decyzyjny, dla którego rozwiązanie
Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1
Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy
Uniwersytet Warszawski Teoria gier dr Olga Kiuila LEKCJA 3
LEKCJA 3 Wybór strategii mieszanej nie jest wyborem określonych decyzji, lecz pozornie sztuczną procedurą która wymaga losowych lub innych wyborów. Gracze mieszają nie dlatego że jest im obojętna strategia,
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
Przeszukiwanie przestrzeni rozwiązań, szukanie na ślepo, wszerz, wgłąb
POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Przeszukiwanie przestrzeni rozwiązań, szukanie na ślepo, wszerz, wgłąb AUTOR: Krzysztof Górski Indeks: 133247 e-mail: 133247@student.pwr.wroc.pl
Projekt 4: Programowanie w logice
Języki Programowania Projekt 4: Programowanie w logice Środowisko ECL i PS e W projekcie wykorzystane będzie środowisko ECL i PS e. Dostępne jest ono pod adresem http://eclipseclp.org/. Po zainstalowaniu
Przypomnij sobie krótki wstęp do teorii grafów przedstawiony na początku semestru.
Spis treści 1 Drzewa 1.1 Drzewa binarne 1.1.1 Zadanie 1.1.2 Drzewo BST (Binary Search Tree) 1.1.2.1 Zadanie 1 1.1.2.2 Zadanie 2 1.1.2.3 Zadanie 3 1.1.2.4 Usuwanie węzła w drzewie BST 1.1.2.5 Zadanie 4
Algorytm FIREFLY. Michał Romanowicz Piotr Wasilewski
Algorytm FIREFLY Michał Romanowicz Piotr Wasilewski Struktura prezentacji 1. Twórca algorytmu 2. Inspiracja w przyrodzie 3. Algorytm 4. Zastosowania algorytmu 5. Krytyka algorytmu 6. Porównanie z PSO Twórca
Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.
Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna
Systemy wbudowane. Uproszczone metody kosyntezy. Wykład 11: Metody kosyntezy systemów wbudowanych
Systemy wbudowane Wykład 11: Metody kosyntezy systemów wbudowanych Uproszczone metody kosyntezy Założenia: Jeden procesor o znanych parametrach Znane parametry akceleratora sprzętowego Vulcan Początkowo
ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe opracował:
Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 2 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
MAGICIAN. czyli General Game Playing w praktyce. General Game Playing
MAGICIAN czyli General Game Playing w praktyce General Game Playing 1 General Game Playing? Cel: stworzenie systemu umiejącego grać/nauczyć się grać we wszystkie gry Turniej w ramach AAAI National Conference
Metody Kompilacji Wykład 3
Metody Kompilacji Wykład 3 odbywa się poprzez dołączenie zasad(reguł) lub fragmentów kodu do produkcji w gramatyce. Włodzimierz Bielecki WI ZUT 2 Na przykład, dla produkcji expr -> expr 1 + term możemy
Zadanie 1: Piętnastka
Informatyka, studia dzienne, inż. I st. semestr VI Sztuczna Inteligencja i Systemy Ekspertowe 2010/2011 Prowadzący: mgr Michał Pryczek piątek, 12:00 Data oddania: Ocena: Grzegorz Graczyk 150875 Marek Rogalski
Matematyka bankowa 1 1 wykład
Matematyka bankowa 1 1 wykład Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl
Wstęp do metod numerycznych Zadania numeryczne 2016/17 1
Wstęp do metod numerycznych Zadania numeryczne /7 Warunkiem koniecznym (nie wystarczającym) uzyskania zaliczenia jest rozwiązanie co najmniej 3 z poniższych zadań, przy czym zadania oznaczone literą O
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Elementy kognitywistyki II:
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD IV: Agent szuka rozwiązania (na ślepo) Poprzednio: etapy rozwiązywania problemu sformułowanie celu sformułowanie problemu stan początkowy (initial
Uczenie ze wzmocnieniem
Uczenie ze wzmocnieniem Maria Ganzha Wydział Matematyki i Nauk Informatycznych 2018-2019 Przypomnienia (1) Do tych czas: stan X t u, gdzie u cel aktualizacji: MC : X t G t TD(0) : X y R t+1 + γˆv(x t,
Skowrońska-Szmer. Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością. 04.01.2012r.
mgr inż. Anna Skowrońska-Szmer Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością 04.01.2012r. 1. Cel prezentacji 2. Biznesplan podstawowe pojęcia 3. Teoria gier w
Zaawansowane metody numeryczne
Wykład 1 Zadanie Definicja 1.1. (zadanie) Zadaniem nazywamy zagadnienie znalezienia rozwiązania x spełniającego równanie F (x, d) = 0, gdzie d jest zbiorem danych (od których zależy rozwiązanie x), a F