8.1. Syndrom wypalenia zawodowego a dopasowanie do środowiska pracy - analiza korelacji. Rozdział 8. Dane uzyskane w badaniach

Wielkość: px
Rozpocząć pokaz od strony:

Download "8.1. Syndrom wypalenia zawodowego a dopasowanie do środowiska pracy - analiza korelacji. Rozdział 8. Dane uzyskane w badaniach"

Transkrypt

1 W tej części pracy przedstawione zostały dane zebrane w badaniach wraz z ich statystycznym opracowaąiem mającym na celu zbadanie, czy zachodzą zależności pomiędzy dopasowaniem do środowiska pracy a wypaleniem zawodowym, a także odpowiedź na pytanie o kierunek i siłę tych zależności. W poniższym podrozdziale analizie podlega także kwestia, czy zmienne organizacyjne umożliwiają predykcję syndromu wypalenia. Aby odpowiedzieć _na pytanie badawcze o występowanie zależności pomięctzy płaszczyznami dopasowania do środowiska pracy a wypaleniem zawodowym zastosowano analizę korelacji metodą r Pearsona. W celu sprawdzenia, które zmienne są predyktorami poszczególnych wymiarów wypalenia zawodowego zastosowano analizę regresji krokowej. W obliczeniach przedstawionych poniżej, grupę zmiennych n i ezależnych tworzą zmienne organizacyjne wyróżnione w ramach kwestionariusza AWS, zmiennymi zależnymi są natomiast poszczególne wymiary wypalenia zawodowego zoperacjonalizowane kwestionariuszem r-vffil-gs Syndrom wypalenia zawodowego a dopasowanie do środowiska pracy - analiza korelacji. Analiza siły i kierunku związków pomiędzy obszarami dopasowania do środowiska. pracy i poszczególnymi komponentami wypalenia zawodowego wykazała interesuj ące zależności, odmienne dla każdego z wymiarów syndromu. Poniżej w postaci tabelarycznej (Tabela ) zaprezentowane zostały współczynniki korelacji pomiędzy obszarami dopasowania a trzema wymiarami syndromu wypalenia.

2 ,~ Ko,el;,j: <P,.,,.na pomiędzy zmiennymi o,gru,iuoyjnymi, wymiornmi wypa ema zawodowego (N=60) Zmienne niezależne - organizacyjne Zmienne zależne - Wymiary wypalenia zawodowego (MB - GS) Wyczerpanie Cynizm Poczucie efektywności Obciążenie pracą -,368** -,156 -,063 Płaszczyzny dopasowania do środowiska pracy (AWS) Kontrola -,239 Nagrody -,254* Relacje interpersonalne -,082 Sprawiedliwość -,124 Wartości -,391** -,221,312* -,277*,448** -,096,143 -,292*,378** -,347**,400** * korelacjajest istotna na poz1om1e 0.05 (dwustronrue) ** korelacja jest istotna na poziomie O.Ol (dwustronnie) Wszystkie płaszczyzny dopasowania jednostki do środowiska pracy korelują ujemnie z wyczerpaniem emocjonalnym, współczynnik korelacji Pearsona mieści się w przedziale od - 0,254 do - 0,391, p < 0,05 lub p < 0,0. Podobnie każdy z sześciu obszarów dopasowania do środowiska koreluje ujemnie z wymiarem cynizmu (r w granicach - 0,227 do - 0,347, p < 0,05 lub p < 0,01). z poczuciem efektywności zawodowej w stopniu istotnym statystycznie korelują dodatnio wymiary : poczucie kontroli (r = 0,312, p < 0,05), nagrody, poczucie sprawiedliwości oraz zgodność wartości pracownika i organizacji ( r od 0,378 do 0,448, p < 0,01).

3 , li i 8.:Ż. Obszary dopasowania jednostki do środowiska pracy jako predyktory wypalenia zawodowego - dane uzyskane w badaniach. Kolejna analiza miała na celu ~prawdzenie czy wyróżnione przez Leitera i Masłach obszary dopasowania jednostki do środowiska pracy są predyktorami poszczególnych wymiarów wypalenia, a także określenie, które z nich mają taki wpływ i jaka jest siła tych zależności. W celu odpowiedzi na powyższe pytania wykonano analizę regresji dla zmiennych organizacyjnych, osobno dla każdego z wymiarów wypalenia zoperacjonalizowanego za pomocą kwestionariusza MB- GS. Poniżej przedstawione zostały wyniki dla każdego z wymiarów. Wyczerpanie emocjonalne Poniższa tabela (tab.2) przestawia wyniki analizy wariancji, która przeprowadzona została w celu określenia czy występuje statystycznie istotna zależność pomiędzy wyczerpaniem emocjonalnych a dopasowaniem do środowiska pracy. ~ -aliza wariancji - z.aleiność zmiennej zależnej wyczerpanie emocjonalne ~ zespołu predyktorów Model Suma kwadratów df Średni - kwadrat ~ F) stotność Regresja 29, ,864 3,536,005(a) Reszta 72, ,376 Ogółem 102, a Predyktory: (Stała), Wartości, Kontrola, Obciąż_pr, Społ_prac, Nagrody, Sprawiedl Analiza wariancji wykazała zależność pomiędzy wyczerpaniem emocjonalnym a zespołem predyktorów wyrażających dopasowanie do środowiska pracy, zależność potwierdzona została na poziomie 0, (64)

4 Kolejna analiza miała na celu doprecyzowanie, które z obszarów mają wpływ na rozwój wyczerpania emocjonalnego oraz jaki jest kierunek tej zależności. Tabela 3 przedstawia wyniki analizy regresji krokowej, ukazując które z obszarów okazały się ist0tne ' statystycznie. aliza regresji krokowej - wpływ zespołu predyktorów na zmienną zależną wyczerpanie emocjonalne. Współczynniki niestandaryzowane Współczynniki standaryzowane t stotność Predyktory B Błąd standardowy Beta (Stała) 5,984 1,406 Obciążenie pracą -,411,222 -,247 Kontrola -,257,204 -,168 Nagrody -,2Ó4,226 -,132 Relacje społeczne,409,277,196 Sprawiedliwość,279,308,152 Wartości -,977,381 -,400 4,257,OOO -1,856,069-1,258,214 -,903,371 1,478,145,906,369-2,565,013 W wyniku krokowej analizy regresji do modelu weszła zmienna wartości" (p = 0,013), analiza wykazała również tendencję w przypadku obciążenia pracą" (p = 0,069), która mogłaby ujawnić wpływ tego czynnika na wyczerpanie emocjonalne przy większej liczbie badanych. Poniżej (Tab. 4) przedstawione zostały wyniki ostatniej analizy dotyczącej wyczerpania emocjonalnego, która pozwoliła określić w jakim stopniu zespół predyktorów wyjaśnia rozwój tego wymiaru wypalenia zawodowego. Tabela przedstawia współczynnik korelacji wielokrotnej, współczynnik determinacji wielokrotnej, a także skorygowaną wersję współczynnika determinacji.

5 . ~spółczynnik korelacji wielokrotnej i współczynnik determinacji wielokrotnej ~ływ zespołu predyktorów na zmienną zależną wyczerpanie emocjonalne,zmienna zależna R R2 Skorygowane R- kwadrat Błąd standardowy oszacowania Wyczerpanie emocjonalne,535(a),286,205 1, a Predyktory: (Stała), Wartości, Kontrola, Obctąz_pr, Społ_prac, Nagrody, Sprawiedl W wyniku analizy regresji wielokrotnej dla wpływu zespołu predyktorów na wymiar wyczerpania emocjona_lnego uzyskano współczynnik korelacji na poziomie 0,535 sugerujący istotną zależność tego wymiaru od obszarów dopasowania. Współczynnik determinacji wielokrotnej na poziomie 28,6 % poddano korekcie w oparciu o liczebność grupy, ostatecznie niezgodność pomiędzy wartościami pracownika i organizacji tłumaczy według analizy 20,5% poziomu wyczerpania emocjonalnego pracownika. Ewentualnie przy uznaniu obciążenia pracą jako czynnika mogącego mieć wpływ na zmienną zależną przy większej liczebności badanej grupy skorygowany współczynnik determinacji będzie dotyczył łącznego wpływu dwóch obszarów dopasowania jednostki. Cynizm W przypadku drugiego wymiaru wypalenia zawodowego wykonano analogiczne analizy statystyczne. Poniżej (Tabela 5) przedstawione zostały wyniki analizy wariancji, która miała na celu sprawdzenie czy występuje zależność pomiędzy dopasowaniem do środowiska pracy a rozwojem cynicznej postawy u kierowników branży spożywczej.

6 tabela 5. Analiza wariancji - zależność cynizmu od obszarów dopasowania do środowiska pracy., Model Suma kwadratów df. średni kwadrat F stotność Regresja 12, ,108 1,843,108(a} : Reszta 60, ,144 Ogółem 73, ' ' a Predyktory: (Stała), Wartości, Kontrola, Obciąż_pr, Społ_prac, Nagrody, Sprawiedl Analiza wariancji wykazała brak zależności pom iędzy dopasowaniem do środowiska pracy a cynizmem u pracowników. Wpływ zespołu predyktorów okazał się nieistotny (p > 0,05). Poniżej tabela ukazująca wyniki analizy regresji krokowej dla zespołu predyktorów (tab. 6). tabela 6. Analiza regresji krokowej -wpływ zespołu predyktorów na zmienną zależną cynizm. Współczynniki Współczynniki niestandaryzowane standaryzowane t stotność J Predyktory B Błąd standardowy Beta (Stała) 4,649 1,282 3,626,001 Obciążenie pracą -,128,202 -,091 -,633,529 Kontrola -, 114,186 -,088 -,613,542 Nagrody -, 141,206 -,107 -,682,498 Relacje społeczne,169,253,095,669,506 Sprawiedliwość -,149,281 -,096 -,531,597 Wartości -,540,348 -,261-1,555,126 w wyniku analizy regresji wielokrotnej żaden z predyktorów nie wszedł do modelu, P rawdopodobieństwo ujawnienia zależności w populacji w przypadku braku tak 1.,. ej za eznosc1 dla każdego z predyktorów znacząco przekroczyło założony poziom istotności (a= 0,0S ).

7 Poczucie skuteczności zawodowej Zależność ostatniego z wymiarów wypalenia od obszarów dopasowania również zbadana ~ostała przy użyciu analizy wariancji. Poniżej tabelaryczne ujęcie jej wyniku (Tabela 7). tabela 7. Analiza wariancji - zależność poczucia efektywności zawodowej od stopnia dopasowania jednostki do środowiska pracy Model Suma kwadratów df Średni kwadrat F stotność Regresja 13, ,331 4,414,001(a) Reszta 27,995 53,528 Ogółem 41, a Predyktory: (Stała), Wartości, Kontrola, Obciąż_pr, Społ_prac, Nagrody, Sprawiedl Analiza wariancji wykazała zależność pomiędzy poczuciem skuteczności zawodowej a dopasowaniem do środowiska pracy, zależność potwierdzona została na poziomie 0,00 l. Analiza regresji krokowej (Tabela 8) umożliwiła odpowiedź na kolejne pytanie - które z obszarów dopasowania mają znaczący wpływ na poczucie skuteczności zawodowej u pracownika.

8 d. ł!s l)dnt? ulr - ~- Roz z1a, zmienną zależną tabela 8. Analiza regresji krokowej -wpływ zespołu predyktorow na poczucie skuteczności zawodowej Współczynniki Współczynniki : niestandaryzowa'ne standaryzowane t stotność Predyktory B Błąd standardowy Beta (Stała) 2,011,871 2,308 -,237-1,847,070_, Obciążenie pracą -,254,137,249 Kontrola, 147,126,151 1,167 Nagrody,343,140,347 2,453,01 1,... Relacje społeczne -,071,172 -,053 -,416,679 Sprawiedliwość -,085, 191 -,072 -,446,658 Wartości,591,236,376 2,501,015 W wyniku analizy regresji do modelu weszły Wartości (p = 0,015) i Nagrody (p = 0,017). Poziom poczucia skuteczności zależy więc od dwóch czynników, pozostałe obszary nie mają tak znaczącego wpływu.,025-1 Kolejna rycina (tabela 9) przedstawia między innymi współczynnik determinacji wielokrotnej, informujący w jakim stopniu wyżej wymienione predyktory tłumaczą zmiany w poziomie poczucia skuteczności zawodowej w grupie badanych kierowników. tabela 9. Współczynnik korelacji wielokrotnej i współczynnik determinacji wielokrotnej - wpływ zespołu predyktorów na zmienną zależną poczucie skuteczności zawodowej Zmienna zależna R R2 Skorygowane R-kwadrat Błąd standardowy oszacowania Wyczerpanie emocjonalne,577(a),333,258 0,72678 a Predyktory. (Sta ła ), Wartości Kontro! a, Obci ąz_p r S P oł _p ra c, Nagrody, Sprawiedl Skorygowany współczynnik determinacji wielokrotnej wyno ,,,, si,,10 Zm1ennosc wymiaru Poczucie skuteczności zawodowej tłumaczy w jednei czwart.. J ej poziom dopasowarua jednostki w dwóch obszarach : Wartości i Nagród (69)

9 8.3. Podsumowanie wyników - weryfikacja hipotez Główny cel badań niniejszej pracy magisterskiej - weryfikacja modelu Leitera,1 Masłach - wiązał się z odpowiedz.ią na pytanie ogólne Czy i jakie związki istnieją pomiędzy dopasowaniem jednostki do środowiska pracy a syndromem wypalenia?", a poszczególne analizy statystyczne doprecyzowały charakter wykrytych związków. Poniżej (Tabela l O) tabelaryczne zestawienie poszczególnych wymiarów wypalenia zawodowego wraz z ich predyktorami i charakterystyką wpływu obszarów dopasowania na. syndrom wypalenia. Tabela 10. Obszary dopasowania ujawnione jako istotne predyktory wymiarów wypalenia zawodowego l ".. \i.. Wymiary wypalenia ;. Predykio,:y '.. ' ; za~odowego. -~~;-, ,, ' Beta. Skorygowane R 2 Wyczerpanie 1) Wartości 1) - 0,400 (p=0,013) emocjonalne 2) Obciążenie pracą 2) - 0,247 (p=0,069) 0,205 (p= 0,005) Cynizm Poczucie efektywności 1) Wartości 1) 0,376 (p=0,015) zawodowej 2) Nagrody 2) 0,347 (p=0,017) 0,258 (p= 0,001) Hipoteza 1: Obszary dopasowania do środowiska pracy są predyktorami wyczerpania emocjonalnego, będącego jednym z wymiarów syndromu wypalenia zawodowego. Wyczerpanie emocjonalne determinowane jest niezgodnością wartości pracownika i organizacji (Beta= -0,400, p=0,013) i nadmiernym obciążeniem pracą (Beta= -0,247, p=0,069). Czynniki te tłumaczą 20,5 % wariancji zmiennej objaśnianej. Dopasowanie pracownika w pozostałych obszarach nie ma znaczącego wpływu na rozwój wypalenia. Hipoteza 2: Obszary dopasowania do środowiska pracy są predyktorami cynizmu, będącego jednym z wymiarów wypalenia zawodowego. W przypadku cynizmu w badanej grupie kierowników nie wykryto istotnej zależności od obszarów dopasowania do środowiska pracy. 69

ANALIZA REGRESJI SPSS

ANALIZA REGRESJI SPSS NLIZ REGRESJI SPSS Metody badań geografii społeczno-ekonomicznej KORELCJ REGRESJ O ile celem korelacji jest zmierzenie siły związku liniowego między (najczęściej dwoma) zmiennymi, o tyle w regresji związek

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo

ANALIZY WIELOZMIENNOWE

ANALIZY WIELOZMIENNOWE ANALIZY WIELOZMIENNOWE ANALIZA REGRESJI Charakterystyka: Rozszerzenie analizy korelacji o badanie zależności pomiędzy wieloma zmiennymi jednocześnie; Podstawowe zastosowanie (ale przez nas w tym momencie

Bardziej szczegółowo

W statystyce stopień zależności między cechami można wyrazić wg następującej skali: n 1

W statystyce stopień zależności między cechami można wyrazić wg następującej skali: n 1 Temat: Wybrane zagadnienia z korelacji i regresji W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00 0,20) Słaba

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

Rozdział 8. Regresja. Definiowanie modelu

Rozdział 8. Regresja. Definiowanie modelu Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku

Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Przykład 2 Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Sondaż sieciowy analiza wyników badania sondażowego dotyczącego motywacji w drodze do sukcesu Cel badania: uzyskanie

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji Ćwiczenie: Wybrane zagadnienia z korelacji i regresji W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Stanisza r xy = 0 zmienne nie są skorelowane 0 < r xy 0,1

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

Szacowanie wartości hodowlanej. Zarządzanie populacjami

Szacowanie wartości hodowlanej. Zarządzanie populacjami Szacowanie wartości hodowlanej Zarządzanie populacjami wartość hodowlana = wartość cechy? Tak! Przy h 2 =1 ? wybitny ojciec = wybitne dzieci Tak, gdy cecha wysokoodziedziczalna. Wartość hodowlana genetycznie

Bardziej szczegółowo

Wykorzystanie technologii Blockchain w Centrach Usług Wspólnych

Wykorzystanie technologii Blockchain w Centrach Usług Wspólnych 26-27 czerwiec 2019 r. Wykorzystanie technologii Blockchain w Centrach Usług Wspólnych dr Paweł Modrzyński Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy Toruńskie Centrum Usług Wspólnych Obsługa

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Zjawisko dopasowania w sytuacji komunikacyjnej. Patrycja Świeczkowska Michał Woźny

Zjawisko dopasowania w sytuacji komunikacyjnej. Patrycja Świeczkowska Michał Woźny Zjawisko dopasowania w sytuacji komunikacyjnej Patrycja Świeczkowska Michał Woźny 0.0.0 pomiar nastroju Przeprowadzone badania miały na celu ustalenie, w jaki sposób rozmówcy dopasowują się do siebie nawzajem.

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

e) Oszacuj parametry modelu za pomocą MNK. Zapisz postać modelu po oszacowaniu wraz z błędami szacunku.

e) Oszacuj parametry modelu za pomocą MNK. Zapisz postać modelu po oszacowaniu wraz z błędami szacunku. Zajęcia 4. Estymacja i weryfikacja modelu model potęgowy Wersja rozszerzona W pliku Funkcja produkcji.xls zostały przygotowane przykładowe dane o produkcji, kapitale i zatrudnieniu dla 27 przedsiębiorstw

Bardziej szczegółowo

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres

Bardziej szczegółowo

Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).

Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y). Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych

Bardziej szczegółowo

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji Statystyka i opracowanie danych Ćwiczenia 5 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ MODEL REGRESJI LINIOWEJ Analiza regresji

Bardziej szczegółowo

Analiza regresji wielokrotnej - hierarchiczna

Analiza regresji wielokrotnej - hierarchiczna Analiza regresji wielokrotnej - hierarchiczna Poniżej prezentujemy przykładowe pytania z rozwiązaniami dotyczącymi analizy regresji wielokrotnej wykonanej metodą hierarchiczną. Wszystkie rozwiązania są

Bardziej szczegółowo

P: Czy studiujący i niestudiujący preferują inne sklepy internetowe?

P: Czy studiujący i niestudiujący preferują inne sklepy internetowe? 2 Test niezależności chi-kwadrat stosuje się (między innymi) w celu sprawdzenia czy pomiędzy zmiennymi istnieje związek/zależność. Stosujemy go w sytuacji, kiedy zmienna zależna mierzona jest na skali

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować

Bardziej szczegółowo

Regresja logistyczna (LOGISTIC)

Regresja logistyczna (LOGISTIC) Zmienna zależna: Wybór opcji zachodniej w polityce zagranicznej (kodowana jako tak, 0 nie) Zmienne niezależne: wiedza o Unii Europejskiej (WIEDZA), zamieszkiwanie w regionie zachodnim (ZACH) lub wschodnim

Bardziej szczegółowo

X Y 4,0 3,3 8,0 6,8 12,0 11,0 16,0 15,2 20,0 18,9

X Y 4,0 3,3 8,0 6,8 12,0 11,0 16,0 15,2 20,0 18,9 Zadanie W celu sprawdzenia, czy pipeta jest obarczona błędem systematycznym stałym lub zmiennym wykonano szereg pomiarów przy różnych ustawieniach pipety. Wyznacz równanie regresji liniowej, które pozwoli

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 Regresja wielokrotna Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X 1, X 2, X 3,...) na zmienną zależną (Y).

Bardziej szczegółowo

Wielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6

Wielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6 Zad. 1. Zbadano wydajność odmiany pomidorów na 100 poletkach doświadczalnych. W wyniku przeliczeń otrzymano przeciętną wydajność na w tonach na hektar x=30 i s 2 x =7. Przyjmując, że rozkład plonów pomidora

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny

Bardziej szczegółowo

Wnioskowanie statystyczne Weryfikacja hipotez. Statystyka

Wnioskowanie statystyczne Weryfikacja hipotez. Statystyka Wnioskowanie statystyczne Weryfikacja hipotez Statystyka Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną

Bardziej szczegółowo

t y x y'y x'x y'x x-x śr (x-x śr)^2

t y x y'y x'x y'x x-x śr (x-x śr)^2 Na podstawie:w.samuelson, S.Marks Ekonomia menedżerska Zadanie 1 W przedsiębiorstwie toczy się dyskusja na temat wpływu reklamy na wielkość. Dział marketingu uważa, że reklama daje wysoce pozytywne efekty,

Bardziej szczegółowo

Regresja i Korelacja

Regresja i Korelacja Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane

Bardziej szczegółowo

Metodologia badań psychologicznych. Wykład 12. Korelacje

Metodologia badań psychologicznych. Wykład 12. Korelacje Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Wykład 12. Korelacje Korelacja Korelacja występuje wtedy gdy dwie różne miary dotyczące tych samych osób, zdarzeń lub obiektów

Bardziej szczegółowo

Metoda najmniejszych kwadratów

Metoda najmniejszych kwadratów Model ekonometryczny Wykształcenie a zarobki Hipoteza badawcza: Istnieje zależność między poziomem wykształcenia a wysokością zarobków Wykształcenie a zarobki Hipoteza badawcza: Istnieje zależność między

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM

Bardziej szczegółowo

Wprowadzenie do technik analitycznych Metoda najmniejszych kwadratów

Wprowadzenie do technik analitycznych Metoda najmniejszych kwadratów Wprowadzenie do technik analitycznych Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wykład 2 Korelacja i regresja Przykład: Temperatura latem średnia liczba napojów sprzedawanych

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Analiza współzależności zjawisk

Analiza współzależności zjawisk Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.

Bardziej szczegółowo

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera

Bardziej szczegółowo

Zadania ze statystyki, cz.6

Zadania ze statystyki, cz.6 Zadania ze statystyki, cz.6 Zad.1 Proszę wskazać, jaką część pola pod krzywą normalną wyznaczają wartości Z rozkładu dystrybuanty rozkładu normalnego: - Z > 1,25 - Z > 2,23 - Z < -1,23 - Z > -1,16 - Z

Bardziej szczegółowo

Analiza wariancji jednej zmiennej (UNIANOVA)

Analiza wariancji jednej zmiennej (UNIANOVA) UNIANOVA ocena BY pĺ eä szkoĺ a doĺ wiadczenie /METHOD=SSTYPE(3) /INTERCEPT=INCLUDE /POSTHOC=szkoĹ a(snk) /PLOT=PROFILE(szkoĹ a*doĺ wiadczenie*pĺ eä doĺ wiadczenie*szkoĺ a*pĺ eä szkoĺ a*pĺ eä *doĺ wiadczenie

Bardziej szczegółowo

Podstawowe definicje statystyczne

Podstawowe definicje statystyczne Podstawowe definicje statystyczne 1. Definicje podstawowych wskaźników statystycznych Do opisu wyników surowych (w punktach, w skali procentowej) stosuje się następujące wskaźniki statystyczne: wynik minimalny

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

ANALIZA DYNAMIKI DOCHODU KRAJOWEGO BRUTTO

ANALIZA DYNAMIKI DOCHODU KRAJOWEGO BRUTTO ANALIZA DYNAMIKI DOCHODU KRAJOWEGO BRUTTO Wprowadzenie Zmienność koniunktury gospodarczej jest kształtowana przez wiele różnych czynników ekonomicznych i pozaekonomicznych. Znajomość zmienności poszczególnych

Bardziej szczegółowo

ESTYMACJA. Przedział ufności dla średniej

ESTYMACJA. Przedział ufności dla średniej ESTYMACJA Przedział ufności dla średniej W grupie 900 losowo wybranych pracowników przedsiębiorstwa średnia liczba dni nieobecności w pracy wynosiła 30, a odchylenie standardowe 3 dni. a) Przyjmując współczynnik

Bardziej szczegółowo

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW

Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Statystyczna analiza danych w programie STATISTICA ( 4 (wykład Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Regresja prosta liniowa Regresja prosta jest

Bardziej szczegółowo

Statystyka opisowa. Wykład V. Regresja liniowa wieloraka

Statystyka opisowa. Wykład V. Regresja liniowa wieloraka Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +

Bardziej szczegółowo

Zawartość. Zawartość

Zawartość. Zawartość Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami

Bardziej szczegółowo

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( ) Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału

Bardziej szczegółowo

Poniższy rozdział zawiera analizę zależności występujących

Poniższy rozdział zawiera analizę zależności występujących ROZDZIAŁ VII: WYNIKI BADAŃ ZWIĄZKI MIĘDZY ZASOBAMI PSYCHOSPOŁECZNYMI A PRZYSTOSOWANIEM OSOBISTYM W GRUPIE BYŁYCH WIĘŹNIÓW Poniższy rozdział zawiera analizę zależności występujących w grupie byłych więźniów

Bardziej szczegółowo

STATYSTYKA wykład 8. Wnioskowanie. Weryfikacja hipotez. Wanda Olech

STATYSTYKA wykład 8. Wnioskowanie. Weryfikacja hipotez. Wanda Olech TATYTYKA wykład 8 Wnioskowanie Weryfikacja hipotez Wanda Olech Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną

Bardziej szczegółowo

Wnioskowanie statystyczne. Statystyka w 5

Wnioskowanie statystyczne. Statystyka w 5 Wnioskowanie statystyczne tatystyka w 5 Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających

Bardziej szczegółowo

WERYFIKACJA MODELI MODELE LINIOWE. Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno

WERYFIKACJA MODELI MODELE LINIOWE. Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno WERYFIKACJA MODELI MODELE LINIOWE Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno ANALIZA KORELACJI LINIOWEJ to NIE JEST badanie związku przyczynowo-skutkowego, Badanie współwystępowania cech (czy istnieje

Bardziej szczegółowo

ZJAZD 4. gdzie E(x) jest wartością oczekiwaną x

ZJAZD 4. gdzie E(x) jest wartością oczekiwaną x ZJAZD 4 KORELACJA, BADANIE NIEZALEŻNOŚCI, ANALIZA REGRESJI Analiza korelacji i regresji jest działem statystyki zajmującym się badaniem zależności i związków pomiędzy rozkładami dwu lub więcej badanych

Bardziej szczegółowo

Efekt główny Efekt interakcyjny efekt jednego czynnika zależy od poziomu drugiego czynnika Efekt prosty

Efekt główny Efekt interakcyjny efekt jednego czynnika zależy od poziomu drugiego czynnika Efekt prosty ANOVA DWUCZYNNIKOWA testuje różnice między średnimi w grupach wyznaczonych przez dwa czynniki i ich kombinacje. Analiza pozwala ustalić wpływ dwóch czynników na wartości zmiennej zależnej (ilościowej!)

Bardziej szczegółowo

WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno

WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno WSTĘP DO REGRESJI LOGISTYCZNEJ Dr Wioleta Drobik-Czwarno REGRESJA LOGISTYCZNA Zmienna zależna jest zmienną dychotomiczną (dwustanową) przyjmuje dwie wartości, najczęściej 0 i 1 Zmienną zależną może być:

Bardziej szczegółowo

Psychological reports: Employment Psychology and Marketing, 2015, 117 (1), resources model, JD-R) :

Psychological reports: Employment Psychology and Marketing, 2015, 117 (1), resources model, JD-R) : Psychological reports: Employment Psychology and Marketing, 2015, 117 (1), 103-115 Badanie dotyczyło związku pomiędzy studenckim cynizmem (student cynicism) a studenckim wypaleniem (burnout burnout). Postawa

Bardziej szczegółowo

ANALIZA REGRESJI WIELOKROTNEJ. Zastosowanie statystyki w bioinżynierii Ćwiczenia 8

ANALIZA REGRESJI WIELOKROTNEJ. Zastosowanie statystyki w bioinżynierii Ćwiczenia 8 ANALIZA REGRESJI WIELOKROTNEJ Zastosowanie statystyki w bioinżynierii Ćwiczenia 8 ZADANIE 1A 1. Irysy: Sprawdź zależność długości płatków korony od ich szerokości Utwórz wykres punktowy Wyznacz współczynnik

Bardziej szczegółowo

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania

Bardziej szczegółowo

Analiza składowych głównych. Wprowadzenie

Analiza składowych głównych. Wprowadzenie Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

2. Pewien psycholog w przeprowadzonym przez siebie badaniu międzykulturowym chciał sprawdzić czy narodowość badanych osób różnicuje je pod względem

2. Pewien psycholog w przeprowadzonym przez siebie badaniu międzykulturowym chciał sprawdzić czy narodowość badanych osób różnicuje je pod względem 2. Pewien psycholog w przeprowadzonym przez siebie badaniu międzykulturowym chciał sprawdzić czy narodowość badanych osób różnicuje je pod względem średniej skłonności do mówienia nieprawdy. Ile wynosiły

Bardziej szczegółowo

Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego

Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Współczynnik korelacji opisuje siłę i kierunek związku. Jest miarą symetryczną. Im wyższa korelacja tym lepiej potrafimy

Bardziej szczegółowo

Analiza niepewności pomiarów

Analiza niepewności pomiarów Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

1. Kilka słów wprowadzania

1. Kilka słów wprowadzania 1. Kilka słów wprowadzania Badanie, w którym wzięli cie Państwo udział stanowiło próbę odpowiedzi na pytanie dotyczące zależno ci pomiędzy obszarami dopasowania bądź niedopasowania pomiędzy jednostką a

Bardziej szczegółowo

Zadania ze statystyki cz.8. Zadanie 1.

Zadania ze statystyki cz.8. Zadanie 1. Zadania ze statystyki cz.8. Zadanie 1. Wykonano pewien eksperyment skuteczności działania pewnej reklamy na zmianę postawy. Wylosowano 10 osobową próbę studentów, których poproszono o ocenę pewnego produktu,

Bardziej szczegółowo

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ Korelacja oznacza fakt współzależności zmiennych, czyli istnienie powiązania pomiędzy nimi. Siłę i kierunek powiązania określa się za pomocą współczynnika korelacji

Bardziej szczegółowo

MODELOWANIE KOSZTÓW USŁUG ZDROWOTNYCH PRZY

MODELOWANIE KOSZTÓW USŁUG ZDROWOTNYCH PRZY MODELOWANIE KOSZTÓW USŁUG ZDROWOTNYCH PRZY WYKORZYSTANIU METOD STATYSTYCZNYCH mgr Małgorzata Pelczar 6 Wprowadzenie Reforma służby zdrowia uwypukliła problem optymalnego ustalania kosztów usług zdrowotnych.

Bardziej szczegółowo

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności: Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności

Bardziej szczegółowo

Spis treści. Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów. Wstęp Wprowadzenie...

Spis treści. Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów. Wstęp Wprowadzenie... Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów Wstęp... 13 1. Wprowadzenie... 19 1.1. Statystyka opisowa.................................. 21 1.2. Wnioskowanie

Bardziej szczegółowo

Wszystkie wyniki w postaci ułamków należy podawać z dokładnością do czterech miejsc po przecinku!

Wszystkie wyniki w postaci ułamków należy podawać z dokładnością do czterech miejsc po przecinku! Pracownia statystyczno-filogenetyczna Liczba punktów (wypełnia KGOB) / 30 PESEL Imię i nazwisko Grupa Nr Czas: 90 min. Łączna liczba punktów do zdobycia: 30 Czerwona Niebieska Zielona Żółta Zaznacz znakiem

Bardziej szczegółowo

GRUPY NIEZALEŻNE Chi kwadrat Pearsona GRUPY ZALEŻNE (zmienne dwuwartościowe) McNemara Q Cochrana

GRUPY NIEZALEŻNE Chi kwadrat Pearsona GRUPY ZALEŻNE (zmienne dwuwartościowe) McNemara Q Cochrana GRUPY NIEZALEŻNE Chi kwadrat Pearsona Testy stosujemy w sytuacji, kiedy zmienna zależna mierzona jest na skali nominalnej Liczba porównywanych grup (czyli liczba kategorii zmiennej niezależnej) nie ma

Bardziej szczegółowo

Zadania ze statystyki cz. 8 I rok socjologii. Zadanie 1.

Zadania ze statystyki cz. 8 I rok socjologii. Zadanie 1. Zadania ze statystyki cz. 8 I rok socjologii Zadanie 1. W potocznej opinii pokutuje przekonanie, że lepsi z matematyki są chłopcy niż dziewczęta. Chcąc zweryfikować tę opinię, przeprowadzono badanie w

Bardziej szczegółowo

REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym.

REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym. REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym. Zadanie 1 W celu ustalenia zależności między liczbą braków a wielkością produkcji części

Bardziej szczegółowo

Przykład 2. Stopa bezrobocia

Przykład 2. Stopa bezrobocia Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w

Bardziej szczegółowo

Zmienne zależne i niezależne

Zmienne zależne i niezależne Analiza kanoniczna Motywacja (1) 2 Często w badaniach spotykamy problemy badawcze, w których szukamy zakresu i kierunku zależności pomiędzy zbiorami zmiennych: { X i Jak oceniać takie 1, X 2,..., X p }

Bardziej szczegółowo

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 11-12

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 11-12 Stanisław Cichocki Natalia Nehrebecka Zajęcia 11-12 1. Zmienne pominięte 2. Zmienne nieistotne 3. Obserwacje nietypowe i błędne 4. Współliniowość - Mamy 2 modele: y X u 1 1 (1) y X X 1 1 2 2 (2) - Potencjalnie

Bardziej szczegółowo

Metody Ilościowe w Socjologii

Metody Ilościowe w Socjologii Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu

Bardziej szczegółowo

STRES W PRACY A SYNDROM WYPALENIA ZAWODOWEGO U FUNKCJONARIUSZY POLICJI

STRES W PRACY A SYNDROM WYPALENIA ZAWODOWEGO U FUNKCJONARIUSZY POLICJI ACTA UNIVERSITATIS LODZIENSIS FOLIA PSYCHOLOGICA 7, 2003 NINA OGIŃSKA-BULIK Zakład Psychoprofilaktyki Instytut Psychologii UŁ Katedra Psychologii w Łodzi Wyższa Szkoła Humanistyczno-Ekonomiczna STRES W

Bardziej szczegółowo

Ćwiczenia IV

Ćwiczenia IV Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE

EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE ZADANIE 1 Oszacowano zależność między luką popytowa a stopą inflacji dla gospodarki niemieckiej. Wyniki estymacji są następujące: Estymacja KMNK,

Bardziej szczegółowo

dr hab. Dariusz Piwczyński, prof. nadzw. UTP

dr hab. Dariusz Piwczyński, prof. nadzw. UTP dr hab. Dariusz Piwczyński, prof. nadzw. UTP Cechy jakościowe są to cechy, których jednoznaczne i oczywiste scharakteryzowanie za pomocą liczb jest niemożliwe lub bardzo utrudnione. nominalna porządek

Bardziej szczegółowo

Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice

Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice Przedmowa do wydania polskiego Przedmowa CZĘŚĆ I. PODSTAWY STATYSTYKI Rozdział 1 Podstawowe pojęcia statystyki

Bardziej szczegółowo

Badanie zależności skala nominalna

Badanie zależności skala nominalna Badanie zależności skala nominalna I. Jak kształtuje się zależność miedzy płcią a wykształceniem? II. Jak kształtuje się zależność między płcią a otyłością (opis BMI)? III. Jak kształtuje się zależność

Bardziej szczegółowo