Paweł Kobus Uogólnione rozkłady hiperboliczne w modelowaniu stóp zwrotu indeksu WIG20
|
|
- Krzysztof Romanowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Paweł Kobus Uogólnione rozkłady hiperboliczne w modelowaniu stóp zwrotu indeksu WIG20 Studia i Prace Wydziału Nauk Ekonomicznych i Zarządzania 9,
2 Studia i prace wydziału nauk ekonomicznych i zarządzania nr 9 PAWEŁ KOBUS UOGÓLNIONE ROZKŁADY HIPERBOLICZNE W MODELOWANIU STÓP ZW ROTU INDEKSU WIG20 Wstęp Wyróżnia się dwa rodzaje stóp zwrotu dla szeregów finansowych: proste stopy zwrotu oraz logarytmiczne stopy zwrotu. W obydwu przypadkach najczęściej przyjmuje się, że podlegają one rozkładowi normalnemu [Tsay 2005]. Pomijając możliwe niezgodności empiryczne należy zauważyć, że proste stopy zwrotu nie mogą podlegać jednocześnie rozkładowi normalnemu dla dwóch rożnych długości momentów czasowych np. dziennych i tygodniowych. Wynika to z faktu, że zmienna losowa będąca iloczynem zmiennych o rozkładach normalnych nie ma rozkładu normalnego. W przypadku logarytmicznych stóp zwrotu nie istnieje wspomniany powyżej problem, ponieważ łączna stopa zwrotu dla dwóch momentów czasowych jest sumą stóp zwrotu dla poszczególnych momentów. Jednak również w przypadku logarytmicznych stóp zwrotu, tak samo jak w przypadku prostych stóp zwrotu założenie o rozkładzie normalnym jest niezgodne z wieloma badaniami, które wskazuj ą na leptokurtyczny charakter i możliwą asymetrię rozkładów empirycznych stóp zwrotu. W literaturze najczęściej wymieniane są dwie rodziny rozkładów umożliwiające uwzględnienie leptokurtycznych własności rozkładu stóp zwrotu. Są to rodzina rozkładów a - stabilnych oraz rodzina uogólnionych rozkładów hiperbolicznych. Poniższa praca jest poświęcona analizie możliwości modelowania rozkładu logarytmicznych stóp zwrotu z indeksu WIG20 przy pomocy uogólnionych
3 606 R Y N E K K A P IT A Ł O W Y - S K U T E C Z N E IN W E S T O W A N IE rozkładów hiperbolicznych, ze szczególnym uwzględnieniem precyzji oszacowań wartości zagrożonej VaR i CVaR. Uogólnione rozkłady hiperboliczne Rodzina uogólnionych rozkładów hiperbolicznych została zaproponowana w 1977 przez Ole Barndorff-Nielesena [Barndorff-Nielesen 1977]. Jest to bardzo szeroka klasa rozkładów obejmująca jako szczególne przypadki np. rozkłady: Studenta, Laplace, hiperboliczny, normalny odwrotny gassowski, wariancji gamma. Uogólniony rozkład hiperboliczny jest rozkładem ciągłym zdefiniowanym jako mieszanina rozkładów normalnych, przy czym jako rozkład mieszaj ący użyty jest uogólniony odwrotny rozkład. Funkcja gęstości uogólnionego rozkładu hiperbolicznego GH została przedstawiona poniżej, jest to jedna z kilku możliwych parametryzacji. ( a 2-0 1) V 2 K x_ 1/2 ( a y/s 1 + (x - i)'^ exp {fi{x - fi)) v'w A-VW Ry (ó y / a 2 - /32) gdzie Kx oznacza zmodyfikowaną funkcję Bessela trzeciego rodzaju rzędu l oraz 6 > 0, /3 < a if X > 0 ó > 0, \(i\ < a if A= 0 6 > 0, /? < a if X < 0. Wartość oczekiwana i wariancja zmiennej X podlegającej rozkładowi GH wynoszą [Bandorf-Nielsen i Stelzer 2004]: ^ {x)=**(t&m +ą ( «_ (^f2>)2)). \o"fk x(5 f) T y Kx{ó'y) \ J J J Jak już wspomniano rodzina rozkładów GH jest bardzo pojemna i tak np. ustalając 1 = 1 uzyskujemy normalny odwrotny rozkład gaussowski NIG z funkcją gęstości [Andersson 2001]:
4 P A W E Ł K O B U S 607 Uo g ó l n i o n e r o z k ł a d y h i p e r b o l i c z n e... 5 a exp (óy/oi2 82\ K\ p )2 J exp (8 (x fi)) /*(*) = : ; - : , n \Js2 + (x - p )2 gdzie d > 0 i 0 < b < a Co ciekawe jako rozkłady graniczne można uzyskać również rozkłady z poza rodziny GH np. dla 1 = -2, b = 0 i a 0 uzyskujemy rozkład Cauchego, zaś dla 5 = 0, a i s 2 =d, rozkład NIG zbiega do rozkładu normalnego o parametrach ji i s 2. Badanie rozkładu logarytm icznych stóp zw rotu indeksu W IG 20 Stopy zwrotu zostały obliczone na podstawie kursów zamknięcia: dla indeksu WIG20 z dni od do , co w sumie dało 3436 obserwacji logarytmicznych stóp zwrotu ( y ^ rt = ln. I yt- 1 J Dla tak uzyskanego zbioru danych zostały obliczone podstawowe statystyki opisowe: - średnia mediana wariancja kurtoza wsp. skośności Obliczona kurtoza o 1.69 przekracza kurtozę rozkładu normalnego. Świadczy to wyraźnie o leptokurtycznym charakterze rozkładu stóp zwrotu. W tabeli 1 przedstawiono dopasowanie najważniejszych rozkładów z rodziny GH. Zgodnie z wartością funkcji wiarogodności (llf) najlepsze dopasowanie wykazują rozkłady NIG przy czym dopasowanie rozkładu asymetrycznego (g ^ 0) jest w niewielkim stopniu lepsze od dopasowania symetrycznego NIG. Jednak biorąc pod uwagę kryterium Akaike (AIC) najlepszym rozkładem jest symetryczny rozkład NIG.
5 608 RYNEK KAPITAŁOWY - SKUTECZNE INWESTOWANIE Dodatkowo do sprawdzenia istotności asymetrii rozkładu można posłużyć się testem bazującym na ilorazie funkcji wiarogodności LRT (Likelihood Ratio Test) LRT = 2(LLĘ - LLF0) W przypadku, gdy hipoteza jest prawdziwa LRT ma asymptotycznie rozkład C2^-Po), gdzie p1 i p0 oznaczają liczby parametrów odpowiednich modeli. Zastosowanie tego testu do porównania dwóch modeli, z których jeden zawiera parametr odpowiedzialny za modelowanie efektu dźwigni, zaś drugi1 nie, powinno dać odpowiedź co do występowania asymetrii. T abela 1. Wyniki dopasowania dla analizowanych modeli model AIC llh 2 a m d g NIG NIG ghyp ghyp t t hyp hyp VG VG Źródło: opracowania własne. Jeżeli porównamy model NIG z parametrem asymetrii g ^ 0 z modelem NIG, który nie zawiera parametru g (g = 0), to uzyskamy wartość statystyki testowej 0.188, podczas gdy wartość krytyczna na poziomie istotności 0,05 wynosi 3,84. Świadczy to braku efektu asymetrii w rozkładzie logarytmicznych stóp zwrotu WIG20. Ocena jakości dopasowania rozkładu NIG Ocena jakości dopasowania w przypadku rozkładów z rodziny GH jest z konieczności przeprowadzana przy użyciu metod graficznych. Typowe testy stosowane do badania zgodności z rozkładem nie posiadaj ą wersji umożliwiaj ą- 1Porównywany model 0 powinien zawierać się w modelu 1.
6 PAWEŁ KOBUS 609 Uo g ó l n i o n e r o z k ł a d y h i p e r b o l i c z n e... cych ich stosowanie w przypadku gdy hipotetycznym rozkładem jest rozkład z rodziny GH. Na rys. 1 przedstawiono dopasowanie funkcji gęstości symetrycznego rozkładu NIG (linia ciągła) oraz dla porównania dopasowanie funkcji gęstości rozkładu normalnego (linia przerywana). Rysunek wskazuje na lepsze dopasowanie rozkładu NIG co jest szczególnie wyraźne w środkowej części wykresu. Aby dokładniej przyjrzeć się dopasowaniu w skrajnych częściach wykonany został wykres Q-Q. Przy czym zarówno kwantyle empiryczne jak i teoretyczne, z uwagi na bardzo dużą liczbę obserwacji, są kwantylami rzędów: 0.01, 0.02,..., Rys. 1. Histogram z funkcją gęstości oszacowanego rozkładu NIG. Źródło: opracowanie własne. Rys. 2. Wykres Q-Q dla oszacowanego rozkładu NIG. Źródło: opracowanie własne.
7 610 RYNEK KAPITAŁOWY - SKUTECZNE INWESTOWANIE W przypadku idealnego dopasowania punkty powinny ułożyć się dokładnie wzdłuż prostej y = x, jednak oczywiście w praktyce jest to nieosiągalne. Niemniej jednak sporządzony wykres pozwala zauważyć zdecydowanie lepsze dopasowanie rozkładu NIG również w przypadku skrajnych kwantyli. Zgodność kwantyli empirycznych i teoretycznych jest szczególnie ważna dla precyzji oszacowań VaR i CvaR. Z punktu widzenia statystyki VaR jest przecież specyficznie zinterpretowanym kwantylem a CVaR warunkową wartością oczekiwaną. Przedstawiono na rys. 3 i 4 dopasowanie dystrybuanty do danych empirycznych wskazuje, że analizowany symetryczny rozkład NIG wykazuje bardzo dobre dopasowanie i jego stosowanie jest uzasadnione. Wpływ rozkładu prawdopodobieństwa na ocenę VaR i CVaR Wybór rozkładu prawdopodobieństwa dla modelowania zachowania logarytmicznych stóp zwrotu ma bardzo praktyczne znaczenie dla oszacowania wartości takich miar ryzyka jak VaR i CVaR. Błędny wybór modelu może prowadzić do bardzo dużych różnic w wartościach tych miar. Dla zilustrowania skali tych różnic w tabeli 2 zostały przedstawione wartości VaR i CVaR dla indeksu WIG20. Rys. 3. Wykres całej dystrybuanty dla oszacowanego rozkładu NIG. Źródło: opracowanie własne. Wartości empiryczne VaR i obliczone na podstawie dopasowanego rozkładu symetrycznego NIG są bardzo podobne, natomiast wartości VaR uzyskane na podstawie rozkładu normalnego są dla niskich wartości prawdopodobieństwa zaniżane a dla wyższych począwszy od około 0.05 zawyżane. Tylko dla prawdopodobieństwa równego około 0.05 są zgodne z danymi empirycznymi.
8 PAWEŁ KOBUS 611 Uo g ó l n i o n e r o z k ł a d y h i p e r b o l i c z n e... Rys. 4. Wykres lewej (1/10) części dystrybuanty dla oszacowanego rozkładu NIG. Źródło: opracowanie własne. W przypadku CVaR obserwujemy podobną prawidłowość. Jednak w tym przypadku krytyczne prawdopodobieństwo jest równe około 0.1. Wnioski Rozpatrywana rodzina uogólnionych rozkładów hiperbolicznych może być stosowania do modelowania rozkładu logarytmicznych stóp zwrotu indeksu WIG20 ze znacznie lepszymi wynikami niż rozkład normalny. Tabela 2. Wartości VaR i CVaR dla indeksu WIG20 p empiryczne Symetryczny MG Normalny VaR CVaR VaR CVaR VaR CVaR Źródło: opracowania własne. Spośród rozpatrywanych modeli najlepszym dopasowaniem wykazał się asymetryczny normalny odwrotny rozkład gaussowski NIG. Jednak ocena parametru g odpowiedzialnego za asymetrię nie okazała się istotnie różna od zera, wskazuje to, że w przypadku indeksu WIG20 efekt asymetrii można pominąć podczas modelowania.
9 612 RYNEK KAPITAŁOWY - SKUTECZNE INWESTOWANIE Graficzna analiza jakości dopasowania symetrycznego rozkładu NIG wskazuje na wysoką zgodność kwantyli teoretycznych i empirycznych. Jest to szczególnie istotna własność w przypadku wykorzystania oszacowanego rozkładu do określania wartości zagrożonej VaR lub warunkowej wartości oczekiwanej straty CVaR w przypadku przekroczenia wartości progowej. Literatura 1. Andersson J., On the norm al inverse Gaussian stochastic volatility model. Journal of Business and Economic Statistics, 19:44-54, Barndorff-Nielsen O., H yperbolic Distribution and Distribution on H yperbolae. Scand. J. Satist. 5: , Barndorff-Nielsen O. E., Stelzer R., Absolute moments o f generalized hyperbolic distributions and approximate scaling o f norm al inverse gaussian Levy processes. Scandinavian Journal of Statistics, vol. 32, issue 4, pages , Tsay R. S., Analysis o f financial time series. John Wiley & Sons, New Jersey STRESZCZENIE Praca jest poświecona analizie możliwości modelowania logarytmicznych stóp zwrotu indeksu WIG20 notowanego na warszawskiej GPW przy pomocy rozkładów z rodziny uogólnionych rozkładów hiperbolicznych. Wśród rozpatrywanych rozkładów najlepszym dopasowaniem wykazał się asymetryczny normalny odwrotny rozkład gaussowski NIG. Jednak z powodu nieistotności efektu asymetrii do graficznej analizy jakości dopasowania wybrano symetryczny rozkład NIG. W pracy stwierdzono, że rozkład NIG wykazuje się zdecydowanie lepszym dopasowaniem do danych empirycznych niż rozkład normalny. Fakt ten pozwala na precyzyjniejszą ocenę wartości takich miar ryzyka jak VaR i CVaR. MODELLING WIG20 RETURNS W ITH GENERALISED HYPERBOLIC DISTRIBUTION SUMMARY The paper is dedicated to analysis of generalised hyperbolic distribution usefulness for modelling WIG20 logarithmic returns. Among examined distributions the best fit was achieved by asymmetric NIG. However, due to asymmetry lack of significance, for thorough graphical analysis and comparison with normal distribution symmetrical NIG
10 PAWEŁ KOBUS Uogólnione rozkłady hiperboliczne was chosen. The paper gives evidence that normal-inverse Gaussian distribution is much better choice for describing behaviour of WIG20 logarithmic returns then normal distribution. Hence estimation of VaR and CVaR is more accurate. Translated by P. Kobus Dr Paweł Kobus Szkoła Główna Gospodarstwa Wiejskiego
Value at Risk (VaR) Jerzy Mycielski WNE. Jerzy Mycielski (Institute) Value at Risk (VaR) / 16
Value at Risk (VaR) Jerzy Mycielski WNE 2018 Jerzy Mycielski (Institute) Value at Risk (VaR) 2018 1 / 16 Warunkowa heteroskedastyczność O warunkowej autoregresyjnej heteroskedastyczności mówimy, gdy σ
Dominik Krężołek Akademia Ekonomiczna w Katowicach
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Katedra Ekonometrii i Statystyki, Uniwersytet Mikołaja Kopernika w Toruniu Akademia Ekonomiczna w Katowicach
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
Kolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę
Marcin Bartkowiak Katedra Matematyki Stosowanej AE Poznań. Charakterystyka wybranych szeregów czasowych na GPW
Marcin Bartkowiak Katedra Matematyki Stosowanej AE Poznań Charakterystyka wybranych szeregów czasowych na GPW 1. Wstęp Modelowanie szeregów czasowych jest podstawą ekonometrii finansowej. Umożliwia między
UWAGI O TESTACH JARQUE A-BERA
PRZEGLĄD STATYSTYCZNY R. LVII ZESZYT 4 010 CZESŁAW DOMAŃSKI UWAGI O TESTACH JARQUE A-BERA 1. MIARY SKOŚNOŚCI I KURTOZY W literaturze statystycznej prezentuje się wiele miar skośności i spłaszczenia (kurtozy).
Właściwości testu Jarque-Bera gdy w danych występuje obserwacja nietypowa.
Właściwości testu Jarque-Bera gdy w danych występuje obserwacja nietypowa. Paweł Strawiński Uniwersytet Warszawski Wydział Nauk Ekonomicznych 16 stycznia 2006 Streszczenie W artykule analizowane są właściwości
PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR. Wojciech Zieliński
PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR Wojciech Zieliński Katedra Ekonometrii i Statystyki SGGW Nowoursynowska 159, PL-02-767 Warszawa wojtek.zielinski@statystyka.info
Własności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
Inteligentna analiza danych
Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki
ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ
ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2
1. Pokaż, że estymator MNW parametru β ma postać β = nieobciążony. Znajdź estymator parametru σ 2.
Zadanie 1 Niech y t ma rozkład logarytmiczno normalny o funkcji gęstości postaci [ ] 1 f (y t ) = y exp (ln y t β ln x t ) 2 t 2πσ 2 2σ 2 Zakładamy, że x t jest nielosowe a y t są nieskorelowane w czasie.
MODELOWANIE ZMIENNOŚCI I RYZYKA INWESTYCJI W ZŁOTO. Celina Otolińska
MODELOWANIE ZMIENNOŚCI I RYZYKA INWESTYCJI W ZŁOTO Celina Otolińska PLAN: 1. Rynek złota-krótka informacja. 2. Wartość zagrożona i dlaczego ona. 3. Badany szereg czasowy oraz jego własności. 4. Modele
Wykład 7 Testowanie zgodności z rozkładem normalnym
Wykład 7 Testowanie zgodności z rozkładem normalnym Wrocław, 05 kwietnia 2017 Rozkład normalny Niech X = (X 1, X 2,..., X n ) będzie próbą z populacji o rozkładzie normalnym określonym przez dystrybuantę
dr hab. Renata Karkowska 1
dr hab. Renata Karkowska 1 Czym jest ryzyko? Rodzaje ryzyka? Co oznacza zarządzanie? Dlaczego zarządzamy ryzykiem? 2 Przedmiot ryzyka Otoczenie bliższe/dalsze (czynniki ryzyka egzogeniczne vs endogeniczne)
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: przedmiot obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 203 KAMILA BEDNARZ Uniwersytet Szczeciński MODELOWANIE ROZKŁADU TYGODNIOWYCH STÓP ZWROTU SPÓŁEK WCHODZĄCYCH
FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS
FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Folia Univ. Agric. Stetin. 007, Oeconomica 54 (47), 73 80 Mateusz GOC PROGNOZOWANIE ROZKŁADÓW LICZBY BEZROBOTNYCH WEDŁUG MIAST I POWIATÓW FORECASTING THE DISTRIBUTION
Szacowanie miary zagrożenia Expected Shortfall dla wybranych instrumentów polskiego rynku kapitałowego
Radosław Pietrzyk Katedra Inwestycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Szacowanie miary zagrożenia Expected Shortfall dla wybranych instrumentów polskiego rynku kapitałowego 1.
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści
Modelowanie rynków finansowych
Modelowanie rynków finansowych Jerzy Mycielski WNE UW 5 października 2017 Jerzy Mycielski (WNE UW) Modelowanie rynków finansowych 5 października 2017 1 / 12 Podstawowe elementy teorii 1 racjonalne oczekiwania
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Praca z danymi zaczyna się od badania rozkładu liczebności (częstości) zmiennych. Rozkład liczebności (częstości) zmiennej to jakie wartości zmienna
WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno
WSTĘP DO REGRESJI LOGISTYCZNEJ Dr Wioleta Drobik-Czwarno REGRESJA LOGISTYCZNA Zmienna zależna jest zmienną dychotomiczną (dwustanową) przyjmuje dwie wartości, najczęściej 0 i 1 Zmienną zależną może być:
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Kamila Bednarz-Okrzyńska * Uniwersytet Szczeciński MODELOWANIE EMPIRYCZNYCH ROZKŁADÓW STÓP ZWROTU Z AKCJI NOTOWANYCH NA GIEŁDZIE PAPIERÓW
METODY APROKSYMACJI INDEKSU OGONA ROZKŁADÓW ALFA-STABILNYCH NA PRZYKŁADZIE GPW W WARSZAWIE
Dominik Krężołek Uniwersytet Ekonomiczny w Katowicach METODY APROKSYMACJI INDEKSU OGONA ROZKŁADÓW ALFA-STABILNYCH NA PRZYKŁADZIE GPW W WARSZAWIE Wprowadzenie Procesy i zjawiska ekonomiczne obserwowane
Kamila Bednarz-Okrzyńska* Uniwersytet Szczeciński
Studia i Prace WNEiZ US nr 45/1 2016 DOI: 10.18276/sip.2016.45/1-14 Kamila Bednarz-Okrzyńska* Uniwersytet Szczeciński Analiza zależności między wartością współczynnika asymetrii a wartością semiodchylenia
Rozkład prędkości statków na torze wodnym Szczecin - Świnoujście
KASYK Lech 1 Rozkład prędkości statków na torze wodnym Szczecin - Świnoujście Tor wodny, strumień ruchu, Zmienna losowa, Rozkłady dwunormalne Streszczenie W niniejszym artykule przeanalizowano prędkości
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Badanie zależności skala nominalna
Badanie zależności skala nominalna I. Jak kształtuje się zależność miedzy płcią a wykształceniem? II. Jak kształtuje się zależność między płcią a otyłością (opis BMI)? III. Jak kształtuje się zależność
Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji.
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Centralne Twierdzenie Graniczne 1.1 Twierdzenie Lindeberga Levy'ego 1.2 Dowód 1.2.1 funkcja tworząca sumy zmiennych niezależnych 1.2.2 pochodna funkcji
Inżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 STATYSTYKA
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
W4 Eksperyment niezawodnościowy
W4 Eksperyment niezawodnościowy Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Badania niezawodnościowe i analiza statystyczna wyników 1. Co to są badania niezawodnościowe i
Modele stóp zwrotu w długim i krótkim okresie
Modele stóp zwrotu w długim i krótkim okresie Tomasz Mostowski Uniwersytet Warszawski Wydział Nauk Ekonomicznych Konferencja Aktuarialna, Warszawa 2008 Plan Problem ekonomiczny 1 Problem ekonomiczny 2
Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego
Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
WERYFIKACJA MODELI MODELE LINIOWE. Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno
WERYFIKACJA MODELI MODELE LINIOWE Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno ANALIZA KORELACJI LINIOWEJ to NIE JEST badanie związku przyczynowo-skutkowego, Badanie współwystępowania cech (czy istnieje
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3 Konrad Miziński, nr albumu 233703 26 maja 2015 Zadanie 1 Wartość krytyczna c, niezbędna wyliczenia mocy testu (1 β) wyznaczono za
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport Michał Krzemiński Streszczenie Projekt dotyczy metod generowania oraz badania własności statystycznych ciągów liczb pseudolosowych.
Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, że 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
Stanisław Cichocki Natalia Nehrebecka. Wykład 7
Stanisław Cichocki Natalia Nehrebecka Wykład 7 1 1. Metoda Największej Wiarygodności MNW 2. Założenia MNW 3. Własności estymatorów MNW 4. Testowanie hipotez w MNW 2 1. Metoda Największej Wiarygodności
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio
MODELE LINIOWE. Dr Wioleta Drobik
MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą
Statystyka w przykładach
w przykładach Tomasz Mostowski Zajęcia 10.04.2008 Plan Estymatory 1 Estymatory 2 Plan Estymatory 1 Estymatory 2 Własności estymatorów Zazwyczaj w badaniach potrzebujemy oszacować pewne parametry na podstawie
Próba własności i parametry
Próba własności i parametry Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony
Zmienne losowe. Statystyka w 3
Zmienne losowe Statystyka w Zmienna losowa Zmienna losowa jest funkcją, w której każdej wartości R odpowiada pewien podzbiór zbioru będący zdarzeniem losowym. Zmienna losowa powstaje poprzez przyporządkowanie
STATYSTYKA Statistics. Inżynieria Środowiska. II stopień ogólnoakademicki
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 STATYSTYKA
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 2 1 / 20 MIARY ROZPROSZENIA, Wariancja Wariancją z próby losowej X
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Dla opisania rozkładu badanej zmiennej, korzystamy z pewnych charakterystyk liczbowych. Dzielimy je na cztery grupy.. Określenie przeciętnej wartości
Analiza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
przedmiot podstawowy obowiązkowy polski drugi
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 07/08 IN--008 STATYSTYKA W INŻYNIERII ŚRODOWISKA Statistics in environmental engineering
Wykład 9 Testy rangowe w problemie dwóch prób
Wykład 9 Testy rangowe w problemie dwóch prób Wrocław, 18 kwietnia 2018 Test rangowy Testem rangowym nazywamy test, w którym statystyka testowa jest konstruowana w oparciu o rangi współrzędnych wektora
Ekonometria. Modelowanie zmiennej jakościowej. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Modelowanie zmiennej jakościowej Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 8 Zmienna jakościowa 1 / 25 Zmienna jakościowa Zmienna ilościowa może zostać zmierzona
Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH
Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informatyki Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH rozprawa doktorska Promotor: prof.
Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe
Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1
Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie
Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
Ekonometria. Zajęcia
Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)
R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych
R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we
3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, Ŝe 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
Witold Orzeszko Uniwersytet Mikołaja Kopernika w Toruniu. Zastosowanie testu Kaplana do identyfikacji ekonomicznych szeregów czasowych
Witold Orzeszko Uniwersytet Mikołaja Kopernika w Toruniu Zastosowanie testu Kaplana do identyfikacji ekonomicznych szeregów czasowych Streszczenie Identyfikacja zależności w szeregach czasowych jest jednym
OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp
tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE
Podstawowe pojęcia. Własności próby. Cechy statystyczne dzielimy na
Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony zbiór jednostek, które
Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
Stanisław Jędrusik, Andrzej Paliński, Wojciech Chmiel, Piotr Kadłuczka Testowanie wsteczne modeli wartości narażonej na stratę
Stanisław Jędrusik, Andrzej Paliński, Wojciech Chmiel, Piotr Kadłuczka Testowanie wsteczne modeli wartości narażonej na stratę Managerial Economics 1, 175-182 2007 Ekonomia Menedżerska 2007, nr 1, s. 175
Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.
Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,
... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...
4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem
WYKŁAD: Szeregi czasowe II. Zaawansowane Metody Uczenia Maszynowego
WYKŁAD: Szeregi czasowe II Zaawansowane Metody Uczenia Maszynowego Zwroty indeksów finansowych Y t : indeks finansowy w momencie t (wartość waloru, kurs walutowy itp). Określimy zwrot indeksu finansowego
1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:
Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).
Egzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie
Prawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
3. Analiza własności szeregu czasowego i wybór typu modelu
3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej
Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu
Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD
Statystyka opisowa. Robert Pietrzykowski.
Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info 2 Na dziś Sprawy bieżące Przypominam, że 14.11.2015 pierwszy sprawdzian Konsultacje Sobota 9:00 10:00 pok.
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 4 1 / 23 ZAGADNIENIE ESTYMACJI Zagadnienie
Model 1: Estymacja KMNK z wykorzystaniem 4877 obserwacji Zmienna zależna: y
Zadanie 1 Rozpatrujemy próbę 4877 pracowników fizycznych, którzy stracili prace w USA miedzy rokiem 1982 i 1991. Nie wszyscy bezrobotni, którym przysługuje świadczenie z tytułu ubezpieczenia od utraty
Zadanie Tworzenie próbki z rozkładu logarytmiczno normalnego LN(5, 2) Plot Probability Distributions
Zadanie 1. 1 Wygenerować 200 elementowa próbkę z rozkładu logarytmiczno-normalnego o parametrach LN(5,2). Utworzyć dla tej próbki: - szereg rozdzielczy - histogramy liczebności i częstości - histogramy
Statystyka. Wykład 5. Magdalena Alama-Bućko. 26 marca Magdalena Alama-Bućko Statystyka 26 marca / 40
Statystyka Wykład 5 Magdalena Alama-Bućko 26 marca 2018 Magdalena Alama-Bućko Statystyka 26 marca 2018 1 / 40 Uwaga Gdy współczynnik zmienności jest większy niż 70%, czyli V s = s x 100% > 70% (co świadczy
5. Analiza dyskryminacyjna: FLD, LDA, QDA
Algorytmy rozpoznawania obrazów 5. Analiza dyskryminacyjna: FLD, LDA, QDA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Liniowe funkcje dyskryminacyjne Liniowe funkcje dyskryminacyjne mają ogólną
Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski
Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych
Opis programu studiów
IV. Opis programu studiów Załącznik nr 9 do Zarządzenia Rektora nr 35/19 z dnia 1 czerwca 019 r. 3. KARTA PRZEDMIOTU Kod przedmiotu I-IŚ-103 Nazwa przedmiotu Statystyka w inżynierii środowiska Nazwa przedmiotu
Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne
Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Wykład 1 Sprawy organizacyjne
Wykład 1 Sprawy organizacyjne 1 Zasady zaliczenia Prezentacja/projekt w grupach 5 osobowych. Każda osoba przygotowuje: samodzielnie analizę w excel, prezentację teoretyczną w grupie. Obecność na zajęciach
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.
Ekonometria I Weryfikacja: współliniowość i normalność. Dr Michał Gradzewicz Szkoła Główna Handlowa w Warszawie
Ekonometria I Weryfikacja: współliniowość i normalność Dr Michał Gradzewicz Szkoła Główna Handlowa w Warszawie 1 Współliniowość 2 Przypomnienie: Założenia MNK Założenia MNK: 1. Zmienne objaśniające są
METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych
METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład - Parametry i wybrane rozkłady zmiennych losowych Parametry zmiennej losowej EX wartość oczekiwana D X wariancja DX odchylenie standardowe inne, np. kwantyle,
Wykład 3. Opis struktury zbiorowości. 1. Parametry opisu rozkładu badanej cechy. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle.
Wykład 3. Opis struktury zbiorowości 1. Parametry opisu rozkładu badanej cechy. 2. Miary połoŝenia rozkładu. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle. W praktycznych zastosowaniach bardzo często
Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2
Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2 Dr hab. inż. Agnieszka Wyłomańska Faculty of Pure and Applied Mathematics Hugo Steinhaus Center Wrocław University of Science and
Henryk Gurgul, Krzysztof Kłęk Kursy złotego wobec głównych walut- analiza empiryczna rozkładów. Managerial Economics 4, 27-41
Henryk Gurgul, Krzysztof Kłęk Kursy złotego wobec głównych walut- analiza empiryczna rozkładów Managerial Economics 4, 7-4 008 Kursy złotego wobec głównych walut analiza empiryczna rozkładów Ekonomia Menedżerska
W1. Wprowadzenie. Statystyka opisowa
W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład
gdzie. Dla funkcja ma własności:
Ekonometria, 21 listopada 2011 r. Modele ściśle nieliniowe Funkcja logistyczna należy do modeli ściśle nieliniowych względem parametrów. Jest to funkcja jednej zmiennej, zwykle czasu (t). Dla t>0 wartośd