Narzędzia geoprzestrzenne Business Intelligence (BI)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Narzędzia geoprzestrzenne Business Intelligence (BI)"

Transkrypt

1 Narzędzia geoprzestrzenne Business Intelligence (BI) Paweł Pręcikowski Dyrektor Administracja i Bezpieczeństwo Publiczne Kraków, maja 2018 r.

2 Agenda 1. Wprowadzenie do BI 2. Prezentacja rozwiązań: a) Eksploracja danych: i. Wektorowych - GeoMedia Enterprise Intelligence ii. Rastrowych - Erdas Imagine/Apollo b) Narzędzia BI: i. Kontrolka mapowa dla Power BI Desktop ii. M.App Enterprise iii.luciad 3. Podsumowanie 2

3 Wprowadzenie do BI

4 Business Intelligence to zorientowany na użytkownika proces zbierania, eksploracji, interpretacji i analizy danych, który prowadzi do usprawnienia i zracjonalizowania procesu podejmowania decyzji. System ten wspiera kadrę menadżerską w podejmowaniu decyzji biznesowych w celu kreowania wzrostu wartości przedsiębiorstwa Gartner 2003 Złota pętla (golden loop) decyzje zarządcze podejmowane są samodzielnie przez system. 4

5 Narzędzia BI Źródło: 5

6 Oprogramowanie BI 6

7 Eksploracja danych

8 GeoMedia Enterprise Intelligence

9 GeoMedia Enterprise Intelligence A. Korelacja Pearsona B. Szeregi czasowe uwzględniające predykatory przestrzenne C. Algorytm ISODATA D. Redukcja wymiarowości problemu E. Koncentracja powierzchniowa F. Ekonometria przestrzenna - Model Spatial Error G. Metoda pola ruchomego H. Statystyka I Morana I. Korelacja Spearmana J. Korelacja Yule a 9

10 GeoMedia Enterprise Intelligence - zastosowanie Aktywizacja umiejętnego wykorzystania wiedzy Wyszukiwanie zależności w danych, przetwarzanie danych w informację i wiedzę Wspieranie procesów biznesowych, zarządzania przestrzenią i podejmowania decyzji na podstawie danych odniesionych do przestrzeni. Atrakcyjna wizualizacja danych statystycznych 10

11 Erdas Imagine/Apollo

12 Erdas Imagine/Apollo ponad 200 nowych klasyfikatorów Classification Feature Spatial Models Raster Sensor Point Cloud Atmospheric Machine Learning 12

13 Erdas Imagine/Apollo nowe klasyfikatory Classify Using Machine Learning Define Deep Learning 2D Convolution Layer Define Deep Learning 2D Pooling Layer Define Deep Learning Activation Layer Classify Using Deep Learning Define Deep Learning Dense Layer Define Deep Learning Flatten Layer Initialize Deep Intellect Initialize Inception Initialize CART Initialize K-Nearest Neighbors Initialize Naïve Bayes Initialize Random Forest Initialize SVM Classify Using K-Means Machine Intellect Information Machine Intellect Input Machine Intellect Output Tasseled Cap 13

14 Erdas Imagine/Apollo - Spetial Modeler 14

15 15

16 Narzędzia Business Intelligence

17 Power BI Desktop

18 Kontrolka mapowa dla Power BI Desktop

19 Sposoby prezentacji danych Mapa bazowa

20 Mapy ciepła

21 Mapy ciepła

22 Klastry

23 Mapy ciepła z klastrami

24 Filtrowanie danych

25 Filtrowanie danych

26 Mechanizmy w trakcie fazy developmentu

27 M.App Enterprise

28

29 Luciad

30

31 Podsumowanie Interesuję się przyszłością, bo w niej spędzę resztę życia.. Charles Kettering 31

32

33 Dziękuję za uwagę Paweł Pręcikowski Dyrektor sprzedaży Hexagon Safety & Infrastructure Intergraph Polska Sp. z o.o. ul. Konstruktorska 12 A Warszawa tel.: fax.: tel.kom.:

dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2018/2019

dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2018/2019 dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2018/2019 KONTAKT Z PROWADZĄCYM dr inż. Paweł Morawski e-mail: pmorawski@spoleczna.pl www: http://pmorawski.spoleczna.pl

Bardziej szczegółowo

dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2016/2017

dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2016/2017 dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2016/2017 KONTAKT Z PROWADZĄCYM dr inż. Paweł Morawski e-mail: pmorawski@spoleczna.pl www: http://pmorawski.spoleczna.pl

Bardziej szczegółowo

WMS Thematic Standard do publikacji opracowań kartograficznych. Serena Coetzee, Adam Iwaniak, Paweł Netzel

WMS Thematic Standard do publikacji opracowań kartograficznych. Serena Coetzee, Adam Iwaniak, Paweł Netzel WMS Thematic Standard do publikacji opracowań kartograficznych Serena Coetzee, Adam Iwaniak, Paweł Netzel Prezentowanie informacji SDI Spatial Data Infrastructure Infrastruktura danych przestrzennych wyszukiwanie,

Bardziej szczegółowo

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów Eksploracja danych Piotr Lipiński Informacje ogólne Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów UWAGA: prezentacja to nie

Bardziej szczegółowo

Opracowywanie map w ArcGIS Online i MS Office. Urszula Kwiecień Esri Polska

Opracowywanie map w ArcGIS Online i MS Office. Urszula Kwiecień Esri Polska Opracowywanie map w ArcGIS Online i MS Office Urszula Kwiecień Esri Polska Agenda ArcGIS Online - filozofia tworzenia map w chmurze Wizualizacja danych tabelarycznych w MS Excel Opracowanie mapy w MS Excel

Bardziej szczegółowo

Przegląd oprogramowania GIS do tworzenia map tematycznych. Jacek Jania

Przegląd oprogramowania GIS do tworzenia map tematycznych. Jacek Jania Przegląd oprogramowania GIS do tworzenia map tematycznych Jacek Jania Plan prezentacji 1. Mapy tematyczne 2. Narzędzia do tworzenia map tematycznych 3. Rodzaje pakietów oprogramowania GIS 4. Rodzaje licencji

Bardziej szczegółowo

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2007 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę

Bardziej szczegółowo

ZAPYTANIE OFERTOWE SEKCJA I: ZAMAWIAJĄCY

ZAPYTANIE OFERTOWE SEKCJA I: ZAMAWIAJĄCY ZAPYTANIE OFERTOWE I.1.Nazwa i adres Zamawiającego SEKCJA I: ZAMAWIAJĄCY Nazwa: Intergraph Polska sp. z o.o. Adres siedziby: Ul. Domaniewska 52, 02-672 Warszawa Tel.: 22 495 88 00 Fax: 22 495 88 01 http://www.intergraph.pl

Bardziej szczegółowo

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2012 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę

Bardziej szczegółowo

Spectrum Spatial. Dla systemów BI (Business Intelligence)

Spectrum Spatial. Dla systemów BI (Business Intelligence) Spectrum Spatial Dla systemów BI (Business Intelligence) Czym jest Spectrum Spatial? Spectrum Spatial jest platformą programistyczną, która umożliwia lokalizację danych w przestrzeni w celu szybkiego i

Bardziej szczegółowo

Przegląd oprogramowania GIS do tworzenia map tematycznych

Przegląd oprogramowania GIS do tworzenia map tematycznych MATERIAŁY SZKOLENIOWE OPROGRAMOWANIE GIS Jacek Jania Przegląd oprogramowania GIS do tworzenia map tematycznych 1 IV OPROGRAMOWANIE GIS Mapy tematyczne Mapy tematyczne to mapy eksponujące jeden lub kilka

Bardziej szczegółowo

Praktyczne aspekty pozyskiwania wiedzy z danych z perspektywy matematyka w bankowości. 2014-01-23 (VI zajęcia) Jakub Jurdziak

Praktyczne aspekty pozyskiwania wiedzy z danych z perspektywy matematyka w bankowości. 2014-01-23 (VI zajęcia) Jakub Jurdziak Praktyczne aspekty pozyskiwania wiedzy z danych z perspektywy matematyka w bankowości 2014-01-23 (VI zajęcia) Jakub Jurdziak CEL ZAJĘĆ: Prezentacja nowoczesnego banku uniwersalnego jako organizacji opartej

Bardziej szczegółowo

Prezentacja kierunku Analityka biznesowa. Instytut Ekonomii i Informatyki

Prezentacja kierunku Analityka biznesowa. Instytut Ekonomii i Informatyki Prezentacja kierunku Analityka biznesowa Instytut Ekonomii i Informatyki Potrzeba (1) Raport McKinsey Global Institute (grudzień 2016) Z szacunków McKinsey wynika, że o ile globalnie liczba absolwentów

Bardziej szczegółowo

Minimum programowe dla studentów MIĘDZYWYDZIAŁOWYCH INDYWIDUALNYCH STUDIÓW SPOŁECZNO-HUMANISTYCZNYCH - studia magisterskie II stopnia

Minimum programowe dla studentów MIĘDZYWYDZIAŁOWYCH INDYWIDUALNYCH STUDIÓW SPOŁECZNO-HUMANISTYCZNYCH - studia magisterskie II stopnia ROK AKADEMICKI 019-00 Minimum programowe dla studentów MIĘDZYWYDZIAŁOWYCH INDYWIDUALNYCH STUDIÓW SPOŁECZNO-HUMANISTYCZNYCH - studia magisterskie II stopnia Kierunek: FINANSE I RACHUNKOWOŚĆ Zaawansowana

Bardziej szczegółowo

Hurtownia danych praktyczne zastosowania

Hurtownia danych praktyczne zastosowania Hurtownia danych praktyczne zastosowania Dorota Olkowicz dorota.olkowicz@its.waw.pl Centrum Bezpieczeństwa Ruchu Drogowego ITS Plan prezentacji 1. Hurtownie danych 2. Hurtownia danych POBR 3. Narzędzia

Bardziej szczegółowo

Od Expert Data Scientist do Citizen Data Scientist, czyli jak w praktyce korzystać z zaawansowanej analizy danych

Od Expert Data Scientist do Citizen Data Scientist, czyli jak w praktyce korzystać z zaawansowanej analizy danych Od Expert Data Scientist do Citizen Data Scientist, czyli jak w praktyce korzystać z zaawansowanej analizy danych Tomasz Demski StatSoft Polska www.statsoft.pl Analiza danych Zaawansowana analityka, data

Bardziej szczegółowo

SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA

SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA Biuro Rozwoju Wrocławia ul. Świdnicka 53 50-030 Wrocław tel. 71 777 73 25 fax.71 777 86 59 brw@um.wroc.pl Niniejszy projekt jest realizowany w ramach Programu dla Europy Środkowej współfinansowanego ze

Bardziej szczegółowo

System Informacji Geograficznej (GIS) i jego zastosowania. Tomasz Sznajderski

System Informacji Geograficznej (GIS) i jego zastosowania. Tomasz Sznajderski System Informacji Geograficznej (GIS) i jego zastosowania Tomasz Sznajderski Czym jest GIS? GIS System Informacji Geograficznej (z ang. Geographical Information System) system informacyjny służący do wprowadzania,

Bardziej szczegółowo

PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE

PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561

Bardziej szczegółowo

HURTOWNIE DANYCH I BUSINESS INTELLIGENCE

HURTOWNIE DANYCH I BUSINESS INTELLIGENCE BAZY DANYCH HURTOWNIE DANYCH I BUSINESS INTELLIGENCE Akademia Górniczo-Hutnicza w Krakowie Adrian Horzyk horzyk@agh.edu.pl Google: Horzyk HURTOWNIE DANYCH Hurtownia danych (Data Warehouse) to najczęściej

Bardziej szczegółowo

IDRISI - WPROWADZENIE

IDRISI - WPROWADZENIE IDRISI - WPROWADZENIE Anna Krakowiak-Bal Mateusz Malinowski Kraków 27 kwietnia 2014 r. IDRISI jest jednym z najbardziej znanych i szeroko stosowanych programów z rodziny Systemów Informacji Geograficznej

Bardziej szczegółowo

Wyzwania Biznesu. Co jest ważne dla Ciebie?

Wyzwania Biznesu. Co jest ważne dla Ciebie? Wyzwania Biznesu Zarabianie pieniędzy Oszczędzanie pieniędzy i poprawa wydajności Szybsze wprowadzanie produktów na rynek Maksymalizacja zwrotu z inwestycji portfelowych Trzymać się harmonogramu, budżetu

Bardziej szczegółowo

Zintegrowane systemy zarządzania zapachową jakością powietrza

Zintegrowane systemy zarządzania zapachową jakością powietrza Zintegrowane systemy zarządzania zapachową jakością powietrza Dr hab. inż. Izabela Sówka, prof. PWr II Konferencja Naukowo-Techniczna: Technologie informatyczne w ochronie i kształtowaniu środowiska 14

Bardziej szczegółowo

Wykorzystanie rozwiązań geoportalowych w działalności RZGW w Krakowie. Regionalny Zarząd Gospodarki Wodnej w Krakowie

Wykorzystanie rozwiązań geoportalowych w działalności RZGW w Krakowie. Regionalny Zarząd Gospodarki Wodnej w Krakowie Wykorzystanie rozwiązań geoportalowych w działalności RZGW w Krakowie w ramach prowadzenia Regionalnego Systemu Informacyjnego i Katastru Wodnego Tomasz Bukowiec Regionalny Zarząd Gospodarki Wodnej w Krakowie

Bardziej szczegółowo

L.p Nazwa przedmiotu Kod przedmiotu Osoba(y) prowadząca(e) WDP PDP WIR DAW BDZ

L.p Nazwa przedmiotu Kod przedmiotu Osoba(y) prowadząca(e) WDP PDP WIR DAW BDZ L.p Nazwa przedmiotu Kod przedmiotu Osoba(y) prowadząca(e) 1 2 3 4 5 Wykorzystanie systemu analizy statystycznej SAS w działalności przedsiębiorstwa Przetwarzanie danych w pakiecie SAS (makroprogramowanie,

Bardziej szczegółowo

Modernizacja systemów zarządzania i obsługi klienta w Kasie Rolniczego Ubezpieczenia Społecznego

Modernizacja systemów zarządzania i obsługi klienta w Kasie Rolniczego Ubezpieczenia Społecznego Modernizacja systemów zarządzania i obsługi klienta w Kasie Rolniczego Ubezpieczenia Społecznego Wicedyrektor Biura Kadr i Szkolenia Centrali KRUS 1 Projekty Komponentu A Poakcesyjnego Programu Wsparcia

Bardziej szczegółowo

XI Seminarium Naukowe "Inżynierskie zastosowania technologii informatycznych"

XI Seminarium Naukowe Inżynierskie zastosowania technologii informatycznych XI Seminarium Naukowe "Inżynierskie zastosowania technologii informatycznych" W dniu 4.02.2017 odbyło się XI Seminarium Naukowe Inżynierskie zastosowania technologii informatycznych. Organizatorzy Zaoczne

Bardziej szczegółowo

Business Intelligence jako narzędzie do walki z praniem brudnych pieniędzy

Business Intelligence jako narzędzie do walki z praniem brudnych pieniędzy Business www.comarch.pl Intelligence jako narzędzie do walki z praniem brudnych pieniędzy Business Intelligence jako narzędzie do walki z praniem brudnych pieniędzy Tomasz Matysik Kołobrzeg, 19.11.2009

Bardziej szczegółowo

Prof. Stanisław Jankowski

Prof. Stanisław Jankowski Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny

Bardziej szczegółowo

Portale raportowe, a narzędzia raportowe typu self- service

Portale raportowe, a narzędzia raportowe typu self- service Portale raportowe, a narzędzia raportowe typu self- service Bartłomiej Graczyk Kierownik Projektów / Architekt rozwiązań Business Intelligence E mail: bartek@graczyk.info.pl Site: www.graczyk.info.pl Agenda

Bardziej szczegółowo

Normy serii ISO 19100 w geodezji i geoinformatyce

Normy serii ISO 19100 w geodezji i geoinformatyce Akademia Rolnicza we Wrocławiu Normy serii ISO 19100 w geodezji i geoinformatyce Adam Iwaniak Alina Kmiecik Nowoczesne ODGIK - utopia czy rzeczywistość, Wisła 13-15 października 2006 Lata 80te Spectrum,

Bardziej szczegółowo

Implementacja standardu GML w oprogramowaniu firmy INTERGRAPH

Implementacja standardu GML w oprogramowaniu firmy INTERGRAPH Implementacja standardu GML w oprogramowaniu firmy INTERGRAPH Intergraph Corporation, Security, Government & Infrastructure Division (SG&I) Wydział Geodezji i Kartografii PW, Zakład Kartografii Bartłomiej

Bardziej szczegółowo

BPM vs. Content Management. Jarosław Żeliński analityk biznesowy, projektant systemów

BPM vs. Content Management. Jarosław Żeliński analityk biznesowy, projektant systemów BPM vs. Content Management Jarosław Żeliński analityk biznesowy, projektant systemów Cel prezentacji Celem prezentacji jest zwrócenie uwagi na istotne różnice pomiędzy tym co nazywamy: zarzadzaniem dokumentami,

Bardziej szczegółowo

Narzędzie do pozyskiwania, analizy i prezentowania informacji.

Narzędzie do pozyskiwania, analizy i prezentowania informacji. 1 Narzędzie do pozyskiwania, analizy i prezentowania informacji. 2 Gromadzenie i analiza informacji Dane od lat gromadzone w systemach informatycznych SyriuszSTD dane dziedzinowe: pośrednictwo pracy, ewidencja

Bardziej szczegółowo

Rozwiązanie GIS dla mniejszego. miasta: model Miasta Stalowa Wola. Janusz JEśAK. Jacek SOBOTKA. Instytut Rozwoju Miast. ESRI Polska Sp. z o. o.

Rozwiązanie GIS dla mniejszego. miasta: model Miasta Stalowa Wola. Janusz JEśAK. Jacek SOBOTKA. Instytut Rozwoju Miast. ESRI Polska Sp. z o. o. Rozwiązanie GIS dla mniejszego miasta: model Miasta Stalowa Wola Instytut Rozwoju Miast Janusz JEśAK ESRI Polska Sp. z o. o. Jacek SOBOTKA Rybnik, 27-28 września 2007 Plan Prezentacji Geneza przedsięwzięcia

Bardziej szczegółowo

Szkolenia SAS Cennik i kalendarz 2017

Szkolenia SAS Cennik i kalendarz 2017 Szkolenia SAS Spis treści NARZĘDZIA SAS FOUNDATION 2 ZAAWANSOWANA ANALITYKA 2 PROGNOZOWANIE I EKONOMETRIA 3 ANALIZA TREŚCI 3 OPTYMALIZACJA I SYMULACJA 3 3 ROZWIĄZANIA DLA HADOOP 3 HIGH-PERFORMANCE ANALYTICS

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE. Statystyka opisowa. Zarządzanie. niestacjonarne. I stopnia. dr Agnieszka Strzelecka. ogólnoakademicki.

PRZEWODNIK PO PRZEDMIOCIE. Statystyka opisowa. Zarządzanie. niestacjonarne. I stopnia. dr Agnieszka Strzelecka. ogólnoakademicki. Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj

Bardziej szczegółowo

Migracja z aplikacji ArcMap do ArcGIS Pro

Migracja z aplikacji ArcMap do ArcGIS Pro Migracja z aplikacji ArcMap do ArcGIS Pro Spis treści Zasoby Esri... 1 Wprowadzenie do kursu... 3 Dane dostępowe do konta szkoleniowego... 5 Oznaczenia używane w tym podręczniku... 6 Zapoznanie z platformą

Bardziej szczegółowo

GIS W SPISACH POWSZECHNYCH LUDNOŚCI I MIESZKAŃ. Katarzyna Teresa Wysocka

GIS W SPISACH POWSZECHNYCH LUDNOŚCI I MIESZKAŃ. Katarzyna Teresa Wysocka STUDIUM PODYPLOMOWE SYSTEMY INFORMACJI PRZESTRZENNEJ GIS W SPISACH POWSZECHNYCH LUDNOŚCI I MIESZKAŃ WYKONANIE OPERATU PRZESTRZENNEGO DLA GMINY LESZNOWOLA Katarzyna Teresa Wysocka Opiekun pracy: Janusz

Bardziej szczegółowo

WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU

WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim: Eksploracja Danych Nazwa w języku angielskim: Data Mining Kierunek studiów (jeśli dotyczy): MATEMATYKA I STATYSTYKA Stopień studiów i forma:

Bardziej szczegółowo

Klasyfikacja chmury punktów w oprogramowaniu LP360 (QCoherent) w celu generowania wektorowych i rastrowych produktów pochodnych.

Klasyfikacja chmury punktów w oprogramowaniu LP360 (QCoherent) w celu generowania wektorowych i rastrowych produktów pochodnych. Klasyfikacja chmury punktów w oprogramowaniu LP360 (QCoherent) w celu generowania wektorowych i rastrowych produktów pochodnych. Mateusz Maślanka QCoherent Product Manager mateusz.maslanka@progea.pl Firma

Bardziej szczegółowo

Wprowadzenie do Hurtowni Danych. Mariusz Rafało

Wprowadzenie do Hurtowni Danych. Mariusz Rafało Wprowadzenie do Hurtowni Danych Mariusz Rafało mrafalo@sgh.waw.pl WARSTWA PREZENTACJI HURTOWNI DANYCH Wykorzystanie hurtowni danych - aspekty Analityczne zbiory danych (ADS) Zbiór danych tematycznych (Data

Bardziej szczegółowo

Prezentacja publiczna projektu

Prezentacja publiczna projektu Prezentacja publiczna projektu Zintegrowany System Zarządzania Grupą Szpitali w celu podniesienia jakości, dostępności i kompleksowości udzielanych świadczeń, zapewnienia konkurencyjności szpitali publicznych

Bardziej szczegółowo

Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska

Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska e-mail: bartosz.krawczyk@pwr.wroc.pl Czym jest klasyfikacja

Bardziej szczegółowo

Matryca pokrycia efektów kształcenia. Efekty kształcenia w zakresie wiedzy (cz. I)

Matryca pokrycia efektów kształcenia. Efekty kształcenia w zakresie wiedzy (cz. I) Matryca pokrycia efektów kształcenia Matryca dla przedmiotów realizowanych na kierunku Informatyka i Ekonometria (z wyłączeniem przedmiotów realizowanych w ramach specjalności oraz przedmiotów swobodnego

Bardziej szczegółowo

Modernizacja systemu gromadzenia i przetwarzania informacji hydrogeologicznych

Modernizacja systemu gromadzenia i przetwarzania informacji hydrogeologicznych 151 Dział tematyczny VII: Modernizacja systemu gromadzenia i przetwarzania informacji hydrogeologicznych 152 Zadanie 31 System przetwarzania danych PSH - rozbudowa aplikacji do gromadzenia i przetwarzania

Bardziej szczegółowo

ArcGIS Pro: Analizy przestrzenne

ArcGIS Pro: Analizy przestrzenne ArcGIS Pro: Analizy przestrzenne Prawa autorskie 2019 Esri Wszystkie prawa zastrzeżone. Wersja kursu 2.0 Data publikacji wersji: Kwiecień 2019. Wydrukowano w Polsce. Informacje zawarte w niniejszym dokumencie

Bardziej szczegółowo

Załącznik Nr 1 KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Elementy statystyki i demografii. 2. KIERUNEK: Pedagogika. 3. POZIOM STUDIÓW: I stopień

Załącznik Nr 1 KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Elementy statystyki i demografii. 2. KIERUNEK: Pedagogika. 3. POZIOM STUDIÓW: I stopień Załącznik Nr 1 KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Elementy statystyki i demografii 2. KIERUNEK: Pedagogika 3. POZIOM STUDIÓW: I stopień 4. ROK/ SEMESTR STUDIÓW: rok II / semestr 3. LICZBA PUNKTÓW ECTS:

Bardziej szczegółowo

Narzędzia analizy przestrzennej wspomagające zarządzanie rybołówstwem morskim w warunkach Wspólnej Polityki Rybackiej

Narzędzia analizy przestrzennej wspomagające zarządzanie rybołówstwem morskim w warunkach Wspólnej Polityki Rybackiej Narzędzia analizy przestrzennej wspomagające zarządzanie rybołówstwem morskim w warunkach Wspólnej Polityki Rybackiej Emil Kuzebski, Lena Szymanek Morski Instytut Rybacki Państwowy Instytut Badawczy Korzyści

Bardziej szczegółowo

Wstęp... 7. 3. Technologie informacyjne wpływające na doskonalenie przedsiębiorstwa

Wstęp... 7. 3. Technologie informacyjne wpływające na doskonalenie przedsiębiorstwa Spis treści Wstęp.............................................................. 7 1. Przedsiębiorstwo w dobie globalizacji.............................. 11 1.1. Wyzwania globalnego rynku....................................

Bardziej szczegółowo

Praktyczne wykorzystanie elementów raportowania Microsoft Project 2010 /Project Server 2010 Sesja 5 PowerPivot & PowerView Bartłomiej Graczyk

Praktyczne wykorzystanie elementów raportowania Microsoft Project 2010 /Project Server 2010 Sesja 5 PowerPivot & PowerView Bartłomiej Graczyk Praktyczne wykorzystanie elementów raportowania Microsoft Project 2010 /Project Server 2010 Sesja 5 PowerPivot & PowerView Bartłomiej Graczyk 2012-11-05 Bartłomiej Graczyk MCT,MCITP,MCTS Architekt rozwiązań

Bardziej szczegółowo

System Informacji dla Linii Kolejowych narzędziem wspomagającym podejmowanie decyzji w PKP Polskie Linie Kolejowe S.A.

System Informacji dla Linii Kolejowych narzędziem wspomagającym podejmowanie decyzji w PKP Polskie Linie Kolejowe S.A. System Informacji dla Linii Kolejowych narzędziem wspomagającym podejmowanie decyzji w PKP Polskie Linie Kolejowe S.A. www.plk-sa.pl Kraków, 16 maja 2014 r. System Informacji dla Linii Kolejowych (SILK)

Bardziej szczegółowo

NALITYKA IZNESOWA WYDZIAŁ ORGANIZACJI I ZARZĄDZANIA POLITECHNIKA ŚLĄSKA NOWY KIERUNEK STUDIÓW.

NALITYKA IZNESOWA WYDZIAŁ ORGANIZACJI I ZARZĄDZANIA POLITECHNIKA ŚLĄSKA NOWY KIERUNEK STUDIÓW. NALITYKA IZNESOWA NOWY KIERUNEK STUDIÓW WYDZIAŁ ORGANIZACJI I ZARZĄDZANIA POLITECHNIKA ŚLĄSKA Czy wiesz jakie kompetencje: o gwarantują zatrudnienie? I Z Czy wiesz jakie kompetencje: o gwarantują zatrudnienie?

Bardziej szczegółowo

Ocena internetowych serwisów mapowych jako wsparcia dla partycypacji społecznej w planowaniu przestrzennym

Ocena internetowych serwisów mapowych jako wsparcia dla partycypacji społecznej w planowaniu przestrzennym I-sza Międzynarodowa Konferencja Naukowa nt. Aktualne trendy rozwoju regionalnego w cyklu PRZESTRZEŃ TECHNOLOGIA EKONOMIA (6 marca 2015r. Kraków) Ocena internetowych serwisów mapowych jako wsparcia dla

Bardziej szczegółowo

Machine learning Lecture 6

Machine learning Lecture 6 Machine learning Lecture 6 Marcin Wolter IFJ PAN 11 maja 2017 Deep learning Convolution network Zastosowanie do poszukiwań bozonu Higgsa 1 Deep learning Poszczególne warstwy ukryte uczą się rozpoznawania

Bardziej szczegółowo

POWER BI. modelowanie i wizualizacja danych SPRAWDŹ PROGRAM 2-DNIOWEGO SPOTKANIA DATAVIZ (12-13 GRUDNIA) Head of BI SAMLERHUSET GROUP

POWER BI. modelowanie i wizualizacja danych SPRAWDŹ PROGRAM 2-DNIOWEGO SPOTKANIA DATAVIZ (12-13 GRUDNIA) Head of BI SAMLERHUSET GROUP SPRAWDŹ PROGRAM 2-DNIOWEGO SPOTKANIA DATAVIZ (12-13 GRUDNIA) PIOTR ŚMIGIELSKI Head of BI SAMLERHUSET GROUP DESKTOP & CLOUD IMPORT DANYCH Z RÓŻNYCH ŹRÓDEŁ CZYSZCZENIE I NORMALIZACJA DANYCH W M I DAX BUDOWA

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2015/2016

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2015/2016 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 015/016 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:

Bardziej szczegółowo

STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie

STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie STATYSTYKA OD PODSTAW Z SYSTEMEM SAS wersja 9.2 i 9.3 Szkoła Główna Handlowa w Warszawie Spis treści Wprowadzenie... 6 1. Podstawowe informacje o systemie SAS... 9 1.1. Informacje ogólne... 9 1.2. Analityka...

Bardziej szczegółowo

Model procesu dydaktycznego

Model procesu dydaktycznego Model procesu dydaktycznego w zakresie Business Intelligence Zenon Gniazdowski 1,2), Andrzej Ptasznik 1) 1) Warszawska Wyższa Szkoła Informatyki, ul. Lewartowskiego 17, Warszawa 2) Instytut Technologii

Bardziej szczegółowo

Klasyfikacja chmury punktów w oprogramowaniu LP360 w celu generowania wektorowych i rastrowych produktów pochodnych

Klasyfikacja chmury punktów w oprogramowaniu LP360 w celu generowania wektorowych i rastrowych produktów pochodnych Klasyfikacja chmury punktów w oprogramowaniu LP360 w celu generowania wektorowych i rastrowych produktów pochodnych Mateusz Maślanka Specjalista ds. oprogramowania LiDAR mateusz.maslanka@progea.pl Mateusz

Bardziej szczegółowo

Paweł Gołębiewski. Softmaks.pl Sp. z o.o. ul. Kraszewskiego 1 85-240 Bydgoszcz www.softmaks.pl kontakt@softmaks.pl

Paweł Gołębiewski. Softmaks.pl Sp. z o.o. ul. Kraszewskiego 1 85-240 Bydgoszcz www.softmaks.pl kontakt@softmaks.pl Paweł Gołębiewski Softmaks.pl Sp. z o.o. ul. Kraszewskiego 1 85-240 Bydgoszcz www.softmaks.pl kontakt@softmaks.pl Droga na szczyt Narzędzie Business Intelligence. Czyli kiedy podjąć decyzję o wdrożeniu?

Bardziej szczegółowo

7. Maszyny wektorów podpierajacych SVMs

7. Maszyny wektorów podpierajacych SVMs Algorytmy rozpoznawania obrazów 7. Maszyny wektorów podpierajacych SVMs dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Maszyny wektorów podpierajacych - SVMs Maszyny wektorów podpierających (ang.

Bardziej szczegółowo

Plan prezentacji 0 Wprowadzenie 0 Zastosowania 0 Przykładowe metody 0 Zagadnienia poboczne 0 Przyszłość 0 Podsumowanie 7 Jak powstaje wiedza? Dane Informacje Wiedza Zrozumienie 8 Przykład Teleskop Hubble

Bardziej szczegółowo

STRATEG podstawowe informacje

STRATEG podstawowe informacje URZĄD STATYSTYCZNY W KRAKOWIE Baza System Demografia Monitorowania podstawowe Rozwoju informacje STRATEG podstawowe informacje Banki i bazy danych GUS Banki i bazy danych to wygodne narzędzia umożliwiające

Bardziej szczegółowo

serwisy W*S ERDAS APOLLO 2009

serwisy W*S ERDAS APOLLO 2009 serwisy W*S ERDAS APOLLO 2009 1 OGC (Open Geospatial Consortium, Inc) OGC jest międzynarodowym konsorcjum 382 firm prywatnych, agencji rządowych oraz uniwersytetów, które nawiązały współpracę w celu rozwijania

Bardziej szczegółowo

Wprowadzenie do Hurtowni Danych. Mariusz Rafało

Wprowadzenie do Hurtowni Danych. Mariusz Rafało Wprowadzenie do Hurtowni Danych Mariusz Rafało mariusz.rafalo@hotmail.com WPROWADZENIE DO HURTOWNI DANYCH Co to jest hurtownia danych? Hurtownia danych jest zbiorem danych zorientowanych tematycznie, zintegrowanych,

Bardziej szczegółowo

Samodzielny Business Intelligence in memory duże i małe. Paweł Gajda Business Solution Architect

Samodzielny Business Intelligence in memory duże i małe. Paweł Gajda Business Solution Architect Samodzielny Business Intelligence in memory duże i małe Paweł Gajda Business Solution Architect Agenda 1. Zapytania biznesowe 2. SAP Visual Intelligence 3. Szybkość 4. Zaangażowanie 5. Samoobsługa 6. Kreatywność

Bardziej szczegółowo

Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji

Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji Jacek Szcześniak Jerzy Błaszczyński Roman Słowiński Poznań, 5.XI.2013r. Konspekt Wstęp Wprowadzenie Metody typu wrapper Nowe metody

Bardziej szczegółowo

Założenia kierunku e-gospodarka przestrzenna na Uniwersytecie Jagiellońskim

Założenia kierunku e-gospodarka przestrzenna na Uniwersytecie Jagiellońskim Założenia kierunku e-gospodarka przestrzenna na Uniwersytecie Jagiellońskim Jacek Kozak, Robert Pawlusiński, Katarzyna Piotrowicz, Piotr Trzepacz Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu

Bardziej szczegółowo

Wprowadzenie do systemów GIS

Wprowadzenie do systemów GIS Wprowadzenie do systemów GIS TLUG 09.06.2007 1 GIS - co to w ogóle za skrót Geographical Information System System Ingormacji Geograficznej System Informacji Przestrzennej System Informacji Przestrzennej

Bardziej szczegółowo

data mining machine learning data science

data mining machine learning data science data mining machine learning data science deep learning, AI, statistics, IoT, operations research, applied mathematics KISIM, WIMiIP, AGH 1 Machine Learning / Data mining / Data science Uczenie maszynowe

Bardziej szczegółowo

dr inż. Maciej Kiewra Prezentacja wygłoszona na konferencji BI vs Big Data podczas Kongresu GigaCon Warszawa, 16.04.2014 r.

dr inż. Maciej Kiewra Prezentacja wygłoszona na konferencji BI vs Big Data podczas Kongresu GigaCon Warszawa, 16.04.2014 r. dr inż. Maciej Kiewra Prezentacja wygłoszona na konferencji BI vs Big Data podczas Kongresu GigaCon Warszawa, 16.04.2014 r. Big Data w praktyce, z perspektywy konsultanta Business Intelligence Parę słów

Bardziej szczegółowo

WSTĘP PARADYGMATY I DETERMINANTY ROZWOJU SPOŁECZEŃSTWA INFORMACYJNEGO I GOSPODARKI OPARTEJ NA WIEDZY... 17

WSTĘP PARADYGMATY I DETERMINANTY ROZWOJU SPOŁECZEŃSTWA INFORMACYJNEGO I GOSPODARKI OPARTEJ NA WIEDZY... 17 SPIS TREŚCI WSTĘP... 11 1. PARADYGMATY I DETERMINANTY ROZWOJU SPOŁECZEŃSTWA INFORMACYJNEGO I GOSPODARKI OPARTEJ NA WIEDZY... 17 1.1. Istota społeczeństwa informacyjnego i gospodarki opartej na wiedzy (Celina

Bardziej szczegółowo

Wizualizacja danych controllingowych w oparciu o międzynarodowe standardy. Mariusz Górski i Paweł Musiał Controlling Systems

Wizualizacja danych controllingowych w oparciu o międzynarodowe standardy. Mariusz Górski i Paweł Musiał Controlling Systems Wizualizacja danych controllingowych w oparciu o międzynarodowe standardy Mariusz Górski i Paweł Musiał Controlling Systems Refleksja Czasy nadmiaru 1 numer NYT vs. człowiek w XIX w. Technologia vs. percepcja

Bardziej szczegółowo

SYSTEM HYDROGRAFICZNY RZGW W SZCZECINIE

SYSTEM HYDROGRAFICZNY RZGW W SZCZECINIE SYSTEM HYDROGRAFICZNY RZGW W SZCZECINIE. GROMADZENIE, PRZETWARZANIE ORAZ WIZUALIZACJA CIĄGŁEJ INFORMACJI BATYMETRYCZNEJ RZEKI ODRY KRZYSZTOF IWAN, TOMASZ ZAWADZKI REGIONALNY ZARZĄD GOSPODARKI WODNEJ W

Bardziej szczegółowo

Co to jest Business Intelligence?

Co to jest Business Intelligence? Cykl: Cykl: Czwartki z Business Intelligence Sesja: Co Co to jest Business Intelligence? Bartłomiej Graczyk 2010-05-06 1 Prelegenci cyklu... mariusz@ssas.pl lukasz@ssas.pl grzegorz@ssas.pl bartek@ssas.pl

Bardziej szczegółowo

ERDAS TITAN środowisko 3D udostępniania danych przestrzennych

ERDAS TITAN środowisko 3D udostępniania danych przestrzennych ERDAS TITAN środowisko 3D udostępniania danych przestrzennych III Konferencja naukowo-techniczna WAT i GEOSYSTEMS Polska, Serock, 12 czerwca, 2008 ERDAS, Inc. A Hexagon Company. All Rights Reserved ERDAS

Bardziej szczegółowo

Wybrane zagadnienia w pracy z danymi rastrowymi w ArcGIS Marcin Paź Esri Polska

Wybrane zagadnienia w pracy z danymi rastrowymi w ArcGIS Marcin Paź Esri Polska Wybrane zagadnienia w pracy z danymi rastrowymi w ArcGIS 10.1 Marcin Paź Esri Polska Zagadnienia Koncepcja rastra Typy danych rastrowych Właściwości rastrów Modele danych rastrowych w ArcGIS Przetwarzanie

Bardziej szczegółowo

Trendy BI z perspektywy. marketingu internetowego

Trendy BI z perspektywy. marketingu internetowego Trendy BI z perspektywy marketingu internetowego BI CECHUJE ORGANIZACJE DOJRZAŁE ANALITYCZNIE 2 ALE JAKA JEST TA DOJRZAŁOŚĆ ANALITYCZNA ORGANIZACJI? 3 Jaka jest dojrzałość analityczna organizacji? Zarządzanie

Bardziej szczegółowo

Integracja i udostępnianie danych przestrzennych w procesie tworzenia wizualizacji przyrodniczych. Instytut Oceanologii PAN Joanna Pardus

Integracja i udostępnianie danych przestrzennych w procesie tworzenia wizualizacji przyrodniczych. Instytut Oceanologii PAN Joanna Pardus Integracja i udostępnianie danych przestrzennych w procesie tworzenia wizualizacji przyrodniczych Instytut Oceanologii PAN Joanna Pardus 2 Plan wystąpienia Wprowadzenie Dane przestrzenne a środowisko morskie

Bardziej szczegółowo

BalticBottomBase. Instytut Morski w Gdańsku Gdańsk,

BalticBottomBase. Instytut Morski w Gdańsku Gdańsk, BalticBottomBase mgr inż. Przemysław Kulesza dr Piotr Piotrowski mgr inż. Michał Wójcik Spójne wyszukiwanie w zbiorze różnorodnych danych geograficznych - metamodel i metoda wyszukiwania Instytut Morski

Bardziej szczegółowo

Statystyczna analiza Danych

Statystyczna analiza Danych Statystyczna analiza Danych Dla bioinformatyków Wykład pierwszy: O testowaniu hipotez Plan na dziś Quiz! Cele wykładu Plan na semestr Kryteria zaliczenia Sprawy organizacyjne Quiz (15 minut) Jakie znasz

Bardziej szczegółowo

Monitoring procesów z wykorzystaniem systemu ADONIS

Monitoring procesów z wykorzystaniem systemu ADONIS Monitoring procesów z wykorzystaniem systemu ADONIS BOC Information Technologies Consulting Sp. z o.o. e-mail: boc@boc-pl.com Tel.: (+48 22) 628 00 15, 696 69 26 Fax: (+48 22) 621 66 88 BOC Management

Bardziej szczegółowo

Business Intelligence

Business Intelligence Business Intelligence Paweł Mielczarek Microsoft Certified Trainer (MCT) MCP,MCSA, MCTS, MCTS SQL 2005, MCTS SQL 2008, MCTS DYNAMICS, MBSS, MBSP, MCITP DYNAMICS. Geneza Prowadzenie firmy wymaga podejmowania

Bardziej szczegółowo

Organizacyjnie. Prowadzący: dr Mariusz Rafało (hasło: BIG)

Organizacyjnie. Prowadzący: dr Mariusz Rafało   (hasło: BIG) Big Data Organizacyjnie Prowadzący: dr Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl (hasło: BIG) DANE W CZASIE RZECZYWISTYM 3 Tryb analizowania danych 4 Okno analizowania 5 Real-time: Checkpointing

Bardziej szczegółowo

BUSINESS INTELLIGENCE for PROGRESS BI4PROGRESS

BUSINESS INTELLIGENCE for PROGRESS BI4PROGRESS BUSINESS INTELLIGENCE for PROGRESS BI4PROGRESS SZYBKIE ANALIZY EKONOMICZNE, FINANSOWE I STATYSTYCZNE 0 S t r o n a Dlaczego BI4PROGRESS? W czasach nieustających, dynamicznych zmian na rynku edukacyjnym,

Bardziej szczegółowo

Technologie numeryczne w kartografii. Paweł J. Kowalski

Technologie numeryczne w kartografii. Paweł J. Kowalski Technologie numeryczne w kartografii Paweł J. Kowalski Tematyka mapy numeryczne bazy danych przestrzennych systemy informacji geograficznej Mapa = obraz powierzchni Ziemi płaski matematycznie określony

Bardziej szczegółowo

Metadane. Data Maining. - wykład VII. Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006

Metadane. Data Maining. - wykład VII. Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Metadane. Data Maining. - wykład VII Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Plan 1. Metadane 2. Jakość danych 3. Eksploracja danych (Data mining) 4. Sprawy róŝne

Bardziej szczegółowo

Portal internetowy Europejskiej Sieci Ekologicznej Natura 2000 w Polsce.

Portal internetowy Europejskiej Sieci Ekologicznej Natura 2000 w Polsce. Portal internetowy Europejskiej Sieci Ekologicznej Natura 2000 w Polsce. Robert Wańczyk ProGea Consulting, ul. Pachońskiego 9, Kraków,, Koncepcja Serwisu (1) Firma ProGea Consulting przygotowała portal

Bardziej szczegółowo

INFOBAZY 2014 VII KRAJOWA KONFERENCJA NAUKOWA INSPIRACJA - INTEGRACJA - IMPLEMENTACJA

INFOBAZY 2014 VII KRAJOWA KONFERENCJA NAUKOWA INSPIRACJA - INTEGRACJA - IMPLEMENTACJA Centrum Informatyczne TASK Politechnika Gdańska Instytut Oceanologii Polskiej Akademii Nauk (IO PAN) INFOBAZY 2014 VII KRAJOWA KONFERENCJA NAUKOWA INSPIRACJA - INTEGRACJA - IMPLEMENTACJA Gdańsk Sopot,

Bardziej szczegółowo

Analizy statystyczno-taksonomiczne i możliwości ich zastosowania w procesie strategicznego zarządzania rozwojem regionalnym

Analizy statystyczno-taksonomiczne i możliwości ich zastosowania w procesie strategicznego zarządzania rozwojem regionalnym Samorządowa Jednostka Organizacyjna Województwa Dolnośląskiego Analizy statystyczno-taksonomiczne i możliwości ich zastosowania w procesie strategicznego zarządzania rozwojem regionalnym INSTYTUT ROZWOJU

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

STATYSTYKA PUBLICZNA Warsztaty, cz. III

STATYSTYKA PUBLICZNA Warsztaty, cz. III STATYSTYKA PUBLICZNA Warsztaty, cz. III www.stat.gov.pl dr Kazimierz Kruszka k.kruszka@stat.gov.pl k.kruszka@neostrada.pl III. Jak powstają raporty i publikacje statystyczne? Wynikowe informacje statystyczne

Bardziej szczegółowo

IBM DATASTAGE COMPETENCE CENTER

IBM DATASTAGE COMPETENCE CENTER IBM DATASTAGE COMPETENCE CENTER W informacji drzemie ogromny potencjał biznesowy. Odpowiednio opisane i wykorzystane dane stanowią podstawę sprawnie funkcjonującego przedsiębiorstwa. Wykorzystując najnowocześniejsze

Bardziej szczegółowo

Marcin Adamczak Jakub Gruszka MSP. Business Intelligence

Marcin Adamczak Jakub Gruszka MSP. Business Intelligence Marcin Adamczak Jakub Gruszka MSP Business Intelligence Plan Prezentacji Definicja Podział Zastosowanie Wady i zalety Przykłady Historia W październiku 1958 Hans Peter Luhn pracownik działu badań w IBM

Bardziej szczegółowo

KARTA KURSU. Nazwa Geograficzne systemy informacji przestrzennej (GIS) 1

KARTA KURSU. Nazwa Geograficzne systemy informacji przestrzennej (GIS) 1 Gospodarka przestrzenna, 1, stacjonarne, II, 3 KARTA KURSU Nazwa Geograficzne systemy informacji przestrzennej (GIS) 1 Nazwa w j. ang. Geographical Information Systems (GIS) 1 Koordynator Paweł Struś Zespół

Bardziej szczegółowo

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Załącznik nr 1 do Zapytania ofertowego z dnia 02 października 13 r. pieczęć firmowa Wykonawcy OFERTA data - przeprowadzenia szkoleń z systemów geoinformatycznych - oprogramowanie Bentley, Geospatial Administrator,

Bardziej szczegółowo

Jak znaleźć prawdziwe zagrożenia w infrastrukturze IT

Jak znaleźć prawdziwe zagrożenia w infrastrukturze IT Piotr Orlański Jak znaleźć prawdziwe zagrożenia w infrastrukturze IT Warszawa, 05/04/2016 www.compfort.pl Ryzyko Monitorowanie Wykrywanie Dynamika i zwinność Automatyzacja Czas Strona 1 Czy ważne zawsze

Bardziej szczegółowo

cgeozasiewy Oprogramowanie polowe do prowadzenia pomiarów GPS

cgeozasiewy Oprogramowanie polowe do prowadzenia pomiarów GPS Polski program rozwijany przez firmę Softline Plus z Wrocławia. Wersja programu 2.4.2.0 Funkcje podstawowe: a) polski język interfejsu Funkcje podstawowe: b) możliwość zarządzania kolekcją gospodarstw

Bardziej szczegółowo

Automatyzacja Procesów Biznesowych. Systemy Informacyjne Przedsiębiorstw

Automatyzacja Procesów Biznesowych. Systemy Informacyjne Przedsiębiorstw Automatyzacja Procesów Biznesowych Systemy Informacyjne Przedsiębiorstw Rodzaje przedsiębiorstw Produkcyjne największe zapotrzebowanie na kapitał, największe ryzyko Handlowe kapitał obrotowy, średnie ryzyko

Bardziej szczegółowo