|
|
- Eugeniusz Zalewski
- 9 lat temu
- Przeglądów:
Transkrypt
1
2
3
4
5
6
7 Plan prezentacji 0 Wprowadzenie 0 Zastosowania 0 Przykładowe metody 0 Zagadnienia poboczne 0 Przyszłość 0 Podsumowanie 7
8 Jak powstaje wiedza? Dane Informacje Wiedza Zrozumienie 8
9 Przykład Teleskop Hubble a Dane Zdjęcia Widmo Informacje Jasność obiektów Przesunięcie ku czerwieni Wiedza Korelacja pomiędzy jasnością a przesunięciem ku czerwieni Zrozumienie Wszechświat się rozszerza! * Źródło przykładu: 9
10 Etapy procesu odkrywania Dane wiedzy Filtrowanie Wybrany podzbiór Wstępne przetwarzanie Wyczyszczone dane Transformacja Dane do analizy Eksploracja danych Wzorce/ modele Interpretacja / ocena Wiedza 10
11 Czym jest data mining? 0 Efektywne znajdowanie nieznanych dotychczas zależności i związków pomiędzy danymi. 0 Czerpie z takich dziedzin jak: 0 systemy baz danych 0 hurtownie danych 0 statystyka 0 odkrywanie wzorców 0 uczenie maszynowe 0 wizualizacja danych 0 optymalizacja 11
12 Zastosowania 0 Planowanie promocji, rozmieszczanie produktów 0 Wspomaganie diagnostyki medycznej 0 Kierowanie reklam 0 Odkrywanie wzorców w DNA 0 Analiza sieci terrorystycznych 0 Ocena zdolności kredytowej 12
13 Typy danych 0 Dane relacyjne 0 Tekst 0 Dane semistrukturalne (np. XML) 0 Zdjęcia 0 Pliki video 0 Modele 3D 0 Współrzędne geograficzne 0 Grafy 0 Przebiegi czasowe 0 Strumienie danych 13
14 Źródła danych 0 Firmy 0 WWW 0 Sieci społecznościowe 0 Aukcje internetowe 0 Fora internetowe 0 Czujniki urządzeń, pomieszczeń, itp. 0 Komunikacja miejska 14
15 Gdzie można przechowywać dane? 15
16 Ogólny podział metod eksploracja danych 0 Nienadzorowane Dane Algorytm Grupy, reguły, wzorce 0 Nadzorowane Dane treningowe Algorytm Model Dane Model Klasy 16
17 Przykładowe metody eksploracji danych 0 Odkrywanie reguł asocjacyjnych 0 Grupowanie 0 Klasyfikacja 17
18 Odkrywanie reguł asocjacyjnych 0 Nienadzorowane 0 Odkrywanie zależności pomiędzy atrybutami 0 Market Basket Analysis 0 hello, world 0 Jakie inne produkty kupują osoby, które mają w koszyku piwo? 18
19 Odkrywanie reguł asocjacyjnych 0 Postać reguł X Y 0 Ocena jakości reguł 0 Wsparcie: 0 Ufność: sup(x) = transakcje zawierające X wszystkie transakcje sup (X Y) conf(r) = sup (X) 19
20 Grupowanie Łączenie obiektów w grupy w taki sposób, aby obiekty wewnątrz grup miały jak największe podobieństwo, a obiekty z różnych grup jak najbardziej się od siebie różniły. 20
21 Grupowanie przykład 21
22 Grupowanie przykład 22
23 Grupowanie przykład P1 P2 P3 P4 P P P P P1, P2 P1, P2 P3 P4-1 0 P3 1-2 P P1, P2 P3, P4 P1, P2 P3, P P1,P2 P3,P4 D(a) 2 0 D(b) 2 0 D(c) 1 0 D(d) 1 2 D(e) 0 2
24 Klasyfikacja 0 Nadzorowane 0 Identyfikacja klasy, do której należy obiekt 0 Udzielić kredytu, czy nie? 24
25 Klasyfikacja przykład 0 Jakiej muzyki powinienem teraz posłuchać: rocka czy klasycznej? Godzina Samochód Słuchawki Utwór 8:00 Tak Nie Bonamassa Happier Times 7:30 Nie Tak Timmons Electric Gypsy 14:00 Nie Tak Dvorak 9th Symphony 18:00 Tak Nie Beck Seasons 23:00 Nie Tak Mahler 2nd Symphony 24:00 Nie Tak Beethoven 5th Symphony 25
26 Klasyfikacja przykład 0 Jakiej muzyki powinienem teraz posłuchać: rocka czy klasycznej? Godzina Samochód Słuchawki Utwór Gatunek 8:00 Tak Nie Bonamassa Happier Times Rock 7:30 Nie Tak Timmons Electric Gypsy Rock 14:00 Nie Tak Dvorak 9th Symphony Klasyczna 18:00 Tak Nie Beck Seasons Rock 23:00 Nie Tak Mahler 2nd Symphony Klasyczna 24:00 Nie Tak Beethoven 5th Symphony Klasyczna 26
27 Klasyfikacja przykład 0 Jakiej muzyki powinienem teraz posłuchać: rocka czy klasycznej? Godzina Samochód Słuchawki Gatunek 8:00 Tak Nie Rock 7:30 Nie Tak Rock 14:00 Nie Tak Klasyczna 18:00 Tak Nie Rock 23:00 Nie Tak Klasyczna 24:00 Nie Tak Klasyczna 27
28 Klasyfikacja przykład 0 Jakiej muzyki powinienem teraz posłuchać: rocka czy klasycznej? Godzina Godzina Samochód Gatunek 8:00 Tak Rock 7:30 Nie Rock 14:00 Nie Klasyczna 18:00 Tak Rock 23:00 Nie Klasyczna 24:00 Nie Klasyczna Przed 8 Po 8 Rock 28
29 Klasyfikacja przykład 0 Jakiej muzyki powinienem teraz posłuchać: rocka czy klasycznej? Godzina Godzina Samochód Gatunek 8:00 Tak Rock 7:30 Nie Rock 18:00 Tak Rock 14:00 Nie Klasyczna 23:00 Nie Klasyczna 24:00 Nie Klasyczna Przed 8 Po 8 Rock Samochód Tak Nie Rock Klasyczna 29
30 Klasyfikacja przykład 0 Jakiej muzyki powinienem teraz posłuchać: rocka czy klasycznej? Godzina Przed 8 Po 8 Rock Samochód Tak Nie Rock Klasyczna 30
31 Podejście do prawdziwych problemów 31
32 Podejście do prawdziwych problemów 32
33 Podejście do prawdziwych problemów 33
34 Podejście do prawdziwych problemów 34
35 Wiedza dziedzinowa 0 Oczywiste zależności 0 Dobór parametrów 0 Czego właściwie szukać 35
36 Inne zagadnienia 0 Preprocessing 0 Reprezentacja 0 Wartości odstające 0 Ocena jakości 0 Wizualizacja: auty_of_data_visualization.html 36
37 Przyszłość 37
38 Big Data 38
39 Big Data 39
40 Big Data milionów $ zainwestowane przez rząd USA 0 3xV 0 Volume 0 Velocity 0 Variety 40
41 Big Data 0 YouTube 0 Godzina filmów/sekundę filmów udostępnionych na Twittera/minutę 0 Facebook milionów zdjęć/dzień 0 2,7 miliarda lajków/dzień 41
42 Big Data : 295 EB : 800 EB 0 2,5 EB/dzień 0 90% - ostatnie 2 lata 0 10% - dane ustrukturalizowane : 35 ZB 42
43 Ile to jest 35 ZB? 43
44 44
45 45
46 46
47 47
48 48
49 Podsumowanie 0 Wieloetapowy proces pozwalający pozyskać wiedzę z danych 0 Bardzo wiele zastosowań 0 Bardzo wiele metod (reguły asocjacyjne, grupowanie, klasyfikacja) 0 Niezbędna jest wiedza dziedzinowa 0 Wyzwanie na teraz oraz na przyszłość Big Data 49
50 Dziękuję za uwagę
Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych. Data Mining Wykład 2
Data Mining Wykład 2 Odkrywanie asocjacji Plan wykładu Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych Geneza problemu Geneza problemu odkrywania reguł
Bardziej szczegółowoData Mining Wykład 1. Wprowadzenie do Eksploracji Danych. Prowadzący. Dr inż. Jacek Lewandowski
Data Mining Wykład 1 Wprowadzenie do Eksploracji Danych Prowadzący Dr inż. Jacek Lewandowski Katedra Genetyki Wydział Biologii i Hodowli Zwierząt Uniwersytet Przyrodniczy we Wrocławiu ul. Kożuchowska 7,
Bardziej szczegółowoAnaliza danych i data mining.
Analiza danych i data mining. mgr Katarzyna Racka Wykładowca WNEI PWSZ w Płocku Przedsiębiorczy student 2016 15 XI 2016 r. Cel warsztatu Przekazanie wiedzy na temat: analizy i zarządzania danymi (data
Bardziej szczegółowoBig Data MATERIAŁY DYDAKTYCZNE I SZKOLENIOWE NA STUDIA PODYPLOMOWE ORAZ NA SZKOLENIA DYSTRYBUOWANE SĄ BEZPŁATNIE. Agenda
Big Data str. 1 Agenda 1. Co to jest Big Data? 2. Źródła Big Data 3. Model 3V 4. Typy Big Data 5. Big Data w biznesie 6. Platforma IBM Big Data 1 Co oznacza Big Data? Zbiór danych tak duży, że jego przetwarzanie
Bardziej szczegółowoHurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu
i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2007 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę
Bardziej szczegółowo1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie
Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty
Bardziej szczegółowoHurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu
i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2012 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę
Bardziej szczegółowoInformacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów
Eksploracja danych Piotr Lipiński Informacje ogólne Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów UWAGA: prezentacja to nie
Bardziej szczegółowodata mining machine learning data science
data mining machine learning data science deep learning, AI, statistics, IoT, operations research, applied mathematics KISIM, WIMiIP, AGH 1 Machine Learning / Data mining / Data science Uczenie maszynowe
Bardziej szczegółowoSystemy Wspomagania Decyzji
Reguły Asocjacyjne Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności March 18, 2014 1 Wprowadzenie 2 Definicja 3 Szukanie reguł asocjacyjnych 4 Przykłady użycia 5 Podsumowanie Problem Lista
Bardziej szczegółowoINDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH
INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH 1. Czym jest eksploracja danych Eksploracja danych definiowana jest jako zbiór technik odkrywania nietrywialnych zależności i schematów w dużych
Bardziej szczegółowoOdkrywanie asocjacji
Odkrywanie asocjacji Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Odkrywanie asocjacji wykład 1 Wykład jest poświęcony wprowadzeniu i zaznajomieniu się z problemem odkrywania reguł asocjacyjnych.
Bardziej szczegółowoEwelina Dziura Krzysztof Maryański
Ewelina Dziura Krzysztof Maryański 1. Wstęp - eksploracja danych 2. Proces Eksploracji danych 3. Reguły asocjacyjne budowa, zastosowanie, pozyskiwanie 4. Algorytm Apriori i jego modyfikacje 5. Przykład
Bardziej szczegółowoWSTĘP I TAKSONOMIA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING WSTĘP I TAKSONOMIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra
Bardziej szczegółowoSystemy uczące się wykład 1
Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej
Bardziej szczegółowoProces odkrywania wiedzy z baz danych
Proces odkrywania wiedzy z baz danych Wydział Informatyki Politechnika Białostocka Marcin Czajkowski email: m.czajkowski@pb.edu.pl Świat pełen danych Świat pełen danych Możliwości analizowania i zrozumienia
Bardziej szczegółowoMetadane. Data Maining. - wykład VII. Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006
Metadane. Data Maining. - wykład VII Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Plan 1. Metadane 2. Jakość danych 3. Eksploracja danych (Data mining) 4. Sprawy róŝne
Bardziej szczegółowoZalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel
według przewidywań internetowego magazynu ZDNET News z 8 lutego 2001 roku eksploracja danych (ang. data mining ) będzie jednym z najbardziej rewolucyjnych osiągnięć następnej dekady. Rzeczywiście MIT Technology
Bardziej szczegółowoJak Big Data rewolucjonizuje naukę oraz współpracę centrów badawczych z biznesem?
Jak Big Data rewolucjonizuje naukę oraz współpracę centrów badawczych z biznesem? dr Łukasz Bolikowski ICM, Uniwersytet Warszawski Big Data Summit, 26 listopada 2014 Czwarty paradygmat Cztery paradygmaty
Bardziej szczegółowoEksploracja danych - wykład VIII
I Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska 2 grudnia 2016 1/31 1 2 2/31 (ang. affinity analysis) polega na badaniu atrybutów lub cech, które są ze sobą powiązane. Metody
Bardziej szczegółowoMetody Inżynierii Wiedzy
Metody Inżynierii Wiedzy Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Science and Technology Mateusz Burcon Kraków, czerwiec 2017 Wykorzystane technologie Python 3.4
Bardziej szczegółowoEksploracja danych (data mining)
Eksploracja (data mining) Tadeusz Pankowski www.put.poznan.pl/~pankowsk Czym jest eksploracja? Eksploracja oznacza wydobywanie wiedzy z dużych zbiorów. Eksploracja badanie, przeszukiwanie; np. dziewiczych
Bardziej szczegółowoĆwiczenie 5. Metody eksploracji danych
Ćwiczenie 5. Metody eksploracji danych Reguły asocjacyjne (association rules) Badaniem atrybutów lub cech, które są powiązane ze sobą, zajmuje się analiza podobieństw (ang. affinity analysis). Metody analizy
Bardziej szczegółowoTechniki i algorytmy eksploracji danych. Geneza (1) Geneza (2)
Techniki i algorytmy eksploracji danych Tadeusz Morzy Instytut Informatyki Politechnika Poznańska str. 1 Geneza (1) Dostępność danych Rozwój nowoczesnych technologii przechowywania i przetwarzania danych
Bardziej szczegółowoPODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
Bardziej szczegółowodr inż. Olga Siedlecka-Lamch 14 listopada 2011 roku Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Eksploracja danych
- Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska 14 listopada 2011 roku 1 - - 2 3 4 5 - The purpose of computing is insight, not numbers Richard Hamming Motywacja - Mamy informację,
Bardziej szczegółowoData mininig i wielowymiarowa analiza danych zgromadzonych w systemach medycznych na potrzeby badań naukowych
Temat: Data mininig i wielowymiarowa analiza danych zgromadzonych w systemach medycznych na potrzeby badań naukowych Autorzy: Tomasz Małyszko, Edyta Łukasik 1. Definicja eksploracji danych Eksploracja
Bardziej szczegółowoSylabus modułu kształcenia na studiach wyższych. Nazwa Wydziału. Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia.
Załącznik nr 4 do zarządzenia nr 12 Rektora UJ z 15 lutego 2012 r. Sylabus modułu kształcenia na studiach wyższych Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Wydział Matematyki
Bardziej szczegółowoKrzysztof Kawa. empolis arvato. e mail: krzysztof.kawa@empolis.com
XI Konferencja PLOUG Kościelisko Październik 2005 Zastosowanie reguł asocjacyjnych, pakietu Oracle Data Mining for Java do analizy koszyka zakupów w aplikacjach e-commerce. Integracja ze środowiskiem Oracle
Bardziej szczegółowoKARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Metody drążenia danych D1.3
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
Bardziej szczegółowoMetody eksploracji danych. Reguły asocjacyjne
Metody eksploracji danych Reguły asocjacyjne Analiza podobieństw i koszyka sklepowego Analiza podobieństw jest badaniem atrybutów lub cech, które są powiązane ze sobą. Metody analizy podobieństw, znane
Bardziej szczegółowoHurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie
Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2008 Zagadnienia do omówienia 1. 2. Przegląd architektury HD 3. Warsztaty
Bardziej szczegółowoWprowadzenie do Hurtowni Danych
Wprowadzenie do Hurtowni Danych BIG DATA Definicja Big Data Big Data definiowane jest jako składowanie zbiorów danych o tak dużej złożoności i ilości danych, że jest to niemożliwe przy zastosowaniu podejścia
Bardziej szczegółowoSylabus. Zaawansowana analiza danych eksperymentalnych Advanced analysis of experimental data
Sylabus Nazwa przedmiotu (w j. polskim i angielskim) Nazwisko i imię prowadzącego (stopień i tytuł naukowy) Zaawansowana analiza danych eksperymentalnych Advanced analysis of experimental data dr Veslava
Bardziej szczegółowoData Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu
Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu
Bardziej szczegółowoInternet wszechrzeczy W KIERUNKU REALLY BIG DATA
Internet wszechrzeczy W KIERUNKU REALLY BIG DATA Czym jest Sieć? Internet of things Internet of everything Kwestie fundamentalne Które z poniższych rozumieć jako treści: Dane Informacje Wiedza Treści w
Bardziej szczegółowoMETODY INŻYNIERII WIEDZY ASOCJACYJNA REPREZENTACJA POWIĄZANYCH TABEL I WNIOSKOWANIE IGOR CZAJKOWSKI
METODY INŻYNIERII WIEDZY ASOCJACYJNA REPREZENTACJA POWIĄZANYCH TABEL I WNIOSKOWANIE IGOR CZAJKOWSKI CELE PROJEKTU Transformacja dowolnej bazy danych w min. 3 postaci normalnej do postaci Asocjacyjnej Grafowej
Bardziej szczegółowoAnaliza i wizualizacja danych Data analysis and visualization
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Bardziej szczegółowoWprowadzenie do technologii informacyjnej.
Wprowadzenie do technologii informacyjnej. Data mining i jego biznesowe zastosowania dr Tomasz Jach Definicje Eksploracja danych polega na torturowaniu danych tak długo, aż zaczną zeznawać. Eksploracja
Bardziej szczegółowoInżynieria Wiedzy i Systemy Ekspertowe. Reguły asocjacyjne
Inżynieria Wiedzy i Systemy Ekspertowe Reguły asocjacyjne Dr inż. Michał Bereta p. 144 / 10, Instytut Modelowania Komputerowego mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Reguły
Bardziej szczegółowoReguły decyzyjne, algorytm AQ i CN2. Reguły asocjacyjne, algorytm Apriori.
Analiza danych Reguły decyzyjne, algorytm AQ i CN2. Reguły asocjacyjne, algorytm Apriori. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ REGUŁY DECYZYJNE Metoda reprezentacji wiedzy (modelowania
Bardziej szczegółowoCo to jest Business Intelligence?
Cykl: Cykl: Czwartki z Business Intelligence Sesja: Co Co to jest Business Intelligence? Bartłomiej Graczyk 2010-05-06 1 Prelegenci cyklu... mariusz@ssas.pl lukasz@ssas.pl grzegorz@ssas.pl bartek@ssas.pl
Bardziej szczegółowoZAGADNIENIA DO EGZAMINU DYPLOMOWEGO NA STUDIACH INŻYNIERSKICH. Matematyka dyskretna, algorytmy i struktury danych, sztuczna inteligencja
Kierunek Informatyka Rok akademicki 2016/2017 Wydział Matematyczno-Przyrodniczy Uniwersytet Rzeszowski ZAGADNIENIA DO EGZAMINU DYPLOMOWEGO NA STUDIACH INŻYNIERSKICH Technika cyfrowa i architektura komputerów
Bardziej szczegółowo"Zapisane w genach, czyli Python a tajemnice naszego genomu."
"Zapisane w genach, czyli Python a tajemnice naszego genomu." Dr Kaja Milanowska Instytut Biologii Molekularnej i Biotechnologii UAM VitaInSilica sp. z o.o. Warszawa, 9 lutego 2015 Dane biomedyczne 1)
Bardziej szczegółowoHurtownie danych. Analiza zachowań użytkownika w Internecie. Ewa Kowalczuk, Piotr Śniegowski. Informatyka Wydział Informatyki Politechnika Poznańska
Hurtownie danych Analiza zachowań użytkownika w Internecie Ewa Kowalczuk, Piotr Śniegowski Informatyka Wydział Informatyki Politechnika Poznańska 2 czerwca 2011 Wprowadzenie Jak zwiększyć zysk sklepu internetowego?
Bardziej szczegółowoPython : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop Spis treści
Python : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop. 2017 Spis treści O autorach 9 0 recenzencie 10 Wprowadzenie 11 Rozdział 1. Pierwsze kroki 15 Wprowadzenie do nauki o danych
Bardziej szczegółowoPersonalizowane rekomendacje w e-commerce, czyli jak skutecznie zwiększyć przychody w sklepie on-line
Personalizowane rekomendacje w e-commerce, czyli jak skutecznie zwiększyć przychody w sklepie on-line Paweł Wyborski - Agenda Kim jesteśmy Czym są personalizowane rekomendacje Jak powstają rekomendacje,
Bardziej szczegółowoĆwiczenia z Zaawansowanych Systemów Baz Danych
Ćwiczenia z Zaawansowanych Systemów Baz Danych Hurtownie danych Zad 1. Projekt schematu hurtowni danych W źródłach danych dostępne są następujące informacje dotyczące operacji bankowych: Klienci banku
Bardziej szczegółowoWidzenie komputerowe (computer vision)
Widzenie komputerowe (computer vision) dr inż. Marcin Wilczewski 2018/2019 Organizacja zajęć Tematyka wykładu Cele Python jako narzędzie uczenia maszynowego i widzenia komputerowego. Binaryzacja i segmentacja
Bardziej szczegółowoEksploracja Danych. podstawy
Eksploracja Danych podstawy Bazy danych (1) Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 2/633 Bazy danych (2) Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 3/633
Bardziej szczegółowoData Mining Kopalnie Wiedzy
Data Mining Kopalnie Wiedzy Janusz z Będzina Instytut Informatyki i Nauki o Materiałach Sosnowiec, 30 listopada 2006 Kopalnie złota XIX Wiek. Odkrycie pokładów złota spowodowało napływ poszukiwaczy. Przeczesywali
Bardziej szczegółowow ekonomii, finansach i towaroznawstwie
w ekonomii, finansach i towaroznawstwie spotykane określenia: zgłębianie danych, eksploracyjna analiza danych, przekopywanie danych, męczenie danych proces wykrywania zależności w zbiorach danych poprzez
Bardziej szczegółowoMeta-uczenie co to jest?
Meta-uczenie co to jest? Uczenie się tego jak się uczyć Uwolnienie się od uciażliwego doboru MODELU i PAREMETRÓW modelu. Bachotek05/1 Cele meta-uczenia Pełna ale kryterialna automatyzacja modelowania danych
Bardziej szczegółowoReguły asocjacyjne. Żródło: LaroseD.T., Discovering Knowledge in Data. An Introduction to Data Minig, John Wiley& Sons, Hoboken, New Jersey, 2005.
Reguły asocjacyjne Żródło: LaroseD.T., Discovering Knowledge in Data. An Introduction to Data Minig, John Wiley& Sons, Hoboken, New Jersey, 2005. Stragan warzywny -transakcje zakupów Transakcja Produkty
Bardziej szczegółowoSAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006
SAS wybrane elementy DATA MINING Część III Seweryn Kowalski 2006 Algorytmy eksploracji danych Algorytm eksploracji danych jest dobrze zdefiniowaną procedurą, która na wejściu otrzymuje dane, a na wyjściu
Bardziej szczegółowoHurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie
Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2012 Zagadnienia do omówienia 1. Miejsce i rola w firmie 2. Przegląd architektury
Bardziej szczegółowoIntegracja technik eksploracji danych ]V\VWHPHP]DU]G]DQLDED]GDQ\FK QDSU]\NáDG]LH2UDFOHi Data Mining
Integracja technik eksploracji danych ]V\VWHPHP]DU]G]DQLDED]GDQ\FK QDSU]\NáDG]LH2UDFOHi Data Mining 0LNRáDM0RU]\ Marek Wojciechowski Instytut Informatyki PP Eksploracja danych 2GNU\ZDQLHZ]RUFyZZGX*\FK
Bardziej szczegółowoLEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów
LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów Łukasz Piątek, Jerzy W. Grzymała-Busse Katedra Systemów Ekspertowych i Sztucznej Inteligencji, Wydział Informatyki
Bardziej szczegółowoScoring w oparciu o Big Data. 8 kwietnia 2014 roku
Scoring w oparciu o Big Data 8 kwietnia 2014 roku Od początków ludzkości do roku 2003 wygenerowano 5 eksabajtów informacji tyle samo ludzkość generuje dziś co dwa dni. - Eric Schmidt, Google CEO 2 Dlaczego
Bardziej szczegółowoOrganizacyjnie. Prowadzący: dr Mariusz Rafało (hasło: BIG)
Big Data Organizacyjnie Prowadzący: dr Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl (hasło: BIG) Zaliczenie: Praca na zajęciach Egzamin Projekt/esej zaliczeniowy Plan zajęć # TEMATYKA ZAJĘĆ
Bardziej szczegółowoEksploracja Danych. Wprowadzenie. Co to jest eksploracja danych? Metody Zastosowania. Eksploracja danych. Wprowadzenie
Eksploracja Danych Wprowadzenie Co to jest eksploracja danych? Metody Zastosowania Wprowadzenie Celem wykładu jest wprowadzenie do tematyki eksploracji danych. Odpowiemy sobie na pytanie Czym jest eksploracja
Bardziej szczegółowoAnalityka danych publicznych dla diagnoz i prognoz dotyczących osób niepełnosprawnych
XI Konferencja Naukowa Bezpieczeostwo w Internecie. Analityka danych Analityka danych publicznych dla diagnoz i prognoz dotyczących osób niepełnosprawnych Ewa Marzec UKSW Uwagi historyczne Rosnące rozmiary
Bardziej szczegółowoWprowadzenie do multimedialnych baz danych. Opracował: dr inż. Piotr Suchomski
Wprowadzenie do multimedialnych baz danych Opracował: dr inż. Piotr Suchomski Wprowadzenie bazy danych Multimedialne bazy danych to takie bazy danych, w których danymi mogą być tekst, zdjęcia, grafika,
Bardziej szczegółowoOpis efektów kształcenia dla modułu zajęć
Nazwa modułu: Eksploracja danych Rok akademicki: 2030/2031 Kod: MIS-2-105-MT-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Informatyka Stosowana Specjalność: Modelowanie
Bardziej szczegółowo4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74
3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15
Bardziej szczegółowoHurtownia danych praktyczne zastosowania
Hurtownia danych praktyczne zastosowania Dorota Olkowicz dorota.olkowicz@its.waw.pl Centrum Bezpieczeństwa Ruchu Drogowego ITS Plan prezentacji 1. Hurtownie danych 2. Hurtownia danych POBR 3. Narzędzia
Bardziej szczegółowoWykaz tematów prac magisterskich w roku akademickim 2018/2019 kierunek: informatyka
Wykaz tematów prac magisterskich w roku akademickim 2018/2019 kierunek: informatyka L.p. Nazwisko i imię studenta Promotor Temat pracy magisterskiej 1. Wojciech Kłopocki dr Bartosz Ziemkiewicz Automatyczne
Bardziej szczegółowoIndeksy w bazach danych. Motywacje. Techniki indeksowania w eksploracji danych. Plan prezentacji. Dotychczasowe prace badawcze skupiały się na
Techniki indeksowania w eksploracji danych Maciej Zakrzewicz Instytut Informatyki Politechnika Poznańska Plan prezentacji Zastosowania indeksów w systemach baz danych Wprowadzenie do metod eksploracji
Bardziej szczegółowoPattern Classification
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors
Bardziej szczegółowoAsocjacyjna reprezentacja danych i wnioskowanie
Asocjacyjna reprezentacja danych i wnioskowanie Wykorzystane technologie JetBrains PyCharm 504 Python 35 Struktura drzewa GRAPH PARAM PARAM ID1 ID2 ID_N params params params param_name_1: param_value_1
Bardziej szczegółowoAlgorytmy i bazy danych (wykład obowiązkowy dla wszystkich)
MATEMATYKA I EKONOMIA PROGRAM STUDIÓW DLA II STOPNIA Data: 2010-11-07 Opracowali: Krzysztof Rykaczewski Paweł Umiński Streszczenie: Poniższe opracowanie przedstawia projekt planu studiów II stopnia na
Bardziej szczegółowoOd Expert Data Scientist do Citizen Data Scientist, czyli jak w praktyce korzystać z zaawansowanej analizy danych
Od Expert Data Scientist do Citizen Data Scientist, czyli jak w praktyce korzystać z zaawansowanej analizy danych Tomasz Demski StatSoft Polska www.statsoft.pl Analiza danych Zaawansowana analityka, data
Bardziej szczegółowoImplementacja metod eksploracji danych - Oracle Data Mining
Implementacja metod eksploracji danych - Oracle Data Mining 395 Plan rozdziału 396 Wprowadzenie do eksploracji danych Architektura Oracle Data Mining Możliwości Oracle Data Mining Etapy procesu eksploracji
Bardziej szczegółowoIBM Streams MATERIAŁY DYDAKTYCZNE I SZKOLENIOWE NA STUDIA PODYPLOMOWE ORAZ NA SZKOLENIA DYSTRYBUOWANE SĄ BEZPŁATNIE
IBM Streams str. 1 Kiedy przetwarzanie strumieniowe jest przydatne gracz na giełdzie kupuje akcje, które po kilku chwilach gwałtownie tanieją, kasyno, nieświadomie, jednocześnie gościu kilku graczy, którzy
Bardziej szczegółowoReguły asocjacyjne, wykł. 11
Reguły asocjacyjne, wykł. 11 Joanna Jędrzejowicz Instytut Informatyki Przykłady reguł Analiza koszyka sklepowego (ang. market basket analysis) - jakie towary kupowane są razem, Jakie towary sprzedają się
Bardziej szczegółowoWYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU
WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim: Eksploracja Danych Nazwa w języku angielskim: Data Mining Kierunek studiów (jeśli dotyczy): MATEMATYKA I STATYSTYKA Stopień studiów i forma:
Bardziej szczegółowoStatSoft profesjonalny partner w zakresie analizy danych
Analiza danych Data mining Sterowanie jakością Analityka przez Internet StatSoft profesjonalny partner w zakresie analizy danych StatSoft Polska Sp. z o.o. StatSoft Polska Sp. z o.o. ul. Kraszewskiego
Bardziej szczegółowoPrezentacja specjalności studiów II stopnia. Inteligentne Technologie Internetowe
Prezentacja specjalności studiów II stopnia Inteligentne Technologie Internetowe Koordynator specjalności Prof. dr hab. Jarosław Stepaniuk Tematyka studiów Internet jako zbiór informacji Przetwarzanie:
Bardziej szczegółowoSzczegółowy opis przedmiotu zamówienia
ZP/ITS/19/2013 SIWZ Załącznik nr 1.1 do Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych dla studentów
Bardziej szczegółowoSkoordynowanie i integracja dotychczasowych systemów wykorzystywanych przez placówki ochrony zdrowia z nowo tworzonymi systemami informatycznymi
Skoordynowanie i integracja dotychczasowych systemów wykorzystywanych przez placówki ochrony zdrowia z nowo tworzonymi systemami informatycznymi Kajetan Wojsyk Z-ca Dyrektora ds. Europejskich Centrum Systemów
Bardziej szczegółowoZastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia
Bardziej szczegółowoEksploracja danych TADEUSZ MORZY
NAUKA 3/2007 83-104 TADEUSZ MORZY Eksploracja danych Intensywny rozwój technologii generowania, gromadzenia i przetwarzania danych z jednej strony, z drugiej, upowszechnienie systemów informatycznych,
Bardziej szczegółowoAnaliza internetowa czyli Internet jako hurtownia danych
Analiza internetowa czyli Internet jako hurtownia danych Agenda 1. Hurtownie danych, eksploracja danych i OLAP 3. Internet 5. Analiza Internetowa 7. Google Analytics 9. Podsumowanie Hurtownie danych (definicja)
Bardziej szczegółowoEksploracja logów procesów. Process mining
Eksploracja logów procesów Process mining Eksploracja logów procesów Celem eksploracji logów procesów biznesowych jest: Odkrywanie modelu procesów biznesowych Analiza procesów biznesowych Ulepszanie procesów
Bardziej szczegółowoPodstawy sztucznej inteligencji
wykład 7 Eksploracja danych 09 stycznia 2013 Plan wykładu Co to jest eksploracja danych? 1 Co to jest eksploracja danych? 2 3 Definicja Eksploracja danych ED (Data mining) Metody wydobywania ukrytych informacji
Bardziej szczegółowoSecurity Master Class
Security Master Class Platforma kompleksowej analizy zdarzeń Linux Polska SIEM Radosław Żak-Brodalko Senior Solutions Architect Linux Polska sp. z o.o. Podstawowe problemy Jak pokryć lukę między technicznym
Bardziej szczegółowoSzybkość instynktu i rozsądek rozumu$
Szybkość instynktu i rozsądek rozumu$ zastosowania rozwiązań BigData$ Bartosz Dudziński" Architekt IT! Już nie tylko dokumenty Ilość Szybkość Różnorodność 12 terabajtów milionów Tweet-ów tworzonych codziennie
Bardziej szczegółowoMETODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. EKSPLORACJA DANYCH Ćwiczenia. Adrian Horzyk. Akademia Górniczo-Hutnicza
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING EKSPLORACJA DANYCH Ćwiczenia Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Bardziej szczegółowoOdkrywanie wiedzy. Marcin Szeląg Zakład ISWD, Instytut Informatyki, Politechnika Poznańska
Odkrywanie wiedzy Marcin Szeląg Zakład ISWD, Instytut Informatyki, Politechnika Poznańska 7.10.2015 1 Plan prezentacji 1 Informacje organizacyjne 2 Zakres tematyczny przedmiotu 3 Wprowadzenie do Odkrywania
Bardziej szczegółowoIndeksy w hurtowniach danych
Indeksy w hurtowniach danych Hurtownie danych 2011 Łukasz Idkowiak Tomasz Kamiński Bibliografia Zbyszko Królikowski, Hurtownie danych. Logiczne i fizyczne struktury danych, Wydawnictwo Politechniki Poznańskiej,
Bardziej szczegółowoSztuczna inteligencja i uczenie maszynowe w robotyce i systemach autonomicznych: AI/ML w robotyce, robotyka w AI/ML
Sztuczna inteligencja i uczenie maszynowe w robotyce i systemach autonomicznych: AI/ML w robotyce, robotyka w AI/ML Piotr Skrzypczyński Instytut Automatyki, Robotyki i Inżynierii Informatycznej, Politechnika
Bardziej szczegółowoBazy danych na co dzień
Rozwój i doskonalenie kształcenia na Politechnice Poznaoskiej w zakresie technologii informatycznych i ich zastosowao w przemyśle Bazy danych na co dzień Robert Wrembel Wydział Informatyki Politechnika
Bardziej szczegółowoInżynieria biomedyczna
Inżynieria biomedyczna Projekt Przygotowanie i realizacja kierunku inżynieria biomedyczna studia międzywydziałowe współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.
Bardziej szczegółowoCO MOZ NA WYCISNA C Z SAMOOBSŁUGI CZYLI SPRZEDAZ W KANAŁACH SELF CARE? Bartosz Szkudlarek
CO MOZ NA WYCISNA C Z SAMOOBSŁUGI CZYLI SPRZEDAZ W KANAŁACH SELF CARE? Bartosz Szkudlarek Self Care, Big Data i sprzedaż 2 Czym jest Self Care? Aplikacja Self Care pozwala użytkownikom na obsługę swojego
Bardziej szczegółowoMulti-wyszukiwarki. Mediacyjne Systemy Zapytań wprowadzenie. Architektury i technologie integracji danych Systemy Mediacyjne
Architektury i technologie integracji danych Systemy Mediacyjne Multi-wyszukiwarki Wprowadzenie do Mediacyjnych Systemów Zapytań (MQS) Architektura MQS Cechy funkcjonalne MQS Cechy implementacyjne MQS
Bardziej szczegółowoSłowem wstępu. Część rodziny języków XSL. Standard: W3C XSLT razem XPath 1.0 XSLT Trwają prace nad XSLT 3.0
Słowem wstępu Część rodziny języków XSL Standard: W3C XSLT 1.0-1999 razem XPath 1.0 XSLT 2.0-2007 Trwają prace nad XSLT 3.0 Problem Zakładane przez XML usunięcie danych dotyczących prezentacji pociąga
Bardziej szczegółowoAnkieta. Informacje o uczestniku. Imię i nazwisko: Stanowisko : Warsztat Innowacyjne metody dydaktyczne (np. learning by doing, design thinking)
Szanowni Państwo, w związku z uruchomieniem szkoleń w ramach projektu Rozwój kompetencji kadry akademickiej Wyższej Szkoły Menedżerskiej zwracamy się z prośbą o wypełnienie niniejszej ankiety. Ankieta
Bardziej szczegółowoJAKOŚĆ DANYCH Z PERSPEKTYWY SYSTEMÓW WSPOMAGANIA DECYZJI KLINICZNYCH. Dr hab. inż. Szymon Wilk Politechnika Poznańska Instytut Informatyki
JAKOŚĆ DANYCH Z PERSPEKTYWY SYSTEMÓW WSPOMAGANIA DECYZJI KLINICZNYCH Dr hab. inż. Szymon Wilk Politechnika Poznańska Instytut Informatyki Warszawa, 28.11.2011 Konferencja ekspercka dotycząca e-zdrowia
Bardziej szczegółowo