Model procesu dydaktycznego
|
|
- Łucja Morawska
- 9 lat temu
- Przeglądów:
Transkrypt
1 Model procesu dydaktycznego w zakresie Business Intelligence Zenon Gniazdowski 1,2), Andrzej Ptasznik 1) 1) Warszawska Wyższa Szkoła Informatyki, ul. Lewartowskiego 17, Warszawa 2) Instytut Technologii Elektronowej, Al. Lotników 32/46, Warszawa
2 Plan: Model procesu dydaktycznego w zakresie Business Intelligence Problemy w nauczaniu Eksploracji Danych Co to jest Business Intelligence Miejsce Eksploracji Danych w BI, co to jest Eksploracja Danych Cel nauczania Eksploracji Danych w ramach BI Nieufność jako cel? Przykłady» Kwartet Anscomba przykład teoretyczny» Wnioski z pewnych badań przykład realny Problem komunikacji między uczestnikami procesu BI
3 Polskie tłumaczenie Analityka biznesowa, Analiza biznesowa, Wywiad gospodarczy?»jeśli rzecz dotyczy firmy obcej, to czemu by nie?
4 Treść Business Intelligence można przedstawić jako proces przekształcania danych w informacje, a informacji w wiedzę, która może być wykorzystana do zwiększenia konkurencyjności przedsiębiorstwa 3). 3)
5 Miejsce Eksploracji Danych w BI 4) Wiedza pozyskiwana w procesie BI jest zorientowana na końcowego użytkownika (np. właściciela firmy, analityka opracowujący informacje, itp..) Źródłem informacji będących podstawą wiedzy w procesie BI jest Eksploracja Danych (DM). Eksploracja danych jest technologią informatyczną, będącą połączeniem m.in. statystyki oraz technologii baz danych, itp..» Przez odpowiednie algorytmy pozwala wykrywać ukryte wzorce i zależności. Informacje Eksploracja danych (DM) Dane Baza (hurtownia) danych Wiedza Business Intelligence (BI) 4) R. Łukawiecki. Wstęp do eksploracji danych. Project Botticelli Ltd.
6 Cel nauczania Eksploracji Danych w kontekście procesu Business intelligence: Umiejętność korzystania z metod i narzędzi Eksploracji Danych Umiejętność interpretacji otrzymywanych rezultatów Nieufność względem otrzymanych wyników
7 Niezbędne podstawy matematyczne Np.. Matematyka dyskretna Pojęcie relacji jako podzbioru iloczynu kartezjańskiego leży u podstaw relacyjnych baz danych Typ relacji konstytuuje rodzaj skali pomiarowej Rodzaj skali determinuje metody analizy danych Mocniejsza skala często prostsze metody statystyczne Słabsza skala metody trudniejsze» Różne skale różne typy danych różne metody
8 Niezbędne podstawy matematyczne Matematyka dyskretna Typ relacji konstytuuje rodzaj skali pomiarowej Relacja równoważności definiuje skalę nominalną (dane skategoryzowane) Dwa elementy w zbiorze danych są równe, albo różne, należą (bądź nie należą) do wspólnej klasy abstrakcji. Między danymi nie ma mowy o relacji większe lub mniejsze
9 Niezbędne podstawy matematyczne Matematyka dyskretna Typ relacji konstytuuje rodzaj skali pomiarowej Relacja równoważności definiuje skalę nominalną (dane skategoryzowane) Dane można przydzielać do różnych klas, badać asocjacje pomiędzy klasami itp.. W najprostszym przypadku, do badania zależności pomiędzy klasami równoważności można stosować test Chi kwadrat. Przykład:» Czy zachodzi związek pomiędzy klasą kabiny na którą miał bilet pasażer Titanica, a przeżyciem przezeń katastrofy
10 Niezbędne podstawy matematyczne Matematyka dyskretna Typ relacji konstytuuje rodzaj skali pomiarowej Relacja porządku częściowego definiuje skalę porządkową W ramach pewnych podzbiorów można dane porównywać w sensie relacji > lub < Do badania związków można stosować silniejsze testy niż w przypadku danych skategoryzowanych (nominalnych)
11 Niezbędne podstawy matematyczne Matematyka dyskretna Typ relacji konstytuuje rodzaj skali pomiarowej Relacja porządku liniowego zachodzi dla danych mierzonych w skalach interwałowej lub ilorazowej. Tutaj każde dwa elementy można porównywać w sensie relacji >, >= <, <= Na danych można wykonywać operacje + lub - (dla skali ilorazowej także * lub / )» Stosowane metody mogą być bardzo silne można badać poziom zależności korelacyjnych, budować analityczne modele związków pomiędzy zmiennymi
12 Niezbędne podstawy matematyczne Np. Rachunek prawdopodobieństwa i statystyka matematyczna Fundamentalne jest pojęcie prawdopodobieństwa Brak świadomości, że pewne zjawiska mają charakter zjawisk losowych Stąd mogą istnieć trudności natury psychologicznej
13 Niezbędne podstawy matematyczne Np. Rachunek prawdopodobieństwa i statystyka matematyczna Ważne jest rozróżnianie pomiędzy zależnością przyczynową i korelacyjną. Przykład: Zależność pomiędzy liczbą bocianów, a liczbą urodzeń w Sztokholmie w XIX w. : Dla 73 lat obserwacji uzyskano współczynnik korelacji R>0.9
14 Niezbędne podstawy matematyczne Rachunek prawdopodobieństwa i statystyka matematyczna Problemem jest wnioskowanie statystyczne logika testów statystycznych np. odrzucanie hipotezy zerowej» itp.
15 Cel nauczania Eksploracji Danych cd.: Do tej pory była mowa o osiąganiu celów w aspekcie pozytywnym, czyli: Co zrobić, aby cel osiągnąć? Teraz o pożądanej nieufności względem otrzymanych wyników Czy nieufność może być celem? Na potwierdzenie przykład teoretyczny:» kwartet Anscomba
16 .V..X.
17 k
18
19
20
21 Cel nauczania Eksploracji Danych cd.: Pierwszy wniosek: Wobec uzyskanych wyników trzeba co najmniej nabrać dystansu. W pokazanym przykładzie nieufność byłaby uzasadniona Dlatego właśnie, celem kształcenia w dziedzinie eksploracji danych powinno być także wpojenie szczypty nieufności!
22 Cel nauczania Eksploracji Danych cd.: Czego nie robić, aby nie osiągnąć celu niepożądanego (z punktu widzenia zleceniodawcy analizy) Przykład mało efektowny, ale realny
23 Kontekst: badania naukowe w pewnej instytucji (pierwsza połowa lat dziewięćdziesiątych XX wieku) Pytania medyczne Związki statystyczne prawie się nie ujawniały Pytania socjologiczne Zapewne mniej istotne z punktu widzenia medycznego
24
25
26 Problem komunikacji Specjalista od eksploracji danych pracuje na rzecz końcowego odbiorcy informacji Jeżeli ten odbiorca nie jest specjalistą od DM, może się okazać, że obydwaj posługują się innym językiem. Przykład: Zleceniodawca (lekarz) zażyczył sobie analizy czynnikowej Wykonawca zrozumiał, że ma rozwiązać problem znany jako przekleństwo wielowymiarowości
27 Problem komunikacji Wykonawca napisał program do analizy czynnikowej. W tym celu musiał zaimplementować złożony algorytm rozwiązujący symetryczny problem własny Odbiorca z uporem twierdził, że to nie jest analiza czynnikowa
28 Problem komunikacji Po kilku bezowocnych spotkaniach do rozmów zaproszono matematyka, który przez lata współpracował z lekarzami Okazało się, że odbiorca analiz potrzebował Okazało się, że odbiorca analiz potrzebował rozwiązać problem powtarzalnych pomiarów
29 Podsumowanie Problemy pozytywne: Co robić? Nie unikać studiowania matematyki Problemy negatywne Jak nie postępować, albo czego nie robić? Nie wyciągać pochopnych wniosków Nie badać tego, o co nas nie proszą?
30 Podsumowanie Na koniec dobra rada: Jeżeli przypuszczasz, że Zleceniodawca wyników analiz może mówić językiem innym niż Ty, postaraj się zaprosić do rozmowy z Nim kogoś kto zna zarówno język Zleceniodawcy, jak i język DM
zna metody matematyczne w zakresie niezbędnym do formalnego i ilościowego opisu, zrozumienia i modelowania problemów z różnych
Grupa efektów kierunkowych: Matematyka stosowana I stopnia - profil praktyczny (od 17 października 2014) Matematyka Stosowana I stopień spec. Matematyka nowoczesnych technologii stacjonarne 2015/2016Z
S YLABUS MODUŁU (PRZEDMIOTU) I nformacje ogólne. Nie dotyczy
S YLABUS MODUŁU (PRZEDMIOTU) I nformacje ogólne Nazwa modułu: Moduł B - Statystyka z elementami matematyki Rodzaj modułu/przedmiotu Wydział PUM Kierunek studiów Specjalność Poziom studiów Forma studiów
Opis zakładanych efektów kształcenia na studiach podyplomowych WIEDZA
Opis zakładanych efektów kształcenia na studiach podyplomowych Nazwa studiów: BIOSTATYSTYKA PRAKTYCZNE ASPEKTY STATYSTYKI W BADANIACH MEDYCZNYCH Typ studiów: doskonalące Symbol Efekty kształcenia dla studiów
KIERUNKOWE EFEKTY KSZTAŁCENIA
KIERUNKOWE EFEKTY KSZTAŁCENIA Wydział: Matematyki Kierunek studiów: Matematyka i Statystyka (MiS) Studia w j. polskim Stopień studiów: Pierwszy (1) Profil: Ogólnoakademicki (A) Umiejscowienie kierunku
kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2
kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2 Kierunek Turystyka i Rekreacja Poziom kształcenia II stopień Rok/Semestr 1/2 Typ przedmiotu (obowiązkowy/fakultatywny) obowiązkowy y/ ćwiczenia
Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych. Informatics systems for the statistical treatment of data Kierunek:
Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych I KARTA PRZEDMIOTU CEL PRZEDMIOTU Informatics systems for the statistical treatment of data Kierunek: Forma studiów Informatyka Stacjonarne
Rok akademicki: 2012/2013 Kod: JFM s Punkty ECTS: 3. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Statystyka inżynierska Rok akademicki: 2012/2013 Kod: JFM-1-210-s Punkty ECTS: 3 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Medyczna Specjalność: Poziom studiów: Studia I stopnia
EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6
EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6 studia pierwszego stopnia o profilu ogólnoakademickim Symbol K_W01 Po ukończeniu studiów pierwszego stopnia
WYKAZ KIERUNKOWYCH EFEKTÓW KSZTAŁCENIA KIERUNEK: MATEMATYKA, SPS WIEDZA
WYKAZ KIERUNKOWYCH EFEKTÓW KSZTAŁCENIA KIERUNEK: MATEMATYKA, SPS Symbol kierunkowego efektu kształcenia Efekty kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA K1_W01 K1_W02
PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE
UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561
Opis przedmiotu: Probabilistyka I
Opis : Probabilistyka I Kod Nazwa Wersja TR.SIK303 Probabilistyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka prowadząca
Statystyka SYLABUS A. Informacje ogólne
Statystyka SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Dziedzina
KARTA KURSU. Kod Punktacja ECTS* 1
KARTA KURSU Nazwa Nazwa w j. ang. Wprowadzenie do statystyki Introduction to statistics Kod Punktacja ECTS* 1 Koordynator Prof. dr hab. Jerzy Wołek Zespół dydaktyczny Prof. dr hab. Jerzy Wołek doktoranci
Odniesienie symbol I [1] [2] [3] [4] [5] Efekt kształcenia
Efekty dla studiów pierwszego stopnia profil ogólnoakademicki, prowadzonych na kierunku Matematyka, na Wydziale Matematyki i Nauk Informacyjnych Użyte w poniższej tabeli: 1) w kolumnie 4 określenie Odniesienie
dr Jerzy Pusz, st. wykładowca, Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu
Kod przedmiotu TR.SIK303 Nazwa przedmiotu Probabilistyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne
S YLABUS MODUŁU (PRZEDMIOTU) I nformacje ogólne
Załącznik Nr 3 do Uchwały Senatu PUM 14/2012 S YLABUS MODUŁU (PRZEDMIOTU) I nformacje ogólne Kod modułu Rodzaj modułu Wydział PUM Kierunek studiów Nazwa modułu Statystyka z elementami matematyki Obowiązkowy
STATYSTYKA MATEMATYCZNA
Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA MATEMATYCZNA Nazwa w języku angielskim Mathematical Statistics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli
Wydział Matematyki. Testy zgodności. Wykład 03
Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy
Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań
TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: POZIOM KSZTAŁCENIA: PROFIL KSZTAŁCENIA:
Opis przedmiotu. Karta przedmiotu - Probabilistyka I Katalog ECTS Politechniki Warszawskiej
Kod przedmiotu TR.NIK304 Nazwa przedmiotu Probabilistyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne
01, 02, 03 i kolejne numer efektu kształcenia. Załącznik 1 i 2
Efekty kształcenia dla kierunku studiów Studia Przyrodnicze i Technologiczne (z językiem wykładowym angielskim) - studia I stopnia, stacjonarne, profil ogólnoakademicki - i ich odniesienia do efektów kształcenia
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
WYDZIAŁ GEOINŻYNIERII, GÓRNICTWA I GEOLOGII KARTA PRZEDMIOTU Nazwa w języku polskim: Statystyka matematyczna Nazwa w języku angielskim: Mathematical Statistics Kierunek studiów (jeśli dotyczy): Górnictwo
Uczelnia Łazarskiego Wydział Medyczny Kierunek Lekarski
Uczelnia Łazarskiego Wydział Medyczny Kierunek Lekarski Nazwa przedmiotu INFORMATYKA I BIOSTATYSTYKA Kod przedmiotu WL_ 10 Poziom studiów Jednolite studia magisterskie Status przedmiotu x podstawowy uzupełniający
WPŁYW TECHNOLOGII INFORMACYJNYCH NA POZIOM KSZTAŁCENIA STUDENTÓW KIERUNKU INFORMATYKA
Michał Krupski WPŁYW TECHNOLOGII INFORMACYJNYCH NA POZIOM KSZTAŁCENIA STUDENTÓW KIERUNKU INFORMATYKA Prezentacja dysertacji doktorskiej przygotowanej pod kierunkiem dr hab. inż. prof. Społecznej Akademii
Kierunek i poziom studiów: matematyka, studia I stopnia, rok I. Sylabus modułu: Wstęp do matematyki (03-MO1S-12-WMat)
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: matematyka, studia I stopnia, rok I Sylabus modułu: Wstęp do matematyki (03-MO1S-12-WMat) 1. Informacje ogólne koordynator modułu Tomasz
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 0/03 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:
Spis treści. Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów. Wstęp Wprowadzenie...
Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów Wstęp... 13 1. Wprowadzenie... 19 1.1. Statystyka opisowa.................................. 21 1.2. Wnioskowanie
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Z-LOG-033I Statystyka Statistics
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Z-LOG-033I Statystyka Statistics Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Z-0033z Statystyka. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki. Stacjonarne Wszystkie Katedra Matematyki dr Zdzisław Piasta
KARTA MODUŁU / KARTA PRZEDMIOTU Z-0033z Statystyka Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Statistics Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Metodologia badań psychologicznych
Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Psychologia jako nauka empiryczna Wprowadzenie pojęć Wykład 5 Cele badań naukowych 1. Opis- (funkcja deskryptywna) procedura definiowania
15. PODSUMOWANIE ZAJĘĆ
15. PODSUMOWANIE ZAJĘĆ Efekty kształcenia: wiedza, umiejętności, kompetencje społeczne Przedmiotowe efekty kształcenia Pytania i zagadnienia egzaminacyjne EFEKTY KSZTAŁCENIA WIEDZA Wykazuje się gruntowną
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
KARTA PRZEDMIOTU. Techniki przetwarzania sygnałów, D1_3
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
STUDIA PODYPLOMOWE. Zastosowania informatyki w finansach i rachunkowości. Podstawa prawna
STUDIA PODYPLOMOWE Zastosowania informatyki w finansach i rachunkowości Rodzaj studiów: doskonalące Liczba godzin: 340 Liczba semestrów: dwa semestry Kierownik studiów: dr Aleksandra Tomaszewska Koszt
studia stacjonarne w/ćw zajęcia zorganizowane: 30/15 3,0 praca własna studenta: 55 Godziny kontaktowe z nauczycielem akademickim: udział w wykładach
Nazwa jednostki prowadzącej kierunek: Nazwa kierunku: Poziom kształcenia: Profil kształcenia: Moduły wprowadzające / wymagania wstępne: Nazwa modułu (przedmiot lub grupa przedmiotów) Osoby prowadzące:
WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO
Zał. nr 4 do ZW WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA STOSOWANA Nazwa w języku angielskim APPLIED STATISTICS Kierunek studiów (jeśli dotyczy): Specjalność
12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych
(pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: Rachunek prawdopodobieństwa i statystyka matematyczna 2. Kod przedmiotu: RPiS 3. Karta przedmiotu ważna od roku akademickiego:
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 30 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Tomasz Kuszewski Poziom studiów (I lub II stopnia): I stopnia
Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku
Przykład 2 Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Sondaż sieciowy analiza wyników badania sondażowego dotyczącego motywacji w drodze do sukcesu Cel badania: uzyskanie
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres
Analiza współzależności zjawisk. dr Marta Kuc-Czarnecka
Analiza współzależności zjawisk dr Marta Kuc-Czarnecka Wprowadzenie Prawidłowości statystyczne mają swoje przyczyny, w związku z tym dla poznania całokształtu badanego zjawiska potrzebna jest analiza z
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 Regresja wielokrotna Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X 1, X 2, X 3,...) na zmienną zależną (Y).
Efekty kształcenia dla kierunku studiów CHEMIA studia pierwszego stopnia profil ogólnoakademicki
Załącznik nr 1 Efekty kształcenia dla kierunku studiów CHEMIA studia pierwszego stopnia profil ogólnoakademicki Umiejscowienie kierunku w obszarze kształcenia Kierunek studiów chemia należy do obszaru
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL
Z-ZIPN1-004 Statystyka. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki Niestacjonarne Wszystkie Katedra Matematyki dr Zdzisław Piasta
KARTA MODUŁU / KARTA PRZEDMIOTU Z-ZIPN-004 Statystyka Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Statistics Obowiązuje od roku akademickiego 0/04 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
166 Wstęp do statystyki matematycznej
166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej
Z-LOGN1-006 Statystyka Statistics
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Z-LOGN-006 Statystyka Statistics Obowiązuje od roku akademickiego 0/0 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek
Rok akademicki: 2030/2031 Kod: ZZP MK-n Punkty ECTS: 3. Poziom studiów: Studia II stopnia Forma i tryb studiów: Niestacjonarne
Nazwa modułu: Komputerowe wspomaganie decyzji Rok akademicki: 2030/2031 Kod: ZZP-2-403-MK-n Punkty ECTS: 3 Wydział: Zarządzania Kierunek: Zarządzanie Specjalność: Marketing Poziom studiów: Studia II stopnia
Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu
i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2007 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę
KARTA PRZEDMIOTU / SYLABUS
Załącznik nr 5b do Uchwały nr 21/2013 Senatu KARTA PRZEDMIOTU / SYLABUS Wydział Nauk o Zdrowiu Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna
KARTA KURSU. Probability theory
KARTA KURSU Nazwa Nazwa w j. ang. Rachunek prawdopodobieństwa Probability theory Kod Punktacja ECTS* 4 Koordynator Dr Ireneusz Krech Zespół dydaktyczny Dr Ireneusz Krech Dr Robert Pluta Opis kursu (cele
EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW NAUCZANIE MATEMATYKI I INFORMATYKI
EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW NAUCZANIE MATEMATYKI I INFORMATYKI poziom kształcenia profil kształcenia tytuł zawodowy uzyskiwany przez absolwenta studia drugiego stopnia ogólnoakademicki magister
Zadanie 1. Za pomocą analizy rzetelności skali i wspólczynnika Alfa- Cronbacha ustalić, czy pytania ankiety stanowią jednorodny zbiór.
L a b o r a t o r i u m S P S S S t r o n a 1 W zbiorze Pytania zamieszczono odpowiedzi 25 opiekunów dzieci w wieku 8. lat na następujące pytania 1 : P1. Dziecko nie reaguje na bieżące uwagi opiekuna gdy
KIERUNKOWE EFEKTY KSZTAŁCENIA
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA I STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA NAUK TECHNICZNYCH Dyscyplina
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Odniesienie do efektów kształcenia dla obszaru nauk EFEKTY KSZTAŁCENIA Symbol
KIERUNKOWE EFEKTY KSZTAŁCENIA Wydział Informatyki i Zarządzania Kierunek studiów INFORMATYKA (INF) Stopień studiów - pierwszy Profil studiów - ogólnoakademicki Projekt v1.0 z 18.02.2015 Odniesienie do
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: przedmiot obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU
Własności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
MATEMATYKA3 Mathematics3. Elektrotechnika. I stopień ogólnoakademicki. studia stacjonarne. Katedra Matematyki dr Zdzisław Piasta
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 MATEMATYKA3 Mathematics3 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek
KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4
KARTA KURSU (do zastosowania w roku ak. 2015/16) Nazwa Statystyka 1 Nazwa w j. ang. Statistics 1 Kod Punktacja ECTS* 4 Koordynator Dr hab. Tadeusz Sozański (koordynator, wykłady) Dr Paweł Walawender (ćwiczenia)
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Podstawy fizyki: Budowa materii. Podstawy fizyki: Mechanika MS. Podstawy fizyki: Mechanika MT. Podstawy astronomii. Analiza matematyczna I, II MT
Zajęcia wyrównawcze z matematyki Zajęcia wyrównawcze z fizyki Analiza matematyczna I, II MS Analiza matematyczna I, II MT Podstawy fizyki: Budowa materii Podstawy fizyki: Mechanika MS Podstawy fizyki:
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów
PROGRAM KSZTAŁCENIA NA KIERUNKU STUDIÓW WYŻSZYCH
Załącznik nr 1 do Zarządzenia Rektora nr 1/01 z 11 stycznia 01 r. PROGRAM KSZTAŁCENIA NA KIERUNKU STUDIÓW WYŻSZYCH NAZWA WYDZIAŁU: Zarządzania i Ekonomii NAZWA KIERUNKU: Informatyka i Ekonometria POZIOM
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Wprowadzenie do analizy danych Rok akademicki: 2012/2013 Kod: IET-2-303-SU-s Punkty ECTS: 2 Wydział: Informatyki, Elektroniki i Telekomunikacji Kierunek: Elektronika i Telekomunikacja Specjalność:
Podsumowanie wyników ankiety
SPRAWOZDANIE Kierunkowego Zespołu ds. Programów Kształcenia dla kierunku Informatyka dotyczące ankiet samooceny osiągnięcia przez absolwentów kierunkowych efektów kształcenia po ukończeniu studiów w roku
Kierunkowe efekty kształcenia (wiedza, umiejętności, kompetencje) Kierunek Informatyka
Załącznik 2 Opis kierunkowych efektów kształcenia w odniesieniu do efektów w obszarze kształcenia nauk ścisłych profil ogólnoakademicki Kierunek informatyka, I stopień tryb stacjonarny. Oznaczenia efektów
Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Tomasz Kuszewski Poziom studiów (I lub II stopnia): II stopnia
EFEKTY KSZTAŁCENIA NA STUDIACH PODYPLOMOWYCH NAUCZANIE PRZYRODY W SZKOLE PODSTAWOWEJ
EFEKTY KSZTAŁCENIA NA STUDIACH PODYPLOMOWYCH NAUCZANIE PRZYRODY W SZKOLE PODSTAWOWEJ 1. Umiejscowienie studiów w obszarze nauki Studia podyplomowe, realizowane są jako kierunek kształcenia obejmujący wybrane
EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW NAUCZANIE MATEMATYKI I INFORMATYKI
EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW NAUCZANIE MATEMATYKI I INFORMATYKI poziom kształcenia profil kształcenia tytuł zawodowy uzyskiwany przez absolwenta studia pierwszego stopnia ogólnoakademicki licencjat
zna podstawową terminologię w języku obcym umożliwiającą komunikację w środowisku zawodowym
Wykaz kierunkowych efektów kształcenia PROGRAM KSZTAŁCENIA: Kierunek Edukacja techniczno-informatyczna POZIOM KSZTAŁCENIA: studia pierwszego stopnia PROFIL KSZTAŁCENIA: praktyczny Przyporządkowanie kierunku
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
ANALITYKA GOSPODARCZA, STUDIA MAGISTERSKIE WIEDZA
ANALITYKA GOSPODARCZA, STUDIA MAGISTERSKIE WIEDZA Ma rozszerzoną wiedzę o charakterze nauk ekonomicznych oraz ich miejscu w AG2_W01 systemie nauk społecznych i w relacjach do innych nauk. AG2_W02 Ma rozszerzoną
Uniwersytet Śląski w Katowicach str. 1 Wydział Informatyki i Nauki o Materiałach
Uniwersytet Śląski w Katowicach str. 1 Efekty dla: nazwa kierunku poziom profil Informatyka inżynierska pierwszy ogólnoakademicki Kod efektu (kierunek) K_1_A_I_W01 K_1_A_I_W02 K_1_A_I_W03 K_1_A_I_W04 K_1_A_I_W05
KARTA PRZEDMIOTU / SYLABUS. Zakład Statystyki i Informatyki Medycznej. tel./fax (85) dr Robert Milewski
Załącznik nr 5b do Uchwały nr 21/2013 Senatu KARTA PRZEDMIOTU / SYLABUS Wydział Nauk o Zdrowiu Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna
Wykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
1.1.1 Statystyka matematyczna i badania operacyjne
1.1.1 Statystyka matematyczna i badania operacyjne I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE (MODULE) Kod przedmiotu: STATYSTYKA MATEMATYCZNA I BADANIA OPERACYJNE P5 Wydział Zamiejscowy w Ostrowie
Karta modułu/przedmiotu
Karta modułu/przedmiotu Informacje ogólne o module/przedmiocie 2. Poziom kształcenia: jednolite studia magisterskie 1. Kierunek studiów: farmacja 3. Forma studiów: stacjonarne i niestacjonarne 4. Rok:
HURTOWNIE DANYCH I BUSINESS INTELLIGENCE
BAZY DANYCH HURTOWNIE DANYCH I BUSINESS INTELLIGENCE Akademia Górniczo-Hutnicza w Krakowie Adrian Horzyk horzyk@agh.edu.pl Google: Horzyk HURTOWNIE DANYCH Hurtownia danych (Data Warehouse) to najczęściej
Inżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 STATYSTYKA
Testowanie hipotez statystycznych
round Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 13 grudnia 2014 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Efekty kształcenia dla kierunku studiów INFORMATYKA, Absolwent studiów I stopnia kierunku Informatyka WIEDZA
Symbol Efekty kształcenia dla kierunku studiów INFORMATYKA, specjalność: 1) Sieciowe systemy informatyczne. 2) Bazy danych Absolwent studiów I stopnia kierunku Informatyka WIEDZA Ma wiedzę z matematyki
Matryca efektów kształcenia zorientowana kierunkowo - Załącznik nr 3a
Matryca efektów kształcenia zorientowana kierunkowo - Załącznik nr 3a * moduł, przedmiot lub forma zajęć do wyboru Lp. Moduł kształcenia / Przedmiot Ogólna liczba efektów dla przedmiotu K_W0 K_W02 K_W03
ZAŁĄCZNIK NR 2 Uchwała Rady Wydziału Elektrotechniki i Informatyki Politechniki Lubelskiej z dnia 3 czerwca 2013 r
ZAŁĄCZNIK NR 2 Uchwała Rady Wydziału Elektrotechniki i Informatyki Politechniki Lubelskiej z dnia 3 czerwca 2013 r w sprawie przyjęcia Efektów kształcenia dla studiów III stopnia w dyscyplinie elektrotechnika
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/201 WydziałPsychologii i Nauk Humanistycznych Kierunek studiów:
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NYSIE
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NYSIE Efekty uczenia się Kierunek Informatyka Studia pierwszego stopnia Profil praktyczny Umiejscowienie kierunku informatyka w obszarze kształcenia: Obszar wiedzy: nauki
laboratoria 24 zaliczenie z oceną
Wydział: Psychologia Nazwa kierunku kształcenia: Psychologia Rodzaj przedmiotu: podstawowy Opiekun: dr Andrzej Tarłowski Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb studiów: Niestacjonarne
OCENA KIERUNKOWYCH EFEKTÓW KSZTAŁCENIA
OCENA KIERUNKOWYCH EFEKTÓW KSZTAŁCENIA Podstawowe informacje Kierunek studiów / Poziom kształcenia Profil kształcenia / Forma studiów Obszar kształcenia Dziedzina nauki Dyscyplina naukowa logistyka/studia
PROGRAM KSZTAŁCENIA NA STUDIACH III STOPNIA Informatyka (nazwa kierunku)
PROGRAM KSZTAŁCENIA NA STUDIACH III STOPNIA Informatyka (nazwa kierunku) 1. OPIS ZAKŁADANYCH EFEKTÓW KSZTAŁCENIA: 1) Tabela odniesień kierunkowych efektów kształcenia (EKK) do obszarowych efektów kształcenia
Wykład Ćwiczenia Laboratorium Projekt Seminarium 30
Zał. nr 4 do ZW WYDZIAŁ CHEMICZNY KARTA PRZEDMIOTU Nazwa w języku polskim Wstęp do statystyki praktycznej Nazwa w języku angielskim Intriduction to the Practice of Statistics Kierunek studiów (jeśli dotyczy):
Załącznik do Uchwały Nr XXXVIII/326/11/12. Wydział: AUTOMATYKI, ELEKTRONIKI I INFORMATYKI WIEDZA
Efekty kształcenia dla kierunku: INFORMATYKA Wydział: AUTOMATYKI, ELEKTRONIKI I INFORMATYKI nazwa kierunku studiów: Informatyka poziom kształcenia: studia I stopnia profil kształcenia: ogólnoakademicki
Doświadczalnictwo leśne. Wydział Leśny SGGW Studia II stopnia
Doświadczalnictwo leśne Wydział Leśny SGGW Studia II stopnia Treści i efekty kształcenia Treści: Statystyka matematyczna, planowanie eksperymentu Efekty kształcenia: student potrafi opisywać zjawiska za
PRZEDMIOTOWE OCENIANIE Z MATEMATYKI
PRZEDMIOTOWE OCENIANIE Z MATEMATYKI Przedmiotowe ocenianie z matematyki jest zgodne z Rozporządzeniem Ministra Edukacji Narodowej z dnia 10 czerwca 2015r. w sprawach oceniania, klasyfikowania, promowania
KARTA PRZEDMIOTU / SYLABUS Wydział Nauk o Zdrowiu Zdrowie Publiczne ogólnoakademicki praktyczny inny jaki. Zakład Statystyki i Informatyki Medycznej
Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna za przedmiot: Osoba(y) prowadząca(e) Przedmioty wprowadzające wraz z wymaganiami wstępnymi
KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Algebra liniowa (ALL010) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Algebra liniowa (ALL010) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1 5. LICZBA PUNKTÓW ECTS: 8 6. LICZBA GODZIN: 30 / 30 7. TYP
Sylabus. Zaawansowana analiza danych eksperymentalnych (Advanced statistical analysis of experimental data)
Sylabus Nazwa przedmiotu (w j. polskim i angielskim) Nazwisko i imię prowadzącego (stopień i tytuł naukowy) Rok i semestr studiów Zaawansowana analiza danych eksperymentalnych (Advanced statistical analysis
1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2018 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Statystyka w badaniach medycznych Kod przedmiotu/ modułu* Wydział (nazwa