Hurtownia danych praktyczne zastosowania
|
|
- Danuta Wasilewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Hurtownia danych praktyczne zastosowania Dorota Olkowicz Centrum Bezpieczeństwa Ruchu Drogowego ITS
2 Plan prezentacji 1. Hurtownie danych 2. Hurtownia danych POBR 3. Narzędzia do analizy danych 4. Wizualizacja danych 5. Podsumowanie 2
3 Hurtownie
4 ... danych 4
5 Hurtownie danych Hurtownia danych rodzaj bazy danych, która jest zorganizowana i zoptymalizowana pod kątem pewnego wycinka rzeczywistości. To bazy danych integrujące dane z wielu źródeł, integracja polega na cyklicznym zasilaniu hurtowni danymi. Architektura bazy jest zorientowana na optymalizację szybkości wyszukiwania i najefektywniejszą analizę zawartości. Użytkownicy końcowi korzystają z hurtowni poprzez różne systemy wyszukiwania danych. 5
6 Hurtownie danych Cele: przetwarzanie analityczne wspomaganie analiz archiwizacja danych analiza efektywności inne uzależnione od specyfiki biznesu... Zalety: agregacja danych możliwość eksploracji danych w myśl zasady "od ogółu do szczegółu" (poziomy agregacji danych) analizy przekrojowe z pełnego zakresu danych jednorodność danych 6
7 Hurtownie danych - architektura Źródła danych Obszar przejściowy dane pobrane z systemów źródłowych są oczyszczane i dostosowane do wymagań hurtowni danych. Warstwa ta nie jest dostępna dla użytkowników końcowych hurtowni danych; należą do niej narzędzia ETL (ang. Extract, Transform and Load). Warstwa metadanych metadane biznesowe: tabele wymiarów i faktów, agregaty metadane techniczne: mapowania i transformacje danych do systemu docelowego Warstwa prezentacji dostępna dla użytkowników końcowych w postaci raportów i analiz. 7
8 Hurtownia danych POBR Hurtownia danych POBR baza danych zorganizowana i zoptymalizowana pod kątem bezpieczeństwa ruchu drogowego. Baza POBR integruje dane z wielu źródeł, obecnie są to: SEWiK, CEPiK, GUS, GPR. Integracja polega na cyklicznym zasilaniu hurtowni danymi. Użytkownicy końcowi mogą korzystać z hurtowni m.in. poprzez stronę internetową i udostępnioną mapę interaktywną oraz publikowane raporty. 8
9 Hurtownia danych POBR SEWiK Raporty CEPiK GPR Procesy ETL Hurtownia danych Mapy Wykresy GUS Tabele 9
10 Hurtownia danych POBR Czas zdarzenia Typ zdarzenia Rodzaj pojazdu Rodzaj uczestnika Miejsce zdarzenia Warunki atmosferyczne 10
11 Narzędzia do analizy danych 11
12 Wizualizacja danych Rok Liczba ofiar śmiertelnych Liczba ciężko rannych Wskaźnik ofiar śmiertelnych na mln mk Wskaźnik ciężko rannych na mln mk ,52 384, ,48 421, ,57 420, ,79 358, ,30 300, ,70 326, ,67 312, Liczba ofiar śmiertelnych Ofiary śmiertelne Lubuskie Rok 12
13 Wizualizacja danych 13
14 Dla kogo? www. franchisetips.com.au 14
15 Po co? 15
16 Gdzie? 16
17 Podsumowanie Hurtownia danych POBR stanowi rozbudowaną bazę danych, przechowującą olbrzymią ilość danych zbieranych na przestrzeni ponad 20 lat. Ze względu na ilość i tematykę danych przeprowadzane analizy mogą polegać na szukaniu trendów, zależności, wzorców, itp. Przeprowadzane na hurtowni wyszukiwania mają najczęściej charakter wielowymiarowy nie ograniczają się do jednej tabeli. Dane w hurtowni są centralnie przechowywane, tematycznie spójne (dotyczą problemu brd) oraz zintegrowane. Dostęp do danych możemy uzyskać poprzez stronę oraz w siedzibie obserwatorium. 17
18 Dziękuję za uwagę
CELE I ZAKRES DZIAŁALNOŚCI
CELE I ZAKRES DZIAŁALNOŚCI Anna Zielińska anna.zielinska@its.waw.pl Dorota Olkowicz dorota.olkowicz@its.waw.pl Centrum Bezpieczeństwa Ruchu Drogowego ITS Plan prezentacji 1. Cele i zadania POBR 2. Zakres
Bardziej szczegółowoHURTOWNIE DANYCH I BUSINESS INTELLIGENCE
BAZY DANYCH HURTOWNIE DANYCH I BUSINESS INTELLIGENCE Akademia Górniczo-Hutnicza w Krakowie Adrian Horzyk horzyk@agh.edu.pl Google: Horzyk HURTOWNIE DANYCH Hurtownia danych (Data Warehouse) to najczęściej
Bardziej szczegółowoWprowadzenie do Hurtowni Danych. Mariusz Rafało
Wprowadzenie do Hurtowni Danych Mariusz Rafało mariusz.rafalo@hotmail.com WPROWADZENIE DO HURTOWNI DANYCH Co to jest hurtownia danych? Hurtownia danych jest zbiorem danych zorientowanych tematycznie, zintegrowanych,
Bardziej szczegółowoPolskie Obserwatorium BRD w kontekście raportu Najwyższej Izby Kontroli. Marcin Ślęzak Maria Dąbrowska-Loranc Instytut Transportu Samochodowego
Polskie Obserwatorium BRD w kontekście raportu Najwyższej Izby Kontroli Marcin Ślęzak Maria Dąbrowska-Loranc Instytut Transportu Samochodowego Informacja o wynikach kontroli FUNKCJONOWANIE SYSTEMU GROMADZENIA
Bardziej szczegółowoPODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
Bardziej szczegółowoAnaliza internetowa czyli Internet jako hurtownia danych
Analiza internetowa czyli Internet jako hurtownia danych Agenda 1. Hurtownie danych, eksploracja danych i OLAP 3. Internet 5. Analiza Internetowa 7. Google Analytics 9. Podsumowanie Hurtownie danych (definicja)
Bardziej szczegółowoHurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie
Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2012 Zagadnienia do omówienia 1. Miejsce i rola w firmie 2. Przegląd architektury
Bardziej szczegółowomin 5mm Anna Zielińska Instytut Transportu Samochodowego Centrum Bezpieczeństwa Ruchu Drogowego
min 5mm POLSKIE OBSERWATORIUM BEZPIECZEŃSTWA RUCHU DROGOWEGO (POBR) Anna Zielińska Instytut Transportu Samochodowego Centrum Bezpieczeństwa Ruchu Drogowego ITS 28 maja 2011 r. SKUTECZNE DZIAŁANIA W BRD
Bardziej szczegółowoWprowadzenie do Hurtowni Danych. Mariusz Rafało
Wprowadzenie do Hurtowni Danych Mariusz Rafało mrafalo@sgh.waw.pl WARSTWA PREZENTACJI HURTOWNI DANYCH Wykorzystanie hurtowni danych - aspekty Analityczne zbiory danych (ADS) Zbiór danych tematycznych (Data
Bardziej szczegółowoAnalityka danych w środowisku Hadoop. Piotr Czarnas, 27 czerwca 2017
Analityka danych w środowisku Hadoop Piotr Czarnas, 27 czerwca 2017 Hadoop i Business Intelligence - wyzwania 1 Ładowane danych do Hadoop-a jest trudne 2 Niewielu specjalistów dostępnych na rynku Dostęp
Bardziej szczegółowoAnalityka danych w środowisku Hadoop. Piotr Czarnas, 5 czerwca 2017
Analityka danych w środowisku Hadoop Piotr Czarnas, 5 czerwca 2017 Pytania stawiane przez biznes 1 Jaka jest aktualnie sytuacja w firmie? 2 Na czym jeszcze możemy zarobić? Które procesy możemy usprawnić?
Bardziej szczegółowoCOMARCH DATA WAREHOUSE MANAGER 6.2
COMARCH DATA WAREHOUSE MANAGER 6.2 WSTĘP DO ZAGADNIENIA HURTOWNI DANYCH Gromadzenie danych biznesowych z systemów rozproszonych, oraz doprowadzenie do ich uwspólnienia, w celu przeprowadzenia analiz oraz
Bardziej szczegółowoHurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie
Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2008 Zagadnienia do omówienia 1. 2. Przegląd architektury HD 3. Warsztaty
Bardziej szczegółowoHurtownie danych. Rola hurtowni danych w systemach typu Business Intelligence
Hurtownie danych Rola hurtowni danych w systemach typu Business Intelligence Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika
Bardziej szczegółowoHurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu
i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2007 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę
Bardziej szczegółowoCo to jest Business Intelligence?
Cykl: Cykl: Czwartki z Business Intelligence Sesja: Co Co to jest Business Intelligence? Bartłomiej Graczyk 2010-05-06 1 Prelegenci cyklu... mariusz@ssas.pl lukasz@ssas.pl grzegorz@ssas.pl bartek@ssas.pl
Bardziej szczegółowoHurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH
Wstęp. Architektura hurtowni. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH B. Inmon, 1996: Hurtownia to zbiór zintegrowanych, nieulotnych, ukierunkowanych
Bardziej szczegółowoBazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych
Plan wykładu Bazy Wykład 14: Hurtownie Bazy operacyjne i analityczne Architektura hurtowni Projektowanie hurtowni Małgorzata Krętowska, Agnieszka Oniśko Wydział Informatyki PB Bazy (studia dzienne) 2 Rodzaje
Bardziej szczegółowoHurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykładów Wprowadzenie - integracja
Bardziej szczegółowoHurtownie danych - przegląd technologii
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykład adów Wprowadzenie - integracja
Bardziej szczegółowo1. Ewolucja systemów opartych na bazach danych 2. Czym się rożni modelowanie od strukturalizacji danych? Model danych Struktury (danych)
1. Ewolucja systemów opartych na bazach danych Początki to np. ręczne spisy danych na papirusie w Egipcie. Ręczne zapisywanie danych trwało aż do końca XIX wieku. W XIX wieku stworzone zostały urządzenia,
Bardziej szczegółowoHurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu
i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2012 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę
Bardziej szczegółowoRola analityki danych w transformacji cyfrowej firmy
Rola analityki danych w transformacji cyfrowej firmy Piotr Czarnas Querona CEO Analityka biznesowa (ang. Business Intelligence) Proces przekształcania danych w informacje, a informacji w wiedzę, która
Bardziej szczegółowoSpis tre±ci. Przedmowa... Cz ± I
Przedmowa.................................................... i Cz ± I 1 Czym s hurtownie danych?............................... 3 1.1 Wst p.................................................. 3 1.2 Denicja
Bardziej szczegółowoEwolucja technik modelowania hurtowni danych
Baza wiedzy JPro Ewolucja technik modelowania hurtowni Porównanie technik modelowania hurtowni podsumowanie: Strona 1/6 Nazwa podejścia Corporate Information Factory Kimball Bus Architecture Data Vault
Bardziej szczegółowoWstęp do Business Intelligence
Wstęp do Business Intelligence Co to jest Buisness Intelligence Business Intelligence (analityka biznesowa) - proces przekształcania danych w informacje, a informacji w wiedzę, która może być wykorzystana
Bardziej szczegółowoWprowadzenie do technologii Business Intelligence i hurtowni danych
Wprowadzenie do technologii Business Intelligence i hurtowni danych 1 Plan rozdziału 2 Wprowadzenie do Business Intelligence Hurtownie danych Produkty Oracle dla Business Intelligence Business Intelligence
Bardziej szczegółowoOpis wymagań i program szkoleń dla użytkowników i administratorów
Załącznik nr 3 do OPZ Opis wymagań i program szkoleń dla użytkowników i administratorów Spis treści Wprowadzenie...2 1. Typ i zakres szkoleń...2 2. Grupy użytkowników...2 3. Warunki ogólne szkoleń...3
Bardziej szczegółowoMetody automatyzacji sprawozdawczości w systemie asist. Agnieszka Hołownia-Niedzielska
Metody automatyzacji sprawozdawczości w systemie asist Agnieszka Hołownia-Niedzielska Agenda 1 Dlaczego większość projektów obejmuje automatyzację zasilenia? 2 Perspektywa użytkownika końcowego 3 Źródła
Bardziej szczegółowoIntegracja systemów transakcyjnych
Integracja systemów transakcyjnych Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Problematyka i architektury integracji danych
Bardziej szczegółowoWYPADKI DROGOWE, OFIARY ŚMIERTELNE, RANNI W POLSCE
WYPADKI DROGOWE W POLSCE 1995 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 WYPADKI DROGOWE 56 904 57 331 53 799 53 559 51 078 51 069 48 100 46 876 49 536 49 054 44 196 38
Bardziej szczegółowoSPOTKANIE 15.05.2014. Opracowanie: Edyta Sobiepanek
SPOTKANIE 15.05.2014 Opracowanie: Edyta Sobiepanek Agenda W jaki sposób narzędzia BI mogą usprawnić proces badania sprawozdań finansowych w firmie? Co jest potrzebne audytorowi a denerwuje dyrektorowi
Bardziej szczegółowoBogdan Żurek, S&T Services Polska
Rozwiązania, które tworzą wartość dodaną na przykładzie projektów zrealizowanych w Komendzie Głównej Policji, Ministerstwie Środowiska oraz Ministerstwie Pracy i Polityki Społecznej Bogdan Żurek, S&T Services
Bardziej szczegółowoRegionalna Infrastruktura Informacji Przestrzennej Województwa Opolskiego bazą do współpracy w regionie.
Regionalna Infrastruktura Informacji Przestrzennej. Agnieszka Partyka Kierownik Wojewódzkiego Ośrodka Dokumentacji Geodezyjnej i Kartograficznej w Opolu Trzy główne zasady współpracy: równość partnerów
Bardziej szczegółowoAnalityka danych & big data
TomaszJangas.com Analityka danych & big data 15 października 2017 W tym artykule opiszę architekturę, jaka często wykorzystywana jest dzisiaj w środowiskach do analityki danych w wielu różnych organizacjach
Bardziej szczegółowoHURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego
HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego http://www.jakubw.pl/zajecia/hur/bi.pdf http://www.jakubw.pl/zajecia/hur/dw.pdf http://www.jakubw.pl/zajecia/hur/dm.pdf http://www.jakubw.pl/zajecia/hur/
Bardziej szczegółowoDni otwarte dla projektodawców PO KL Pomocna Dłoń Kraków, 13-15.12.2010 r.
Przygotowanie projektu gdzie znaleźć informacje o rynku pracy i edukacji? Dni otwarte dla projektodawców PO KL Pomocna Dłoń Kraków, 13-15.12.2010 r. Plan prezentacji 1. Przygotowanie projektu 2. Diagnoza
Bardziej szczegółowodr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2016/2017
dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2016/2017 KONTAKT Z PROWADZĄCYM dr inż. Paweł Morawski e-mail: pmorawski@spoleczna.pl www: http://pmorawski.spoleczna.pl
Bardziej szczegółowoPierwsze wdrożenie SAP BW w firmie
Pierwsze wdrożenie w firmie Mirosława Żurek, BCC Poznao, maj 2013 Zakres tematyczny wykładu Podstawowe założenia i pojęcia hurtowni danych ; Przykładowe pierwsze wdrożenie w firmie i jego etapy; Przykładowe
Bardziej szczegółowoSystem Informacji dla Linii Kolejowych narzędziem wspomagającym podejmowanie decyzji w PKP Polskie Linie Kolejowe S.A.
System Informacji dla Linii Kolejowych narzędziem wspomagającym podejmowanie decyzji w PKP Polskie Linie Kolejowe S.A. www.plk-sa.pl Kraków, 16 maja 2014 r. System Informacji dla Linii Kolejowych (SILK)
Bardziej szczegółowoBaza danych to zbiór wzajemnie powiązanych ze sobą i zintegrowanych danych z pewnej dziedziny.
PI-14 01/12 Baza danych to zbiór wzajemnie powiązanych ze sobą i zintegrowanych danych z pewnej dziedziny.! Likwidacja lub znaczne ograniczenie redundancji (powtarzania się) danych! Integracja danych!
Bardziej szczegółowoVI Kongres BOUG Praktyczne aspekty wykorzystania Business Intelligence w przemyśle wydobywczym węgla kamiennego
VI Kongres BOUG Praktyczne aspekty wykorzystania Business Intelligence w przemyśle wydobywczym węgla kamiennego mgr Artur Wroński mgr inż. Przemysław Kapica 25.04.2012 Agenda: Środowisko platformy BI Użytkownicy
Bardziej szczegółowoMulti-wyszukiwarki. Mediacyjne Systemy Zapytań wprowadzenie. Architektury i technologie integracji danych Systemy Mediacyjne
Architektury i technologie integracji danych Systemy Mediacyjne Multi-wyszukiwarki Wprowadzenie do Mediacyjnych Systemów Zapytań (MQS) Architektura MQS Cechy funkcjonalne MQS Cechy implementacyjne MQS
Bardziej szczegółowoBezpieczeństwo drogowe w Polsce: wyzwania i priorytety
Bezpieczeństwo drogowe w Polsce: wyzwania i priorytety OBSERWACJE I SUGESTIE BANKU ŚWIATOWEGO Radosław Czapski 1 Kontekst międzynarodowy Narastający problem globalny - rocznie ginie ok. 1,3 mln ludzi,
Bardziej szczegółowoBudowa systemu wspomagającego podejmowanie decyzji. Metodyka projektowo wdrożeniowa
Budowa systemu wspomagającego podejmowanie decyzji Metodyka projektowo wdrożeniowa Agenda Systemy wspomagające decyzje Business Intelligence (BI) Rodzaje systemów BI Korzyści z wdrożeń BI Zagrożenia dla
Bardziej szczegółowoHurtownie danych - przegląd technologii
Hurtownie danych - przegląd technologii Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Biznesowe słowniki pojęć biznesowych odwzorowania pojęć
Bardziej szczegółowoSpecjalizacja magisterska Bazy danych
Specjalizacja magisterska Bazy danych Strona Katedry http://bd.pjwstk.edu.pl/katedra/ Prezentacja dostępna pod adresem: http://www.bd.pjwstk.edu.pl/bazydanych.pdf Wymagania wstępne Znajomość podstaw języka
Bardziej szczegółowoHurtownie danych. Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.
Hurtownie danych Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.pl/hur UZASADNIENIE BIZNESOWE Po co nam hurtownia danych? Jakie mogą
Bardziej szczegółowoBD2 BazyDanych2. dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego
BD2 BazyDanych2 dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego ³ Copyright c Tomasz Traczyk Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej Materiały dydaktyczne
Bardziej szczegółowoZintegrowany system usług dla nauki etap II (ZSUN II)
Zintegrowany system usług dla nauki etap II (ZSUN II) Ośrodek Przetwarzania Informacji Państwowy Instytut Badawczy Jarosław Protasiewicz jaroslaw.protasiewicz@opi.org.pl Warszawa, 5 czerwca 2017 r. Geneza
Bardziej szczegółowoHurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU
Hurtownie danych Przetwarzanie zapytań. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Magazyny danych operacyjnych, źródła Centralna hurtownia danych Hurtownie
Bardziej szczegółowodr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2018/2019
dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2018/2019 KONTAKT Z PROWADZĄCYM dr inż. Paweł Morawski e-mail: pmorawski@spoleczna.pl www: http://pmorawski.spoleczna.pl
Bardziej szczegółowoProces ETL. Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska {kris,
Proces ETL Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska {kris, tegra}@eti.pg.gda.pl - 1 - Proces ETL - 2 -
Bardziej szczegółowoWYPADKI DROGOWE W POLSCE W 2013 ROKU Anna Zielińska ITS
liczba ofiar smiertelnych liczba zarejestrowanych pojazdów WYPADKI DROGOWE W POLSCE W 2013 ROKU Anna Zielińska ITS TENDENCJE OGÓLNE W 2013 roku zagrożenie na polskich drogach zmalało 1. W stosunku do 2012
Bardziej szczegółowoNowoczesne aplikacje mobilne i ich rola w podnoszeniu jakości danych
Nowoczesne aplikacje mobilne i ich rola w podnoszeniu jakości danych www.ascen.pl 1 Agenda O firmie Zarządzanie jakością danych Aplikacje mobilne i ich rola w zarządzaniu jakością danych 2 O firmie Data
Bardziej szczegółowoIMPLEMENTATION OF WDROŻENIE COMARCHW MINISTERSTWIE FINANSÓW SINDBAD RAPORTY ANALIZY BADANIA PROGNOZY CASE STUDY 1
IMPLEMENTATION OF WDROŻENIE COMARCHW MINISTERSTWIE FINANSÓW M2M SINDBAD PLATFORM RAPORTY ANALIZY BADANIA PROGNOZY CASE STUDY 1 MINISTERSTWO FINANSÓW Ministerstwo Finansów zapewnia obsługę Ministra Finansów
Bardziej szczegółowo4. Znaczenie czasu w modelowaniu i strukturalizacji danych
Temat1- Geneza 1. Ewolucja systemów opartych na bazach danych Początki to np. ręczne spisy danych na papirusie w Egipcie. Ręczne zapisywanie danych trwało aż do końca XIX wieku. W XIX wieku stworzone zostały
Bardziej szczegółowoWprowadzenie do Hurtowni Danych. Mariusz Rafało
Wprowadzenie do Hurtowni Danych Mariusz Rafało mrafalo@sgh.waw.pl PROJEKTOWANIE WARSTWY DANYCH DETALICZNYCH - ZAGADNIENIA Partycjonowanie Partycja jest wydzielonym miejscem na dysku, w którym przechowywane
Bardziej szczegółowoModernizacja systemu gromadzenia i przetwarzania informacji hydrogeologicznych
151 Dział tematyczny VII: Modernizacja systemu gromadzenia i przetwarzania informacji hydrogeologicznych 152 Zadanie 31 System przetwarzania danych PSH - rozbudowa aplikacji do gromadzenia i przetwarzania
Bardziej szczegółowoUsługi analityczne budowa kostki analitycznej Część pierwsza.
Usługi analityczne budowa kostki analitycznej Część pierwsza. Wprowadzenie W wielu dziedzinach działalności człowieka analiza zebranych danych jest jednym z najważniejszych mechanizmów podejmowania decyzji.
Bardziej szczegółowoEwolucja systemów baz danych
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr letni 2004/05 Plan wykładu Relacyjne
Bardziej szczegółowoProcesy ETL. 10maja2009. Paweł Szołtysek
Procesy 10maja2009 Paweł Szołtysek 1/12 w praktyce w praktyce 2/12 Zagadnienie Business Inteligence w praktyce 3/12 Czym jest proces? w praktyce Dane: dowolny zbiór danych ze źródeł zewnętrznych. Szukane:
Bardziej szczegółowoHurtownie danych. 31 stycznia 2017
31 stycznia 2017 Definicja hurtowni danych Hurtownia danych wg Williama Inmona zbiór danych wyróżniający się następującymi cechami uporządkowany tematycznie zintegrowany zawierający wymiar czasowy nieulotny
Bardziej szczegółowoARCHITEKTURA MAZOWIECKIEGO SYSTEMU INFORMACJI PRZESTRZENNEJ
ARCHITEKTURA MAZOWIECKIEGO SYSTEMU INFORMACJI PRZESTRZENNEJ Aneta Staniewska Departament Geodezji i Kartografii Urząd Marszałkowski Województwa Mazowieckiego w Warszawie 1 Grodzisk Mazowiecki, 6 maja 2011
Bardziej szczegółowoSystem INTEGRYB jako zintegrowane repozytorium danych umożliwiające zaawansowaną analitykę badawczą
System INTEGRYB jako zintegrowane repozytorium danych umożliwiające zaawansowaną analitykę badawczą Lena Szymanek 1, Jacek Seń 1, Krzysztof Skibicki 2, Sławomir Szydłowski 2, Andrzej Kunicki 1 1 Morski
Bardziej szczegółowoWartość informacji w szkodach MOTOR
Wartość informacji w szkodach MOTOR Standaryzacja i synchronizacja obiegów informacji z partnerami biznesowymi w likwidacji szkód komunikacyjnych XIV edycja Seminarium PIU Jakość danych w systemach informacyjnych
Bardziej szczegółowoMarcin Adamczak Jakub Gruszka MSP. Business Intelligence
Marcin Adamczak Jakub Gruszka MSP Business Intelligence Plan Prezentacji Definicja Podział Zastosowanie Wady i zalety Przykłady Historia W październiku 1958 Hans Peter Luhn pracownik działu badań w IBM
Bardziej szczegółowoAnaliza danych i data mining.
Analiza danych i data mining. mgr Katarzyna Racka Wykładowca WNEI PWSZ w Płocku Przedsiębiorczy student 2016 15 XI 2016 r. Cel warsztatu Przekazanie wiedzy na temat: analizy i zarządzania danymi (data
Bardziej szczegółowoPolska Bibliografia Naukowa jako krajowe repozytorium publikacji naukowych
Polska Bibliografia Naukowa jako krajowe repozytorium publikacji naukowych Małgorzata Paszkowska Ośrodek Przetwarzania Informacji Państwowy Instytut Badawczy Warszawa, 28 październik 2017r. www.opi.org.pl
Bardziej szczegółowoPORTAL GEOSTATYSTYCZNY GEO.STAT.GOV.PL DANE UDOSTĘPNIONE
1 PORTAL GEOSTATYSTYCZNY GEO.STAT.GOV.PL PSR 2010 NSP 2011 BDL DANE UDOSTĘPNIONE DANE W OPRACOWANIU DANE UDOSTĘPNIONE 2 PORTAL GEOSTATYSTYCZNY dostępny pod adresem publicznym klient usług mapowych 3 Możliwość
Bardziej szczegółowoKSIĘGA POMOCNICZA Efektywne narzędzie do księgowania transakcji masowych
KSIĘGA POMOCNICZA Efektywne narzędzie do księgowania transakcji masowych Wstęp Przedsiębiorstwa chcące konkurować w warunkach cyfrowej rewolucji muszą przykładać dużą wagę do jakości danych i informacji
Bardziej szczegółowoOpracowanie narzędzi informatycznych dla przetwarzania danych stanowiących bazę wyjściową dla tworzenia map akustycznych
Opracowanie zasad tworzenia programów ochrony przed hałasem mieszkańców terenów przygranicznych związanych z funkcjonowaniem duŝych przejść granicznych Opracowanie metody szacowania liczebności populacji
Bardziej szczegółowoOdświeŜanie hurtownie danych - wykład IV. Zagadnienia do omówienia. Wprowadzenie
OdświeŜanie hurtownie danych - wykład IV Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006/2007 Zagadnienia do omówienia 1. Wprowadzenie 2. Klasyfikacja źródeł danych 3. Wymagania
Bardziej szczegółowoKierunki działań strategicznych na rzecz bezpieczeństwa ruchu drogowego w Polsce do 2020 roku
Kierunki działań strategicznych na rzecz bezpieczeństwa ruchu drogowego w Polsce do 2020 roku Kazimierz Jamroz, Dorota Gajda, Michalski Lech, Joanna Żukowska Wydział Inżynierii Lądowej i Środowiska Katedra
Bardziej szczegółowoProblematyka hurtowni danych
Plan wykładu Problematyka hurtowni 1. Bibliografia 2. Systemy klasy Business Intelligence 3. Podejścia do integracji 4. Definicja hurtowni 5. Architektury hurtowni Hurtownie, wykład Bartosz Bębel E-mail:
Bardziej szczegółowoPrezentacja firmy WYDAJNOŚĆ EFEKTYWNOŚĆ SKUTECZNOŚĆ. http://www.qbico.pl
Prezentacja firmy { WYDAJNOŚĆ EFEKTYWNOŚĆ SKUTECZNOŚĆ http://www.qbico.pl Firma ekspercka z dziedziny Business Intelligence Srebrny Partner Microsoft w obszarach Business Intelligence i Data Platform Tworzymy
Bardziej szczegółowoModernizacja systemów zarządzania i obsługi klienta w Kasie Rolniczego Ubezpieczenia Społecznego
Modernizacja systemów zarządzania i obsługi klienta w Kasie Rolniczego Ubezpieczenia Społecznego Wicedyrektor Biura Kadr i Szkolenia Centrali KRUS 1 Projekty Komponentu A Poakcesyjnego Programu Wsparcia
Bardziej szczegółowoSystem Informacji Przestrzennej w Powiecie Cieszyńskim
System Informacji Przestrzennej w Powiecie Cieszyńskim Henryka Bałys Naczelnik Wydziału Geodezji Kartografii i Katastru Starostwo Powiatowe w Cieszynie Maciej Bednarski Kierownik Projektu Instytut Systemów
Bardziej szczegółowoSpotkania informacyjne dotyczące bazy danych o ocenach oddziaływania przedsięwzięcia na środowisko i strategicznych ocenach oddziaływania na
Spotkania informacyjne dotyczące o ocenach oddziaływania przedsięwzięcia na środowisko i strategicznych ocenach oddziaływania na środowisko (baza ) Plan prezentacji Co to jest baza Zalety bazy Szkolenia
Bardziej szczegółowoSystem informacji o brd
System informacji o brd - doświadczenia warmińsko - mazurskie Joanna Żukowska Politechnika Gdańska Krzysztof Piskorz WORD Olsztyn System bezpieczeństwa transportu obszary zarządzania (Źródło: Zintegrowany
Bardziej szczegółowoHurtownie danych - opis przedmiotu
Hurtownie danych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Hurtownie danych Kod przedmiotu 11.3-WI-INFD-HD Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki Informatyka / Zintegrowane
Bardziej szczegółowoStruktura prezentacji
2018-06-06 Platforma informacji Tereny poprzemysłowe i zdegradowane dla obszaru województwa śląskiego jako narzędzie efektywnego zarządzania terenami poprzemysłowymi i zdegradowanymi. Katarzyna Trześniewska
Bardziej szczegółowoBIG DATA w SM WARSZAWA
BIG DATA w SM WARSZAWA Maksymilian Michalski Spotkanie Stowarzyszenia Administratorów Bezpieczeństwa Informacji w Straży Miejskiej Miasta Stołecznego Warszawy 6 maja 2014 r AGENDA BIG DATA W SM WARSZAWA
Bardziej szczegółowoSystemy Business Intelligence w praktyce. Maciej Kiewra
Systemy Business Intelligence w praktyce Maciej Kiewra Wspólna nazwa dla grupy systemów: Hurtownia danych Pulpity menadżerskie Karty wyników Systemy budżetowe Hurtownia danych - ujednolicone repozytorium
Bardziej szczegółowoInstalacje fotowoltaiczne w inteligentnych miastach
Instalacje fotowoltaiczne w inteligentnych miastach DOROTA CHWIEDUK Instytut Techniki Cieplnej WydziałMechaniczny Energetyki i Lotnictwa Politechnika Warszawska 14.05.2013 Poznań Zintegrowane planowanie
Bardziej szczegółowoAutomatyzacja zarządzania zdarzeniami drogowymi. Jacek Oskarbski Politechnika Gdańska
Automatyzacja zarządzania zdarzeniami drogowymi Jacek Oskarbski Politechnika Gdańska Przesłanki stosowania automatyzacji w zarządzaniu zdarzeniami i życie 20-40% ciężko rannych ofiar, może być uratowane,
Bardziej szczegółowoSZKOLENIA SAS. ONKO.SYS Kompleksowa infrastruktura inforamtyczna dla badań nad nowotworami CENTRUM ONKOLOGII INSTYTUT im. Marii Skłodowskiej Curie
SZKOLENIA SAS ONKO.SYS Kompleksowa infrastruktura inforamtyczna dla badań nad nowotworami CENTRUM ONKOLOGII INSTYTUT im. Marii Skłodowskiej Curie DANIEL KUBIK ŁUKASZ LESZEWSKI ROLE ROLE UŻYTKOWNIKÓW MODUŁU
Bardziej szczegółowoSTRATEG podstawowe informacje
URZĄD STATYSTYCZNY W KRAKOWIE Baza System Demografia Monitorowania podstawowe Rozwoju informacje STRATEG podstawowe informacje Banki i bazy danych GUS Banki i bazy danych to wygodne narzędzia umożliwiające
Bardziej szczegółowoKorzyści z integracji danych klienta. Seminarium PIU Jakość danych w systemach informatycznych ZU Warszawa 25.03.2009 Przygotowała Ewa Galas
Korzyści z integracji danych klienta Seminarium PIU Jakość danych w systemach informatycznych ZU Warszawa 25.03.2009 Przygotowała Ewa Galas Definicje CDI ( Customer Data Integration) koncepcja integracji
Bardziej szczegółowoEmapa GeoMarketing. Opis produktu
Emapa GeoMarketing Opis produktu Spis treści: 1. Opis produktu... 3 1.1 Korzyści związane z posiadaniem aplikacji... 3 2. Zastosowania... 3 3. Moduły funkcjonalne... 4 4. Zasoby mapowe... 5 5. Przykładowe
Bardziej szczegółowoCel przedmiotu. Wymagania wstępne w zakresie wiedzy, umiejętności i innych kompetencji 1 Język angielski 2 Inżynieria oprogramowania
Przedmiot: Bazy danych Rok: III Semestr: V Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 30 21 Ćwiczenia Laboratorium 30 21 Projekt Liczba punktów ECTS: 4 C1 C2 C3 Cel przedmiotu
Bardziej szczegółowoBusiness Intelligence jako narzędzie do walki z praniem brudnych pieniędzy
Business www.comarch.pl Intelligence jako narzędzie do walki z praniem brudnych pieniędzy Business Intelligence jako narzędzie do walki z praniem brudnych pieniędzy Tomasz Matysik Kołobrzeg, 19.11.2009
Bardziej szczegółowoSystemy baz danych i hurtowni danych
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2005/06 Celem wykładu jest przypomnienie
Bardziej szczegółowoOpis spełnienia wymagań (PSBD)
Numer sprawy: DPZ/4/15 Nr arch. DPZ/087/059-16/15 1. Zakres przedmiotu zamówienia: Opis spełnienia wymagań (PSBD) Załącznik nr 1d do formularza ofertowego Wykonanie dzieła polegającego na dostawie, kompleksowym
Bardziej szczegółowoTransport publiczny. Łukasz Franek Politechnika Krakowska Katedra Systemów Komunikacyjnych
Transport publiczny w zintegrowanym systemie BRD Wiesław Dźwigoń Wiesław Dźwigoń Łukasz Franek Politechnika Krakowska Katedra Systemów Komunikacyjnych Specyfika transportu publicznego - bezpieczeństwo
Bardziej szczegółowoKrakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:
Bardziej szczegółowoTOPWEB Microsoft Excel 2013 i PowerBI Przygotowanie danych, analiza i efektowna prezentacja wyników raportów
TOPWEB Microsoft Excel 2013 i PowerBI Przygotowanie danych, analiza i efektowna prezentacja wyników raportów Przeznaczenie szkolenia Szkolenie dla osób chcących: Profesjonalnie przygotowywać dane do dalszej
Bardziej szczegółowoRELACYJNE BAZY DANYCH
RELACYJNE BAZY DANYCH Aleksander Łuczyk Bielsko-Biała, 15 kwiecień 2015 r. Ludzie używają baz danych każdego dnia. Książka telefoniczna, zbiór wizytówek przypiętych nad biurkiem, encyklopedia czy chociażby
Bardziej szczegółowoNARODOWY PROGRAM BEZPIECZEŃSTWA RUCHU DROGOWEGO
NARODOWY PROGRAM BEZPIECZEŃSTWA RUCHU DROGOWEGO SEKRETARIAT KRAJOWEJ RADY BRD "Safe and Sober", Warszawa, 26.05.2014 r. Schemat prezentacji Narodowy Program BRD 2013-2020 Program Realizacyjny 2014-2015
Bardziej szczegółowoUsługa archiwizacji danych w systemie Eureca. Marek Jelenik CONTROLLING SYSTEMS sp. z o.o.
Usługa archiwizacji danych w systemie Eureca Marek Jelenik CONTROLLING SYSTEMS sp. z o.o. Na czym polega usługa archiwizacji danych w systemie Eureca? 2012 2013 2014 2015 Przed archiwizacją SQL OLAP BAZA
Bardziej szczegółowo