dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2018/2019
|
|
- Seweryn Lis
- 5 lat temu
- Przeglądów:
Transkrypt
1 dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2018/2019
2 KONTAKT Z PROWADZĄCYM dr inż. Paweł Morawski pmorawski@spoleczna.pl www: konsultacje: info. na stronie jw.
3 CEL PRZEDMIOTU IWDL Celem przedmiotu Informatyczne wsparcie decyzji logistycznych jest wyjaśnienie roli informatyzacji we współczesnych przedsiębiorstwach realizujących procesy logistyczne ze szczególnym uwzględnieniem procesów analityki biznesowej BI (Business Intelligence). Omówione zostaną formy i możliwości wykorzystania Internetu w działalności przedsiębiorstw logistycznych (e-logistyka) oraz informatycznego wsparcia procesów decyzyjnych w Logistyce. INTERDYSCYPLINARNOŚĆ!!! 3
4 literatura IWDL LITERATURA: Surma J., Business Intelligence, PWN, Warszawa Wieczerzycki W., E-Logistyka, Wyd. PWE, Warszawa M. Kłak, Zarzadzanie wiedzą we współczesnym przedsiębiorstwie, KTEE, Kielce (na stronie) 4
5 literatura IWDL UZUPEŁNIAJĄCA: 1. REWORK 2. JAK DZIAŁA GOOGLE 3. DISRUPTED / FAKAP 4. Lean Startup 5
6 IWDL - sposób prowadzenia zajęć konwersatorim 4 spotkania w zjazdach A (soboty A) w pierwszej połowie semestru 6
7 IWDL - warunki zaliczenia ZALICZENIE: Test na ostatnich zajęciach ( ) 7
8 IWDL - motto Jeśli nie możesz czegoś zmierzyć - nie możesz tym zarządzać 8
9 IWDL - teza Sprawne pozyskiwanie, przechowywanie, przetwarzanie, udostępnianie i umiejętne wykorzystanie danych i informacji jest obecnie warunkiem koniecznym efektywnego zarządzania. 9
10 IWDL - geneza Obecnie przyjmuje się, że dane i informacje obok ludzi (wiedza) są najbardziej istotnymi zasobami. Data: your most valuable asset!!! 10
11 IWDL - geneza 11
12 12
13 IWDL - słowa kluczowe Business Intelligence (Analityka Biznesowa) Data Warehouse (Hurtownia danych) Data Mining (Eksploracja danych) OLAP (Online Analytical Processing) Kostka OLAP (OLAP cube) Big DATA IoT (Internet of Things) Artificial Intelligence (Sztuczna inteligencja) Neural Networks (Sieci neuronowe) KPI (Key Performance Indicators) ETL (Extract Tranform Load) Forecasting (Prognozowanie) 13
14 IWDL - geneza Prowadzenie firmy wymaga podejmowania wielu decyzji dziennie - zarówno przez kierownictwo, jak i pracowników operacyjnych. Aby podejmowane działania były właściwe, muszą opierać się na aktualnych informacjach. Jednak co zrobić, kiedy problemem staje się nie brak informacji, a ich nadmiar? W przeciętnej firmie codziennie generowane są takie ilości danych, że umysł ludzki nie jest w stanie samodzielnie ich analizować. 14
15 IWDL - definicyjnie Business Intelligence (BI), również analityka biznesowa - pojęcie o szerokim znaczeniu. Najbardziej ogólnie można przedstawić je jako proces przekształcania danych w informacje, a informacji w wiedzę, która może być wykorzystana do zwiększenia konkurencyjności przedsiębiorstwa poprzez podejmowanie trafnych decyzji. 15
16 IWDL - piramida informacyjna 16
17 IWDL - geneza 17
18 IWDL - geneza W rozumieniu czysto biznesowym BI można także definiować jako kombinację architektury systemu, aplikacji oraz baz danych, które razem umożliwiają prowadzone w czasie rzeczywistym analizy i przekształcenia, dostarczające potrzebną informację i wiedzę biznesowi w celu podejmowania decyzji. 18
19 IWDL - geneza 19
20 IWDL - definicyjnie Business Intelligence jest definiowane przez firmę Gartner jako zorientowany na użytkownika proces zbierania, eksploracji, interpretacji i analizy danych, który prowadzi do usprawnienia i zracjonalizowania procesu podejmowania decyzji. Systemy te wspierają kadrę menedżerską w podejmowaniu decyzji biznesowych w celu kreowania wzrostu wartości przedsiębiorstwa. 20
21 IWDL - zastosowania 21
22 IWDL - model wspierania decyzji 22
23 IWDL - hurtownia danych Efektywne eksploatowanie narzędzi BI jest mocno uzależnione od utworzenia hurtowni danych, która pozwala na ujednolicenie i powiązanie danych źródłowych zgromadzonych w różnorodnych systemach informatycznych przedsiębiorstwa (np. systemach transakcyjnych: ERP, CRM, WMS, ) 23
24 IWDL - dlaczego hurtownia danych? 1. Przeprowadzanie analiz poza systemami transakcyjnymi (OLTP) 2. Całościowy wgląd w dane firmy 3. Dostęp do danych historycznych 4. Ujednolicenie posiadanych informacji (np. KPI) 24
25 IWDL - architektura hurtowni danych ERP, CRM, WMS 25 ang. flat files
26 IWDL - OLAP (raportowanie) OLAP (ang. OnLine Analytical Processing) to oprogramowanie wspierające podejmowanie decyzji, które pozwala użytkownikowi analizować szybko informacje zawarte w wielowymiarowych widokach i hierarchiach. Narzędzia OLAP są często używane do wykonywania analiz trendów sprzedaży, czy też analiz finansowych. Są też przydatne do wstępnego przeglądania zbioru danych przez analityka we wstępnej fazie analiz statystycznych. 26
27 IWDL - kostka OLAP Wielowymiarowa kostka OLAP (ang. OLAP cube) jest podstawową strukturą danych w każdym systemie OLAP działającym w środowisku Hurtowni Danych. Cube składa się z Miar (ang. measures), Wymiarów (ang. dimensions) i Poziomów (ang. levels) i jest zoptymalizowany pod kątem szybkiego i bezpiecznego dostępu do danych wielowymiarowych. 27
28 IWDL - kostka OLAP miary i wymiary Miary to wskaźniki numeryczne (ile?), miary to: przychód, waga, ilość, koszt, upust, Wymiary to dane opisowe (kto? co? kiedy? gdzie?) wymiary to: czas, klient, produkt, lokalizacja, Wymiary są pogrupowane za pomocą poziomów, które odzwierciedlają hierarchię funkcjonującą w organizacji i pozwalają użytkownikom końcowym zwiększać lub zmniejszać poziom szczegółowości analizowanego wymiaru. 28
29 IWDL - kostka OLAP 29
30 IWDL - raport sprzedażowy OLAP 30
31 Podstawowe operacje analizy danych 31
32 IWDL - BI w monitoringu procesów BI wykorzystuje się w następujących działaniach: bieżący monitoring procesów real-time analiza wskaźników (S&OP) symulacje off-line (analiza jeśli-to, prognozowanie) sugerowanie decyzji zarządczych prezentacja wizualna informacji (raporty i kokpity) 32
33 IWDL - OTIF 33
34 IWDL - wybrane zastosowania OLAP w zakresie Logistyka i Produkacja 34
35 IWDL DATA DISCOVERY DATA DISCOVERY - VIDEO 35
36 IWDL DZIĘKUJĘ ZA UWAGĘ 36
dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2016/2017
dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2016/2017 KONTAKT Z PROWADZĄCYM dr inż. Paweł Morawski e-mail: pmorawski@spoleczna.pl www: http://pmorawski.spoleczna.pl
Bardziej szczegółowoBusiness Intelligence
Business Intelligence Paweł Mielczarek Microsoft Certified Trainer (MCT) MCP,MCSA, MCTS, MCTS SQL 2005, MCTS SQL 2008, MCTS DYNAMICS, MBSS, MBSP, MCITP DYNAMICS. Geneza Prowadzenie firmy wymaga podejmowania
Bardziej szczegółowoHURTOWNIE DANYCH I BUSINESS INTELLIGENCE
BAZY DANYCH HURTOWNIE DANYCH I BUSINESS INTELLIGENCE Akademia Górniczo-Hutnicza w Krakowie Adrian Horzyk horzyk@agh.edu.pl Google: Horzyk HURTOWNIE DANYCH Hurtownia danych (Data Warehouse) to najczęściej
Bardziej szczegółowoRola analityki danych w transformacji cyfrowej firmy
Rola analityki danych w transformacji cyfrowej firmy Piotr Czarnas Querona CEO Analityka biznesowa (ang. Business Intelligence) Proces przekształcania danych w informacje, a informacji w wiedzę, która
Bardziej szczegółowoHurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu
i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2007 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę
Bardziej szczegółowoHurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu
i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2012 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę
Bardziej szczegółowoHurtownie danych. Rola hurtowni danych w systemach typu Business Intelligence
Hurtownie danych Rola hurtowni danych w systemach typu Business Intelligence Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika
Bardziej szczegółowoUsługi analityczne budowa kostki analitycznej Część pierwsza.
Usługi analityczne budowa kostki analitycznej Część pierwsza. Wprowadzenie W wielu dziedzinach działalności człowieka analiza zebranych danych jest jednym z najważniejszych mechanizmów podejmowania decyzji.
Bardziej szczegółowoSpojrzenie na systemy Business Intelligence
Marcin Adamczak Nr 5375 Spojrzenie na systemy Business Intelligence 1.Wprowadzenie. W dzisiejszym świecie współczesna organizacja prędzej czy później stanie przed dylematem wyboru odpowiedniego systemu
Bardziej szczegółowoBusiness Intelligence jako narzędzie do walki z praniem brudnych pieniędzy
Business www.comarch.pl Intelligence jako narzędzie do walki z praniem brudnych pieniędzy Business Intelligence jako narzędzie do walki z praniem brudnych pieniędzy Tomasz Matysik Kołobrzeg, 19.11.2009
Bardziej szczegółowoCo to jest Business Intelligence?
Cykl: Cykl: Czwartki z Business Intelligence Sesja: Co Co to jest Business Intelligence? Bartłomiej Graczyk 2010-05-06 1 Prelegenci cyklu... mariusz@ssas.pl lukasz@ssas.pl grzegorz@ssas.pl bartek@ssas.pl
Bardziej szczegółowoPaweł Gołębiewski. Softmaks.pl Sp. z o.o. ul. Kraszewskiego 1 85-240 Bydgoszcz www.softmaks.pl kontakt@softmaks.pl
Paweł Gołębiewski Softmaks.pl Sp. z o.o. ul. Kraszewskiego 1 85-240 Bydgoszcz www.softmaks.pl kontakt@softmaks.pl Droga na szczyt Narzędzie Business Intelligence. Czyli kiedy podjąć decyzję o wdrożeniu?
Bardziej szczegółowoWstęp do Business Intelligence
Wstęp do Business Intelligence Co to jest Buisness Intelligence Business Intelligence (analityka biznesowa) - proces przekształcania danych w informacje, a informacji w wiedzę, która może być wykorzystana
Bardziej szczegółowoHurtownie danych. 31 stycznia 2017
31 stycznia 2017 Definicja hurtowni danych Hurtownia danych wg Williama Inmona zbiór danych wyróżniający się następującymi cechami uporządkowany tematycznie zintegrowany zawierający wymiar czasowy nieulotny
Bardziej szczegółowoWprowadzenie do Hurtowni Danych. Mariusz Rafało
Wprowadzenie do Hurtowni Danych Mariusz Rafało mariusz.rafalo@hotmail.com WPROWADZENIE DO HURTOWNI DANYCH Co to jest hurtownia danych? Hurtownia danych jest zbiorem danych zorientowanych tematycznie, zintegrowanych,
Bardziej szczegółowoWprowadzenie do Hurtowni Danych. Mariusz Rafało
Wprowadzenie do Hurtowni Danych Mariusz Rafało mrafalo@sgh.waw.pl WARSTWA PREZENTACJI HURTOWNI DANYCH Wykorzystanie hurtowni danych - aspekty Analityczne zbiory danych (ADS) Zbiór danych tematycznych (Data
Bardziej szczegółowoHurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH
Wstęp. Architektura hurtowni. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH B. Inmon, 1996: Hurtownia to zbiór zintegrowanych, nieulotnych, ukierunkowanych
Bardziej szczegółowoAnaliza internetowa czyli Internet jako hurtownia danych
Analiza internetowa czyli Internet jako hurtownia danych Agenda 1. Hurtownie danych, eksploracja danych i OLAP 3. Internet 5. Analiza Internetowa 7. Google Analytics 9. Podsumowanie Hurtownie danych (definicja)
Bardziej szczegółowoMarcin Adamczak Jakub Gruszka MSP. Business Intelligence
Marcin Adamczak Jakub Gruszka MSP Business Intelligence Plan Prezentacji Definicja Podział Zastosowanie Wady i zalety Przykłady Historia W październiku 1958 Hans Peter Luhn pracownik działu badań w IBM
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE. Logistyka inżynierska. niestacjonarne. I stopnia. ogólnoakademicki. specjalnościowy
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Infrastruktura systemów logistycznych E Logistyka inżynierska niestacjonarne
Bardziej szczegółowoKrakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:
Bardziej szczegółowoLiczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Zarządzanie Rodzaj przedmiotu: specjalnościowy Opiekun: prof. nadzw. dr hab. Zenon Biniek Poziom studiów (I lub II stopnia): II stopnia Tryb studiów:
Bardziej szczegółowoDOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE:
DOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE: JAKIE PROBLEMY ROZWIĄZUJE BI 1 S t r o n a WSTĘP Niniejszy dokument to zbiór podstawowych problemów, z jakimi musi zmagać się przedsiębiorca, analityk,
Bardziej szczegółowoANALIZA DANYCH SYSTEMU ERP WYKORZYSTANIE KONCEPCJI BUSINESS INTELLIGENCE
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ Seria: ORGANIZACJA I ZARZĄDZANIE z. XX XXXX Nr kol. XXXX Marcin WYSKWARSKI Politechnika Śląska Wydział Organizacji i Zarządzania Instytut Ekonomii i Informatyki ANALIZA
Bardziej szczegółowoHurtownie danych. Wprowadzenie do systemów typu Business Intelligence
Hurtownie danych Wprowadzenie do systemów typu Business Intelligence Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika
Bardziej szczegółowoOd Expert Data Scientist do Citizen Data Scientist, czyli jak w praktyce korzystać z zaawansowanej analizy danych
Od Expert Data Scientist do Citizen Data Scientist, czyli jak w praktyce korzystać z zaawansowanej analizy danych Tomasz Demski StatSoft Polska www.statsoft.pl Analiza danych Zaawansowana analityka, data
Bardziej szczegółowoCzęść I Istota analizy biznesowej a Analysis Services
Spis treści Część I Istota analizy biznesowej a Analysis Services 1 Analiza biznesowa: podstawy analizy danych... 3 Wprowadzenie do analizy biznesowej... 3 Wielowymiarowa analiza danych... 5 Atrybuty w
Bardziej szczegółowoHurtownie danych a transakcyjne bazy danych
Hurtownie danych a transakcyjne bazy danych Materiały źródłowe do wykładu: [1] Jerzy Surma, Business Intelligence. Systemy wspomagania decyzji, Wydawnictwo Naukowe PWN, Warszawa 2009 [2] Arkadiusz Januszewski,
Bardziej szczegółowoPrezentacja kierunku Analityka biznesowa. Instytut Ekonomii i Informatyki
Prezentacja kierunku Analityka biznesowa Instytut Ekonomii i Informatyki Potrzeba (1) Raport McKinsey Global Institute (grudzień 2016) Z szacunków McKinsey wynika, że o ile globalnie liczba absolwentów
Bardziej szczegółowoHurtownie danych. Hurtownie danych. dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki. Maciej Zakrzewicz (1)
Hurtownie danych dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki Maciej Zakrzewicz (1) Plan wykładu Wprowadzenie do Business Intelligence (BI) Hurtownia danych Zasilanie hurtowni
Bardziej szczegółowoPierwsze wdrożenie SAP BW w firmie
Pierwsze wdrożenie w firmie Mirosława Żurek, BCC Poznao, maj 2013 Zakres tematyczny wykładu Podstawowe założenia i pojęcia hurtowni danych ; Przykładowe pierwsze wdrożenie w firmie i jego etapy; Przykładowe
Bardziej szczegółowoStawiamy na specjalizację. by CSB-System AG, Geilenkirchen Version 1.1
1 Business Intelligence Jak najlepiej wykorzystać dostępne źródła informacji, czyli Business Intelligence w zarządzaniu III Konferencja i warsztaty dla branży mięsnej Potencjał rynku potencjał firmy 2
Bardziej szczegółowoHurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie
Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2012 Zagadnienia do omówienia 1. Miejsce i rola w firmie 2. Przegląd architektury
Bardziej szczegółowoPrezentacja firmy WYDAJNOŚĆ EFEKTYWNOŚĆ SKUTECZNOŚĆ. http://www.qbico.pl
Prezentacja firmy { WYDAJNOŚĆ EFEKTYWNOŚĆ SKUTECZNOŚĆ http://www.qbico.pl Firma ekspercka z dziedziny Business Intelligence Srebrny Partner Microsoft w obszarach Business Intelligence i Data Platform Tworzymy
Bardziej szczegółowoKrakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 201/2014 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:
Bardziej szczegółowoWprowadzenie do technologii Business Intelligence i hurtowni danych
Wprowadzenie do technologii Business Intelligence i hurtowni danych 1 Plan rozdziału 2 Wprowadzenie do Business Intelligence Hurtownie danych Produkty Oracle dla Business Intelligence Business Intelligence
Bardziej szczegółowoAnalityka danych & big data
TomaszJangas.com Analityka danych & big data 15 października 2017 W tym artykule opiszę architekturę, jaka często wykorzystywana jest dzisiaj w środowiskach do analityki danych w wielu różnych organizacjach
Bardziej szczegółowoAnalityka danych w środowisku Hadoop. Piotr Czarnas, 5 czerwca 2017
Analityka danych w środowisku Hadoop Piotr Czarnas, 5 czerwca 2017 Pytania stawiane przez biznes 1 Jaka jest aktualnie sytuacja w firmie? 2 Na czym jeszcze możemy zarobić? Które procesy możemy usprawnić?
Bardziej szczegółowoSAS OLAP Cube Studio Wprowadzenie
SAS OLAP Cube Studio Wprowadzenie Izabela Szczęch i Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania
Bardziej szczegółowo1.1 Matryca pokrycia efektów kształcenia. Efekty kształcenia w zakresie wiedzy. Efekty kształcenia w zakresie umiejętności
1.1 Matryca pokrycia efektów kształcenia Matryca dla przedmiotów realizowanych na kierunku Informatyka i Ekonometria (z wyłączeniem przedmiotów realizowanych w ramach specjalności oraz przedmiotów swobodnego
Bardziej szczegółowoSYSTEMY KLASY BI PLATFORMĄ EFEKTYWNEGO WSPÓŁDZIAŁANIA WSPÓŁCZESNYCH ORGANIZACJI. Piotr Zaskórski
SYSTEMY KLASY BI PLATFORMĄ EFEKTYWNEGO WSPÓŁDZIAŁANIA WSPÓŁCZESNYCH ORGANIZACJI Piotr Zaskórski 1. MIEJSCE I ROLA SYSTEMÓW KLASY BI W KSZTAŁTOWANIU STRUKTUR I STRATEGII ZARZĄDZANIA WSPÓŁCZESNYCH ORGANIZACJI.
Bardziej szczegółowoBUSINESS INTELLIGENCE for PROGRESS BI4PROGRESS
BUSINESS INTELLIGENCE for PROGRESS BI4PROGRESS SZYBKIE ANALIZY EKONOMICZNE, FINANSOWE I STATYSTYCZNE 0 S t r o n a Dlaczego BI4PROGRESS? W czasach nieustających, dynamicznych zmian na rynku edukacyjnym,
Bardziej szczegółowoHURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego
HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego http://www.jakubw.pl/zajecia/hur/bi.pdf http://www.jakubw.pl/zajecia/hur/dw.pdf http://www.jakubw.pl/zajecia/hur/dm.pdf http://www.jakubw.pl/zajecia/hur/
Bardziej szczegółowoSystemy Business Intelligence w praktyce. Maciej Kiewra
Systemy Business Intelligence w praktyce Maciej Kiewra Wspólna nazwa dla grupy systemów: Hurtownia danych Pulpity menadżerskie Karty wyników Systemy budżetowe Hurtownia danych - ujednolicone repozytorium
Bardziej szczegółowoHurtownie danych w praktyce
Hurtownie danych w praktyce Fakty i mity Dr inż. Maciej Kiewra Parę słów o mnie... 8 lat pracy zawodowej z hurtowniami danych Projekty realizowane w kraju i zagranicą Certyfikaty Microsoft z Business Intelligence
Bardziej szczegółowoHurtownie danych czyli jak zapewnić dostęp do wiedzy tkwiącej w danych
Hurtownie danych czyli jak zapewnić dostęp do wiedzy tkwiącej w danych Rodzaj zajęć: Wszechnica Popołudniowa Tytuł: Hurtownie danych czyli jak zapewnić dostęp do wiedzy tkwiącej w danych Autor: mgr inż.
Bardziej szczegółowoE-logistyka Redakcja naukowa Waldemar Wieczerzycki
E-logistyka Redakcja naukowa Waldemar Wieczerzycki E-logistyka to szerokie zastosowanie najnowszych technologii informacyjnych do wspomagania zarządzania logistycznego przedsiębiorstwem (np. produkcją,
Bardziej szczegółowoSylabus przedmiotu: Data wydruku: Dla rocznika: 2014/2015. Kierunek: Opis przedmiotu. Dane podstawowe. Efekty i cele. Opis. 1 z 5
Sylabus przedmiotu: Specjalność: Informatyka w zarządzaniu Wszystkie specjalności Data wydruku: Dla rocznika: 2014/2015 Kierunek: Wydział: Zarządzanie Ekonomii, Zarządzania i Turystyki Dane podstawowe
Bardziej szczegółowoImię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Germanas Budnikas, Dr
Tryb studiów Studia stacjonarne Kierunek studiów Ekonomia Poziom studiów Pierwszego stopnia Rok studiów/ semestr III / 6 Specjalność Bez specjalności Kod katedry/zakładu w systemie USOS 10000000 Wydział
Bardziej szczegółowoVII Kongres BOUG 03 października 2012
Raportowanie SLA w duŝej organizacji Studium przypadku VII Kongres BOUG 03 października 2012 Zdefiniowanie przypadku Zadanie do wykonania: Jak przenieść ustalenia formalne na efektywnie raportujący system?
Bardziej szczegółowoSPIS TREŚCI WSTĘP... 10
SPIS TREŚCI WSTĘP... 10 Wykład 1. GENEZA, ROZWÓJ, WSPÓŁCZESNE WYZWANIA PRALOGISTYKI WOJSKOWEJ 1. Historyczne źródła logistyki wojskowej... 15 2. Logistyka według poglądów teoretyków amerykańskich... 17
Bardziej szczegółowoHurtownia danych praktyczne zastosowania
Hurtownia danych praktyczne zastosowania Dorota Olkowicz dorota.olkowicz@its.waw.pl Centrum Bezpieczeństwa Ruchu Drogowego ITS Plan prezentacji 1. Hurtownie danych 2. Hurtownia danych POBR 3. Narzędzia
Bardziej szczegółowoTrendy BI z perspektywy. marketingu internetowego
Trendy BI z perspektywy marketingu internetowego BI CECHUJE ORGANIZACJE DOJRZAŁE ANALITYCZNIE 2 ALE JAKA JEST TA DOJRZAŁOŚĆ ANALITYCZNA ORGANIZACJI? 3 Jaka jest dojrzałość analityczna organizacji? Zarządzanie
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu Kierunek PRZEWODNIK PO PRZEDMIOCIE Metody prezentacji informacji Logistyka Forma studiów niestacjonarne Poziom kwalifikacji I stopnia Rok 2 Semestr 3 Jednostka prowadząca Instytut Logistyki
Bardziej szczegółowoSzkolenia SAS Cennik i kalendarz 2017
Szkolenia SAS Spis treści NARZĘDZIA SAS FOUNDATION 2 ZAAWANSOWANA ANALITYKA 2 PROGNOZOWANIE I EKONOMETRIA 3 ANALIZA TREŚCI 3 OPTYMALIZACJA I SYMULACJA 3 3 ROZWIĄZANIA DLA HADOOP 3 HIGH-PERFORMANCE ANALYTICS
Bardziej szczegółowoNarzędzia geoprzestrzenne Business Intelligence (BI)
Narzędzia geoprzestrzenne Business Intelligence (BI) Paweł Pręcikowski Dyrektor Administracja i Bezpieczeństwo Publiczne Kraków, 17-18 maja 2018 r. Agenda 1. Wprowadzenie do BI 2. Prezentacja rozwiązań:
Bardziej szczegółowoWstęp... 7. 3. Technologie informacyjne wpływające na doskonalenie przedsiębiorstwa
Spis treści Wstęp.............................................................. 7 1. Przedsiębiorstwo w dobie globalizacji.............................. 11 1.1. Wyzwania globalnego rynku....................................
Bardziej szczegółowodr inż. Maciej Kiewra Prezentacja wygłoszona na konferencji BI vs Big Data podczas Kongresu GigaCon Warszawa, 16.04.2014 r.
dr inż. Maciej Kiewra Prezentacja wygłoszona na konferencji BI vs Big Data podczas Kongresu GigaCon Warszawa, 16.04.2014 r. Big Data w praktyce, z perspektywy konsultanta Business Intelligence Parę słów
Bardziej szczegółowoDr inż. Andrzej KAMIŃSKI Instytut Informatyki i Gospodarki Cyfrowej Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie
ANALIZA POZIOMU ODDZIAŁYWANIA CZYNNIKÓW TECHNOLOGICZNYCH I ŚRODOWISKOWYCH NA PRACOWNIKÓW PRZEMYSŁOWYCH Z WYKORZYSTANIEM TECHNOLOGII BUSINESS INTELLIGENCE Dr inż. Andrzej KAMIŃSKI Instytut Informatyki i
Bardziej szczegółowoKARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Metody drążenia danych D1.3
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
Bardziej szczegółowoROZWIĄZANIE BUSINESS INTELLIGENCE TARGIT
ROZWIĄZANIE BUSINESS INTELLIGENCE TARGIT Plan prezentacji Systemy Business Intelligence Architektura i funkcje systemu Targit Prezentacja na żywo: Dla zarządów i menedżerów Dla analityków i kontrolerów
Bardziej szczegółowoEkonometria dynamiczna i finansowa Kod przedmiotu
Ekonometria dynamiczna i finansowa - opis przedmiotu Informacje ogólne Nazwa przedmiotu Ekonometria dynamiczna i finansowa Kod przedmiotu 11.5-WK-IiED-EDF-W-S14_pNadGenMOT56 Wydział Kierunek Wydział Matematyki,
Bardziej szczegółowoPREZENTACJA FUNKCJONALNA SYSTEMU PROPHIX
PREZENTACJA FUNKCJONALNA SYSTEMU PROPHIX Architektura i struktura funkcjonalna systemu PROPHIX PROPHIX Corporate Performance Management (Zarządzanie Wydajnością Firmy) System do samodzielnego planowania,
Bardziej szczegółowoZasady sprawnego i efektywnego sterowania przepływami materiałów i wyrobów
Zasady sprawnego i efektywnego sterowania przepływami materiałów i wyrobów prof. nadzw. PO dr hab. inż. Andrzej Szymonik Opole 2012/2013 www.gen-prof.pl 1. Pojecie sterowania i regulacji Regulacja, sterowanie,
Bardziej szczegółowoKSIĘGA POMOCNICZA Efektywne narzędzie do księgowania transakcji masowych
KSIĘGA POMOCNICZA Efektywne narzędzie do księgowania transakcji masowych Wstęp Przedsiębiorstwa chcące konkurować w warunkach cyfrowej rewolucji muszą przykładać dużą wagę do jakości danych i informacji
Bardziej szczegółowoBazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych
Plan wykładu Bazy Wykład 14: Hurtownie Bazy operacyjne i analityczne Architektura hurtowni Projektowanie hurtowni Małgorzata Krętowska, Agnieszka Oniśko Wydział Informatyki PB Bazy (studia dzienne) 2 Rodzaje
Bardziej szczegółowoSpis treści. Część I Wprowadzenie do pakietu oprogramowania Analysis Services
Spis treści Wstęp... ix Odkąd najlepiej rozpocząć lekturę?... ix Informacja dotycząca towarzyszącej ksiąŝce płyty CD-ROM... xi Wymagania systemowe... xi Instalowanie i uŝywanie plików przykładowych...
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Systemy Decision suport systems Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: obowiązkowy Poziom studiów: studia II stopnia
Bardziej szczegółowo2014-03-17. Misja. Strategia. Cele UNIT4 TETA BI CENTER. Plan prezentacji. Grupa UNIT4 TETA. Grupa kapitałowa UNIT4 UNIT4 TETA BI CENTER
Plan prezentacji Prowadzący: Mateusz Jaworski m.jaworski@tetabic.pl 1. Grupa kapitałowa UNIT4. 2. Grupa UNIT4 TETA. 3. UNIT4 TETA BI CENTER. 4. TETA Business Intelligence. 5. Analiza wielowymiarowa. 6..
Bardziej szczegółowoZwykły magazyn. Centralny magazyn
Zwykły magazyn Centralny magazyn Celem mojej pracy jest zaprezentowanie i przedstawienie w formie pisemnej zasad prawidłowego funkcjonowania magazynów zarówno w przemyśle jak i handlu oraz zarządzanie
Bardziej szczegółowoSylabus przedmiotu: Data wydruku: Dla rocznika: 2014/2015. Kierunek: Opis przedmiotu. Dane podstawowe. Efekty i cele. Opis. 1 z 6
Sylabus przedmiotu: Specjalność: Informatyka w zarządzaniu Wszystkie specjalności Data wydruku: Dla rocznika: 2014/2015 Kierunek: Wydział: Zarządzanie Ekonomii, Zarządzania i Turystyki Dane podstawowe
Bardziej szczegółowoAgenda. O firmie. Wstęp Ksavi. Opis funkcjonalności systemu Ksavi Auditor. Podsumowanie
Agenda O firmie Wstęp Ksavi Opis funkcjonalności systemu Ksavi Auditor Podsumowanie O firmie Na rynku od 2001 roku 60 zatrudnionych pracowników Dogłębna znajomość branży Projekty informatyczne dla największych
Bardziej szczegółowoANALIZA DANYCH. OD TEGO WSZYSTKO SIĘ ZACZYNA.
MARZEC 2018 ANALIZA DANYCH. OD TEGO WSZYSTKO SIĘ ZACZYNA. Prezentacja wyników badania poziomu stosowania analizy danych w polskich przedsiębiorstwach. Partner merytoryczny: Szanowni Państwo Jest mi bardzo
Bardziej szczegółowoAnalityka danych w środowisku Hadoop. Piotr Czarnas, 27 czerwca 2017
Analityka danych w środowisku Hadoop Piotr Czarnas, 27 czerwca 2017 Hadoop i Business Intelligence - wyzwania 1 Ładowane danych do Hadoop-a jest trudne 2 Niewielu specjalistów dostępnych na rynku Dostęp
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE INŻYNIERIA PRZESTRZENNA W LOGISTYCE E. Logistyka. Niestacjonarne. I stopnia (inżynierskie) VII. Dr Cezary Stępniak
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj
Bardziej szczegółowoBazy analityczne (hurtownie danych, bazy OLAP)
Bazy analityczne (hurtownie danych, bazy OLAP) Materiały pomocnicze. Bazy produkcyjne (transakcyjne) i analityczne Większość systemów baz danych to systemy produkcyjne, inaczej nazywane transakcyjnymi,
Bardziej szczegółowoProces ETL. Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska {kris,
Proces ETL Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska {kris, tegra}@eti.pg.gda.pl - 1 - Proces ETL - 2 -
Bardziej szczegółowoZarządzanie Zapasami System informatyczny do monitorowania i planowania zapasów. Dawid Doliński
Zarządzanie Zapasami System informatyczny do monitorowania i planowania zapasów Dawid Doliński Dlaczego MonZa? Korzyści z wdrożenia» zmniejszenie wartości zapasów o 40 %*» podniesienie poziomu obsługi
Bardziej szczegółowoOne Size Doesn t Fit All, czyli case study stworzenia BI dostosowanego do strategicznych, operacyjnych oraz analitycznych potrzeb
One Size Doesn t Fit All, czyli case study stworzenia BI dostosowanego do strategicznych, operacyjnych oraz analitycznych potrzeb X Kongres Business Intelligence Warszawa, 17.03.2016 Joanna Łuczak Multi-Partnerski
Bardziej szczegółowoMigracja Business Intelligence do wersji
Migracja Business Intelligence do wersji 2015.1 Copyright 2014 COMARCH Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest
Bardziej szczegółowoMigracja XL Business Intelligence do wersji
Migracja XL Business Intelligence do wersji 2019.0 Copyright 2018 COMARCH Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci
Bardziej szczegółowoPrezentacja publiczna projektu
Prezentacja publiczna projektu Zintegrowany System Zarządzania Grupą Szpitali w celu podniesienia jakości, dostępności i kompleksowości udzielanych świadczeń, zapewnienia konkurencyjności szpitali publicznych
Bardziej szczegółowoDopasowanie IT/biznes
Dopasowanie IT/biznes Dlaczego trzeba mówić o dopasowaniu IT-biznes HARVARD BUSINESS REVIEW, 2008-11-01 Dlaczego trzeba mówić o dopasowaniu IT-biznes http://ceo.cxo.pl/artykuly/51237_2/zarzadzanie.it.a.wzrost.wartosci.html
Bardziej szczegółowoPraktyczne aspekty pozyskiwania wiedzy z danych z perspektywy matematyka w bankowości. 2014-01-23 (VI zajęcia) Jakub Jurdziak
Praktyczne aspekty pozyskiwania wiedzy z danych z perspektywy matematyka w bankowości 2014-01-23 (VI zajęcia) Jakub Jurdziak CEL ZAJĘĆ: Prezentacja nowoczesnego banku uniwersalnego jako organizacji opartej
Bardziej szczegółowoSage - BI Warszawa, 18.V.2016
Sage - BI Warszawa, 18.V.2016 Jak wykorzystać dostęp do informacji w podejmowaniu dobrych decyzji biznesowych? Aneta Jarczyńska 18.05.2016 5/23/2016 3 BIBIBI 5/23/2016 4 Czy moja firma jest gotowa na wykorzystanie
Bardziej szczegółowodr inż. Paweł Morawski ICT w Logistyce semestr zimowy 2018/2019
dr inż. Paweł Morawski ICT w Logistyce semestr zimowy 2018/2019 kontakt / informacje dr inż. Paweł Morawski Katedra Gospodarki Elektronicznej SAN e-mail: pmorawski@spoleczna.pl www: http://pmorawski.spoleczna.pl
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE. Wprowadzenie do biznesu. Filologia. stacjonarne. I stopnia. Katedra Języka Biznesu. ogólnoakademicki.
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Wprowadzenie do biznesu Filologia stacjonarne I stopnia Rok 3 Semestr
Bardziej szczegółowoKsięgarnia PWN: Pod red. Celiny Olszak i Ewy Ziemby - Strategie i modele gospodarki elektronicznej. Spis treści
Księgarnia PWN: Pod red. Celiny Olszak i Ewy Ziemby - Strategie i modele gospodarki elektronicznej Spis treści Wstęp... 13 CZĘŚĆ I. Systemy gospodarki elektronicznej Rozdział 1. Wyzwania ery wiedzy (Celina
Bardziej szczegółowoMigracja Business Intelligence do wersji
Migracja Business Intelligence do wersji 2016.1 Copyright 2015 COMARCH Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest
Bardziej szczegółowoEksploracja procesów otwierając czarne pudełko
Eksploracja procesów otwierając czarne pudełko Na gruncie zainteresowania biznesowymi analizami danych z jednej strony, i na gruncie zainteresowania metodami ciągłego doskonalenia procesów biznesowych
Bardziej szczegółowoBudowa modeli wymagań dla Regionalnych Systemów Informacji Medycznej opartych o hurtownie danych
Dr Jerzy ROSZKOWSKI Management Systems Consulting Budowa modeli wymagań dla Regionalnych Systemów Informacji Medycznej opartych o hurtownie danych TIAPiSZ 09 Definiowanie wymagań Główny problem: Jak definiować
Bardziej szczegółowoKrakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2014/2015
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu WydziałNauk o Bezpieczeństwie obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 201/2015 Kierunek studiów: Bezpieczeństwo
Bardziej szczegółowoBazy Danych. Bazy Danych i SQL Podstawowe informacje o bazach danych. Krzysztof Regulski WIMiIP, KISiM,
Bazy Danych Bazy Danych i SQL Podstawowe informacje o bazach danych Krzysztof Regulski WIMiIP, KISiM, regulski@metal.agh.edu.pl Oczekiwania? 2 3 Bazy danych Jak przechowywać informacje? Jak opisać rzeczywistość?
Bardziej szczegółowoZasady sprawnego i efektywnego sterowania przepływami materiałów i wyrobów. dr hab. inż. Andrzej Szymonik prof. PŁ
Zasady sprawnego i efektywnego sterowania przepływami materiałów i wyrobów dr hab. inż. Andrzej Szymonik prof. PŁ www.gen-prof.pl Łódź 2016/2017 1. Pojecie sterowania i regulacji Regulacja, sterowanie,
Bardziej szczegółowoHarmonogram Akademii Kompetencji Comarch
Harmonogram Akademii Kompetencji Grupa warsztatowa nr 1 9.04.13 16.04.13 23.04.13 07.05.13 Ogólny wstęp o u, oprogramowaniu Optima i szansach słuchaczy po zakończeniu zajęć + e- commerce z wykorzystaniem
Bardziej szczegółowoPRZEWODNIK PO WYBRANYM PRZEDMIOCIE. Modelowanie procesów logistycznych
PRZEWODNIK PO WYBRANYM PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Modelowanie logistycznych Logistyka Stacjonarne I stopnia Rok 3 Semestr Jednostka prowadząca Osoba sporządzająca
Bardziej szczegółowoRok akademicki: 2014/2015 Kod: EAR-2-106-IS-s Punkty ECTS: 4. Kierunek: Automatyka i Robotyka Specjalność: Informatyka w sterowaniu i zarządzaniu
Nazwa modułu: Systemy informatyczne w produkcji Rok akademicki: 2014/2015 Kod: EAR-2-106-IS-s Punkty ECTS: 4 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Automatyka
Bardziej szczegółowoTechnologie informacyjne
dr inż. Paweł Morawski Technologie informacyjne semestr letni 2016/2017 kontakt / informacje dr inż. Paweł Morawski Katedra Marketingu i Logistyki SAN e-mail: pmorawski@spoleczna.pl www: http://pmorawski.spoleczna.pl
Bardziej szczegółowoGospodarka magazynowa - opis przedmiotu
Gospodarka magazynowa - opis przedmiotu Informacje ogólne Nazwa przedmiotu Gospodarka magazynowa Kod przedmiotu 06.9-WZ-LogP-GM-S16 Wydział Kierunek Wydział Ekonomii i Zarządzania Logistyka / Zarządzanie
Bardziej szczegółowoGospodarka magazynowa - opis przedmiotu
Gospodarka magazynowa - opis przedmiotu Informacje ogólne Nazwa przedmiotu Gospodarka magazynowa Kod przedmiotu 06.9-WZ-LogP-GM-S16 Wydział Kierunek Wydział Ekonomii i Zarządzania Logistyka / Logistyka
Bardziej szczegółowo