dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2018/2019

Wielkość: px
Rozpocząć pokaz od strony:

Download "dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2018/2019"

Transkrypt

1 dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2018/2019

2 KONTAKT Z PROWADZĄCYM dr inż. Paweł Morawski pmorawski@spoleczna.pl www: konsultacje: info. na stronie jw.

3 CEL PRZEDMIOTU IWDL Celem przedmiotu Informatyczne wsparcie decyzji logistycznych jest wyjaśnienie roli informatyzacji we współczesnych przedsiębiorstwach realizujących procesy logistyczne ze szczególnym uwzględnieniem procesów analityki biznesowej BI (Business Intelligence). Omówione zostaną formy i możliwości wykorzystania Internetu w działalności przedsiębiorstw logistycznych (e-logistyka) oraz informatycznego wsparcia procesów decyzyjnych w Logistyce. INTERDYSCYPLINARNOŚĆ!!! 3

4 literatura IWDL LITERATURA: Surma J., Business Intelligence, PWN, Warszawa Wieczerzycki W., E-Logistyka, Wyd. PWE, Warszawa M. Kłak, Zarzadzanie wiedzą we współczesnym przedsiębiorstwie, KTEE, Kielce (na stronie) 4

5 literatura IWDL UZUPEŁNIAJĄCA: 1. REWORK 2. JAK DZIAŁA GOOGLE 3. DISRUPTED / FAKAP 4. Lean Startup 5

6 IWDL - sposób prowadzenia zajęć konwersatorim 4 spotkania w zjazdach A (soboty A) w pierwszej połowie semestru 6

7 IWDL - warunki zaliczenia ZALICZENIE: Test na ostatnich zajęciach ( ) 7

8 IWDL - motto Jeśli nie możesz czegoś zmierzyć - nie możesz tym zarządzać 8

9 IWDL - teza Sprawne pozyskiwanie, przechowywanie, przetwarzanie, udostępnianie i umiejętne wykorzystanie danych i informacji jest obecnie warunkiem koniecznym efektywnego zarządzania. 9

10 IWDL - geneza Obecnie przyjmuje się, że dane i informacje obok ludzi (wiedza) są najbardziej istotnymi zasobami. Data: your most valuable asset!!! 10

11 IWDL - geneza 11

12 12

13 IWDL - słowa kluczowe Business Intelligence (Analityka Biznesowa) Data Warehouse (Hurtownia danych) Data Mining (Eksploracja danych) OLAP (Online Analytical Processing) Kostka OLAP (OLAP cube) Big DATA IoT (Internet of Things) Artificial Intelligence (Sztuczna inteligencja) Neural Networks (Sieci neuronowe) KPI (Key Performance Indicators) ETL (Extract Tranform Load) Forecasting (Prognozowanie) 13

14 IWDL - geneza Prowadzenie firmy wymaga podejmowania wielu decyzji dziennie - zarówno przez kierownictwo, jak i pracowników operacyjnych. Aby podejmowane działania były właściwe, muszą opierać się na aktualnych informacjach. Jednak co zrobić, kiedy problemem staje się nie brak informacji, a ich nadmiar? W przeciętnej firmie codziennie generowane są takie ilości danych, że umysł ludzki nie jest w stanie samodzielnie ich analizować. 14

15 IWDL - definicyjnie Business Intelligence (BI), również analityka biznesowa - pojęcie o szerokim znaczeniu. Najbardziej ogólnie można przedstawić je jako proces przekształcania danych w informacje, a informacji w wiedzę, która może być wykorzystana do zwiększenia konkurencyjności przedsiębiorstwa poprzez podejmowanie trafnych decyzji. 15

16 IWDL - piramida informacyjna 16

17 IWDL - geneza 17

18 IWDL - geneza W rozumieniu czysto biznesowym BI można także definiować jako kombinację architektury systemu, aplikacji oraz baz danych, które razem umożliwiają prowadzone w czasie rzeczywistym analizy i przekształcenia, dostarczające potrzebną informację i wiedzę biznesowi w celu podejmowania decyzji. 18

19 IWDL - geneza 19

20 IWDL - definicyjnie Business Intelligence jest definiowane przez firmę Gartner jako zorientowany na użytkownika proces zbierania, eksploracji, interpretacji i analizy danych, który prowadzi do usprawnienia i zracjonalizowania procesu podejmowania decyzji. Systemy te wspierają kadrę menedżerską w podejmowaniu decyzji biznesowych w celu kreowania wzrostu wartości przedsiębiorstwa. 20

21 IWDL - zastosowania 21

22 IWDL - model wspierania decyzji 22

23 IWDL - hurtownia danych Efektywne eksploatowanie narzędzi BI jest mocno uzależnione od utworzenia hurtowni danych, która pozwala na ujednolicenie i powiązanie danych źródłowych zgromadzonych w różnorodnych systemach informatycznych przedsiębiorstwa (np. systemach transakcyjnych: ERP, CRM, WMS, ) 23

24 IWDL - dlaczego hurtownia danych? 1. Przeprowadzanie analiz poza systemami transakcyjnymi (OLTP) 2. Całościowy wgląd w dane firmy 3. Dostęp do danych historycznych 4. Ujednolicenie posiadanych informacji (np. KPI) 24

25 IWDL - architektura hurtowni danych ERP, CRM, WMS 25 ang. flat files

26 IWDL - OLAP (raportowanie) OLAP (ang. OnLine Analytical Processing) to oprogramowanie wspierające podejmowanie decyzji, które pozwala użytkownikowi analizować szybko informacje zawarte w wielowymiarowych widokach i hierarchiach. Narzędzia OLAP są często używane do wykonywania analiz trendów sprzedaży, czy też analiz finansowych. Są też przydatne do wstępnego przeglądania zbioru danych przez analityka we wstępnej fazie analiz statystycznych. 26

27 IWDL - kostka OLAP Wielowymiarowa kostka OLAP (ang. OLAP cube) jest podstawową strukturą danych w każdym systemie OLAP działającym w środowisku Hurtowni Danych. Cube składa się z Miar (ang. measures), Wymiarów (ang. dimensions) i Poziomów (ang. levels) i jest zoptymalizowany pod kątem szybkiego i bezpiecznego dostępu do danych wielowymiarowych. 27

28 IWDL - kostka OLAP miary i wymiary Miary to wskaźniki numeryczne (ile?), miary to: przychód, waga, ilość, koszt, upust, Wymiary to dane opisowe (kto? co? kiedy? gdzie?) wymiary to: czas, klient, produkt, lokalizacja, Wymiary są pogrupowane za pomocą poziomów, które odzwierciedlają hierarchię funkcjonującą w organizacji i pozwalają użytkownikom końcowym zwiększać lub zmniejszać poziom szczegółowości analizowanego wymiaru. 28

29 IWDL - kostka OLAP 29

30 IWDL - raport sprzedażowy OLAP 30

31 Podstawowe operacje analizy danych 31

32 IWDL - BI w monitoringu procesów BI wykorzystuje się w następujących działaniach: bieżący monitoring procesów real-time analiza wskaźników (S&OP) symulacje off-line (analiza jeśli-to, prognozowanie) sugerowanie decyzji zarządczych prezentacja wizualna informacji (raporty i kokpity) 32

33 IWDL - OTIF 33

34 IWDL - wybrane zastosowania OLAP w zakresie Logistyka i Produkacja 34

35 IWDL DATA DISCOVERY DATA DISCOVERY - VIDEO 35

36 IWDL DZIĘKUJĘ ZA UWAGĘ 36

dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2016/2017

dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2016/2017 dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2016/2017 KONTAKT Z PROWADZĄCYM dr inż. Paweł Morawski e-mail: pmorawski@spoleczna.pl www: http://pmorawski.spoleczna.pl

Bardziej szczegółowo

Business Intelligence

Business Intelligence Business Intelligence Paweł Mielczarek Microsoft Certified Trainer (MCT) MCP,MCSA, MCTS, MCTS SQL 2005, MCTS SQL 2008, MCTS DYNAMICS, MBSS, MBSP, MCITP DYNAMICS. Geneza Prowadzenie firmy wymaga podejmowania

Bardziej szczegółowo

HURTOWNIE DANYCH I BUSINESS INTELLIGENCE

HURTOWNIE DANYCH I BUSINESS INTELLIGENCE BAZY DANYCH HURTOWNIE DANYCH I BUSINESS INTELLIGENCE Akademia Górniczo-Hutnicza w Krakowie Adrian Horzyk horzyk@agh.edu.pl Google: Horzyk HURTOWNIE DANYCH Hurtownia danych (Data Warehouse) to najczęściej

Bardziej szczegółowo

Rola analityki danych w transformacji cyfrowej firmy

Rola analityki danych w transformacji cyfrowej firmy Rola analityki danych w transformacji cyfrowej firmy Piotr Czarnas Querona CEO Analityka biznesowa (ang. Business Intelligence) Proces przekształcania danych w informacje, a informacji w wiedzę, która

Bardziej szczegółowo

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2007 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę

Bardziej szczegółowo

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2012 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę

Bardziej szczegółowo

Hurtownie danych. Rola hurtowni danych w systemach typu Business Intelligence

Hurtownie danych. Rola hurtowni danych w systemach typu Business Intelligence Hurtownie danych Rola hurtowni danych w systemach typu Business Intelligence Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika

Bardziej szczegółowo

Usługi analityczne budowa kostki analitycznej Część pierwsza.

Usługi analityczne budowa kostki analitycznej Część pierwsza. Usługi analityczne budowa kostki analitycznej Część pierwsza. Wprowadzenie W wielu dziedzinach działalności człowieka analiza zebranych danych jest jednym z najważniejszych mechanizmów podejmowania decyzji.

Bardziej szczegółowo

Spojrzenie na systemy Business Intelligence

Spojrzenie na systemy Business Intelligence Marcin Adamczak Nr 5375 Spojrzenie na systemy Business Intelligence 1.Wprowadzenie. W dzisiejszym świecie współczesna organizacja prędzej czy później stanie przed dylematem wyboru odpowiedniego systemu

Bardziej szczegółowo

Business Intelligence jako narzędzie do walki z praniem brudnych pieniędzy

Business Intelligence jako narzędzie do walki z praniem brudnych pieniędzy Business www.comarch.pl Intelligence jako narzędzie do walki z praniem brudnych pieniędzy Business Intelligence jako narzędzie do walki z praniem brudnych pieniędzy Tomasz Matysik Kołobrzeg, 19.11.2009

Bardziej szczegółowo

Co to jest Business Intelligence?

Co to jest Business Intelligence? Cykl: Cykl: Czwartki z Business Intelligence Sesja: Co Co to jest Business Intelligence? Bartłomiej Graczyk 2010-05-06 1 Prelegenci cyklu... mariusz@ssas.pl lukasz@ssas.pl grzegorz@ssas.pl bartek@ssas.pl

Bardziej szczegółowo

Paweł Gołębiewski. Softmaks.pl Sp. z o.o. ul. Kraszewskiego 1 85-240 Bydgoszcz www.softmaks.pl kontakt@softmaks.pl

Paweł Gołębiewski. Softmaks.pl Sp. z o.o. ul. Kraszewskiego 1 85-240 Bydgoszcz www.softmaks.pl kontakt@softmaks.pl Paweł Gołębiewski Softmaks.pl Sp. z o.o. ul. Kraszewskiego 1 85-240 Bydgoszcz www.softmaks.pl kontakt@softmaks.pl Droga na szczyt Narzędzie Business Intelligence. Czyli kiedy podjąć decyzję o wdrożeniu?

Bardziej szczegółowo

Wstęp do Business Intelligence

Wstęp do Business Intelligence Wstęp do Business Intelligence Co to jest Buisness Intelligence Business Intelligence (analityka biznesowa) - proces przekształcania danych w informacje, a informacji w wiedzę, która może być wykorzystana

Bardziej szczegółowo

Hurtownie danych. 31 stycznia 2017

Hurtownie danych. 31 stycznia 2017 31 stycznia 2017 Definicja hurtowni danych Hurtownia danych wg Williama Inmona zbiór danych wyróżniający się następującymi cechami uporządkowany tematycznie zintegrowany zawierający wymiar czasowy nieulotny

Bardziej szczegółowo

Wprowadzenie do Hurtowni Danych. Mariusz Rafało

Wprowadzenie do Hurtowni Danych. Mariusz Rafało Wprowadzenie do Hurtowni Danych Mariusz Rafało mariusz.rafalo@hotmail.com WPROWADZENIE DO HURTOWNI DANYCH Co to jest hurtownia danych? Hurtownia danych jest zbiorem danych zorientowanych tematycznie, zintegrowanych,

Bardziej szczegółowo

Wprowadzenie do Hurtowni Danych. Mariusz Rafało

Wprowadzenie do Hurtowni Danych. Mariusz Rafało Wprowadzenie do Hurtowni Danych Mariusz Rafało mrafalo@sgh.waw.pl WARSTWA PREZENTACJI HURTOWNI DANYCH Wykorzystanie hurtowni danych - aspekty Analityczne zbiory danych (ADS) Zbiór danych tematycznych (Data

Bardziej szczegółowo

Hurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH

Hurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH Wstęp. Architektura hurtowni. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH B. Inmon, 1996: Hurtownia to zbiór zintegrowanych, nieulotnych, ukierunkowanych

Bardziej szczegółowo

Analiza internetowa czyli Internet jako hurtownia danych

Analiza internetowa czyli Internet jako hurtownia danych Analiza internetowa czyli Internet jako hurtownia danych Agenda 1. Hurtownie danych, eksploracja danych i OLAP 3. Internet 5. Analiza Internetowa 7. Google Analytics 9. Podsumowanie Hurtownie danych (definicja)

Bardziej szczegółowo

Marcin Adamczak Jakub Gruszka MSP. Business Intelligence

Marcin Adamczak Jakub Gruszka MSP. Business Intelligence Marcin Adamczak Jakub Gruszka MSP Business Intelligence Plan Prezentacji Definicja Podział Zastosowanie Wady i zalety Przykłady Historia W październiku 1958 Hans Peter Luhn pracownik działu badań w IBM

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE. Logistyka inżynierska. niestacjonarne. I stopnia. ogólnoakademicki. specjalnościowy

PRZEWODNIK PO PRZEDMIOCIE. Logistyka inżynierska. niestacjonarne. I stopnia. ogólnoakademicki. specjalnościowy Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Infrastruktura systemów logistycznych E Logistyka inżynierska niestacjonarne

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:

Bardziej szczegółowo

Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną

Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Zarządzanie Rodzaj przedmiotu: specjalnościowy Opiekun: prof. nadzw. dr hab. Zenon Biniek Poziom studiów (I lub II stopnia): II stopnia Tryb studiów:

Bardziej szczegółowo

DOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE:

DOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE: DOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE: JAKIE PROBLEMY ROZWIĄZUJE BI 1 S t r o n a WSTĘP Niniejszy dokument to zbiór podstawowych problemów, z jakimi musi zmagać się przedsiębiorca, analityk,

Bardziej szczegółowo

ANALIZA DANYCH SYSTEMU ERP WYKORZYSTANIE KONCEPCJI BUSINESS INTELLIGENCE

ANALIZA DANYCH SYSTEMU ERP WYKORZYSTANIE KONCEPCJI BUSINESS INTELLIGENCE ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ Seria: ORGANIZACJA I ZARZĄDZANIE z. XX XXXX Nr kol. XXXX Marcin WYSKWARSKI Politechnika Śląska Wydział Organizacji i Zarządzania Instytut Ekonomii i Informatyki ANALIZA

Bardziej szczegółowo

Hurtownie danych. Wprowadzenie do systemów typu Business Intelligence

Hurtownie danych. Wprowadzenie do systemów typu Business Intelligence Hurtownie danych Wprowadzenie do systemów typu Business Intelligence Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika

Bardziej szczegółowo

Od Expert Data Scientist do Citizen Data Scientist, czyli jak w praktyce korzystać z zaawansowanej analizy danych

Od Expert Data Scientist do Citizen Data Scientist, czyli jak w praktyce korzystać z zaawansowanej analizy danych Od Expert Data Scientist do Citizen Data Scientist, czyli jak w praktyce korzystać z zaawansowanej analizy danych Tomasz Demski StatSoft Polska www.statsoft.pl Analiza danych Zaawansowana analityka, data

Bardziej szczegółowo

Część I Istota analizy biznesowej a Analysis Services

Część I Istota analizy biznesowej a Analysis Services Spis treści Część I Istota analizy biznesowej a Analysis Services 1 Analiza biznesowa: podstawy analizy danych... 3 Wprowadzenie do analizy biznesowej... 3 Wielowymiarowa analiza danych... 5 Atrybuty w

Bardziej szczegółowo

Hurtownie danych a transakcyjne bazy danych

Hurtownie danych a transakcyjne bazy danych Hurtownie danych a transakcyjne bazy danych Materiały źródłowe do wykładu: [1] Jerzy Surma, Business Intelligence. Systemy wspomagania decyzji, Wydawnictwo Naukowe PWN, Warszawa 2009 [2] Arkadiusz Januszewski,

Bardziej szczegółowo

Prezentacja kierunku Analityka biznesowa. Instytut Ekonomii i Informatyki

Prezentacja kierunku Analityka biznesowa. Instytut Ekonomii i Informatyki Prezentacja kierunku Analityka biznesowa Instytut Ekonomii i Informatyki Potrzeba (1) Raport McKinsey Global Institute (grudzień 2016) Z szacunków McKinsey wynika, że o ile globalnie liczba absolwentów

Bardziej szczegółowo

Hurtownie danych. Hurtownie danych. dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki. Maciej Zakrzewicz (1)

Hurtownie danych. Hurtownie danych. dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki. Maciej Zakrzewicz (1) Hurtownie danych dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki Maciej Zakrzewicz (1) Plan wykładu Wprowadzenie do Business Intelligence (BI) Hurtownia danych Zasilanie hurtowni

Bardziej szczegółowo

Pierwsze wdrożenie SAP BW w firmie

Pierwsze wdrożenie SAP BW w firmie Pierwsze wdrożenie w firmie Mirosława Żurek, BCC Poznao, maj 2013 Zakres tematyczny wykładu Podstawowe założenia i pojęcia hurtowni danych ; Przykładowe pierwsze wdrożenie w firmie i jego etapy; Przykładowe

Bardziej szczegółowo

Stawiamy na specjalizację. by CSB-System AG, Geilenkirchen Version 1.1

Stawiamy na specjalizację. by CSB-System AG, Geilenkirchen Version 1.1 1 Business Intelligence Jak najlepiej wykorzystać dostępne źródła informacji, czyli Business Intelligence w zarządzaniu III Konferencja i warsztaty dla branży mięsnej Potencjał rynku potencjał firmy 2

Bardziej szczegółowo

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2012 Zagadnienia do omówienia 1. Miejsce i rola w firmie 2. Przegląd architektury

Bardziej szczegółowo

Prezentacja firmy WYDAJNOŚĆ EFEKTYWNOŚĆ SKUTECZNOŚĆ. http://www.qbico.pl

Prezentacja firmy WYDAJNOŚĆ EFEKTYWNOŚĆ SKUTECZNOŚĆ. http://www.qbico.pl Prezentacja firmy { WYDAJNOŚĆ EFEKTYWNOŚĆ SKUTECZNOŚĆ http://www.qbico.pl Firma ekspercka z dziedziny Business Intelligence Srebrny Partner Microsoft w obszarach Business Intelligence i Data Platform Tworzymy

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 201/2014 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:

Bardziej szczegółowo

Wprowadzenie do technologii Business Intelligence i hurtowni danych

Wprowadzenie do technologii Business Intelligence i hurtowni danych Wprowadzenie do technologii Business Intelligence i hurtowni danych 1 Plan rozdziału 2 Wprowadzenie do Business Intelligence Hurtownie danych Produkty Oracle dla Business Intelligence Business Intelligence

Bardziej szczegółowo

Analityka danych & big data

Analityka danych & big data TomaszJangas.com Analityka danych & big data 15 października 2017 W tym artykule opiszę architekturę, jaka często wykorzystywana jest dzisiaj w środowiskach do analityki danych w wielu różnych organizacjach

Bardziej szczegółowo

Analityka danych w środowisku Hadoop. Piotr Czarnas, 5 czerwca 2017

Analityka danych w środowisku Hadoop. Piotr Czarnas, 5 czerwca 2017 Analityka danych w środowisku Hadoop Piotr Czarnas, 5 czerwca 2017 Pytania stawiane przez biznes 1 Jaka jest aktualnie sytuacja w firmie? 2 Na czym jeszcze możemy zarobić? Które procesy możemy usprawnić?

Bardziej szczegółowo

SAS OLAP Cube Studio Wprowadzenie

SAS OLAP Cube Studio Wprowadzenie SAS OLAP Cube Studio Wprowadzenie Izabela Szczęch i Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania

Bardziej szczegółowo

1.1 Matryca pokrycia efektów kształcenia. Efekty kształcenia w zakresie wiedzy. Efekty kształcenia w zakresie umiejętności

1.1 Matryca pokrycia efektów kształcenia. Efekty kształcenia w zakresie wiedzy. Efekty kształcenia w zakresie umiejętności 1.1 Matryca pokrycia efektów kształcenia Matryca dla przedmiotów realizowanych na kierunku Informatyka i Ekonometria (z wyłączeniem przedmiotów realizowanych w ramach specjalności oraz przedmiotów swobodnego

Bardziej szczegółowo

SYSTEMY KLASY BI PLATFORMĄ EFEKTYWNEGO WSPÓŁDZIAŁANIA WSPÓŁCZESNYCH ORGANIZACJI. Piotr Zaskórski

SYSTEMY KLASY BI PLATFORMĄ EFEKTYWNEGO WSPÓŁDZIAŁANIA WSPÓŁCZESNYCH ORGANIZACJI. Piotr Zaskórski SYSTEMY KLASY BI PLATFORMĄ EFEKTYWNEGO WSPÓŁDZIAŁANIA WSPÓŁCZESNYCH ORGANIZACJI Piotr Zaskórski 1. MIEJSCE I ROLA SYSTEMÓW KLASY BI W KSZTAŁTOWANIU STRUKTUR I STRATEGII ZARZĄDZANIA WSPÓŁCZESNYCH ORGANIZACJI.

Bardziej szczegółowo

BUSINESS INTELLIGENCE for PROGRESS BI4PROGRESS

BUSINESS INTELLIGENCE for PROGRESS BI4PROGRESS BUSINESS INTELLIGENCE for PROGRESS BI4PROGRESS SZYBKIE ANALIZY EKONOMICZNE, FINANSOWE I STATYSTYCZNE 0 S t r o n a Dlaczego BI4PROGRESS? W czasach nieustających, dynamicznych zmian na rynku edukacyjnym,

Bardziej szczegółowo

HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego

HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego http://www.jakubw.pl/zajecia/hur/bi.pdf http://www.jakubw.pl/zajecia/hur/dw.pdf http://www.jakubw.pl/zajecia/hur/dm.pdf http://www.jakubw.pl/zajecia/hur/

Bardziej szczegółowo

Systemy Business Intelligence w praktyce. Maciej Kiewra

Systemy Business Intelligence w praktyce. Maciej Kiewra Systemy Business Intelligence w praktyce Maciej Kiewra Wspólna nazwa dla grupy systemów: Hurtownia danych Pulpity menadżerskie Karty wyników Systemy budżetowe Hurtownia danych - ujednolicone repozytorium

Bardziej szczegółowo

Hurtownie danych w praktyce

Hurtownie danych w praktyce Hurtownie danych w praktyce Fakty i mity Dr inż. Maciej Kiewra Parę słów o mnie... 8 lat pracy zawodowej z hurtowniami danych Projekty realizowane w kraju i zagranicą Certyfikaty Microsoft z Business Intelligence

Bardziej szczegółowo

Hurtownie danych czyli jak zapewnić dostęp do wiedzy tkwiącej w danych

Hurtownie danych czyli jak zapewnić dostęp do wiedzy tkwiącej w danych Hurtownie danych czyli jak zapewnić dostęp do wiedzy tkwiącej w danych Rodzaj zajęć: Wszechnica Popołudniowa Tytuł: Hurtownie danych czyli jak zapewnić dostęp do wiedzy tkwiącej w danych Autor: mgr inż.

Bardziej szczegółowo

E-logistyka Redakcja naukowa Waldemar Wieczerzycki

E-logistyka Redakcja naukowa Waldemar Wieczerzycki E-logistyka Redakcja naukowa Waldemar Wieczerzycki E-logistyka to szerokie zastosowanie najnowszych technologii informacyjnych do wspomagania zarządzania logistycznego przedsiębiorstwem (np. produkcją,

Bardziej szczegółowo

Sylabus przedmiotu: Data wydruku: Dla rocznika: 2014/2015. Kierunek: Opis przedmiotu. Dane podstawowe. Efekty i cele. Opis. 1 z 5

Sylabus przedmiotu: Data wydruku: Dla rocznika: 2014/2015. Kierunek: Opis przedmiotu. Dane podstawowe. Efekty i cele. Opis. 1 z 5 Sylabus przedmiotu: Specjalność: Informatyka w zarządzaniu Wszystkie specjalności Data wydruku: Dla rocznika: 2014/2015 Kierunek: Wydział: Zarządzanie Ekonomii, Zarządzania i Turystyki Dane podstawowe

Bardziej szczegółowo

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Germanas Budnikas, Dr

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Germanas Budnikas, Dr Tryb studiów Studia stacjonarne Kierunek studiów Ekonomia Poziom studiów Pierwszego stopnia Rok studiów/ semestr III / 6 Specjalność Bez specjalności Kod katedry/zakładu w systemie USOS 10000000 Wydział

Bardziej szczegółowo

VII Kongres BOUG 03 października 2012

VII Kongres BOUG 03 października 2012 Raportowanie SLA w duŝej organizacji Studium przypadku VII Kongres BOUG 03 października 2012 Zdefiniowanie przypadku Zadanie do wykonania: Jak przenieść ustalenia formalne na efektywnie raportujący system?

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 10

SPIS TREŚCI WSTĘP... 10 SPIS TREŚCI WSTĘP... 10 Wykład 1. GENEZA, ROZWÓJ, WSPÓŁCZESNE WYZWANIA PRALOGISTYKI WOJSKOWEJ 1. Historyczne źródła logistyki wojskowej... 15 2. Logistyka według poglądów teoretyków amerykańskich... 17

Bardziej szczegółowo

Hurtownia danych praktyczne zastosowania

Hurtownia danych praktyczne zastosowania Hurtownia danych praktyczne zastosowania Dorota Olkowicz dorota.olkowicz@its.waw.pl Centrum Bezpieczeństwa Ruchu Drogowego ITS Plan prezentacji 1. Hurtownie danych 2. Hurtownia danych POBR 3. Narzędzia

Bardziej szczegółowo

Trendy BI z perspektywy. marketingu internetowego

Trendy BI z perspektywy. marketingu internetowego Trendy BI z perspektywy marketingu internetowego BI CECHUJE ORGANIZACJE DOJRZAŁE ANALITYCZNIE 2 ALE JAKA JEST TA DOJRZAŁOŚĆ ANALITYCZNA ORGANIZACJI? 3 Jaka jest dojrzałość analityczna organizacji? Zarządzanie

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek PRZEWODNIK PO PRZEDMIOCIE Metody prezentacji informacji Logistyka Forma studiów niestacjonarne Poziom kwalifikacji I stopnia Rok 2 Semestr 3 Jednostka prowadząca Instytut Logistyki

Bardziej szczegółowo

Szkolenia SAS Cennik i kalendarz 2017

Szkolenia SAS Cennik i kalendarz 2017 Szkolenia SAS Spis treści NARZĘDZIA SAS FOUNDATION 2 ZAAWANSOWANA ANALITYKA 2 PROGNOZOWANIE I EKONOMETRIA 3 ANALIZA TREŚCI 3 OPTYMALIZACJA I SYMULACJA 3 3 ROZWIĄZANIA DLA HADOOP 3 HIGH-PERFORMANCE ANALYTICS

Bardziej szczegółowo

Narzędzia geoprzestrzenne Business Intelligence (BI)

Narzędzia geoprzestrzenne Business Intelligence (BI) Narzędzia geoprzestrzenne Business Intelligence (BI) Paweł Pręcikowski Dyrektor Administracja i Bezpieczeństwo Publiczne Kraków, 17-18 maja 2018 r. Agenda 1. Wprowadzenie do BI 2. Prezentacja rozwiązań:

Bardziej szczegółowo

Wstęp... 7. 3. Technologie informacyjne wpływające na doskonalenie przedsiębiorstwa

Wstęp... 7. 3. Technologie informacyjne wpływające na doskonalenie przedsiębiorstwa Spis treści Wstęp.............................................................. 7 1. Przedsiębiorstwo w dobie globalizacji.............................. 11 1.1. Wyzwania globalnego rynku....................................

Bardziej szczegółowo

dr inż. Maciej Kiewra Prezentacja wygłoszona na konferencji BI vs Big Data podczas Kongresu GigaCon Warszawa, 16.04.2014 r.

dr inż. Maciej Kiewra Prezentacja wygłoszona na konferencji BI vs Big Data podczas Kongresu GigaCon Warszawa, 16.04.2014 r. dr inż. Maciej Kiewra Prezentacja wygłoszona na konferencji BI vs Big Data podczas Kongresu GigaCon Warszawa, 16.04.2014 r. Big Data w praktyce, z perspektywy konsultanta Business Intelligence Parę słów

Bardziej szczegółowo

Dr inż. Andrzej KAMIŃSKI Instytut Informatyki i Gospodarki Cyfrowej Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie

Dr inż. Andrzej KAMIŃSKI Instytut Informatyki i Gospodarki Cyfrowej Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie ANALIZA POZIOMU ODDZIAŁYWANIA CZYNNIKÓW TECHNOLOGICZNYCH I ŚRODOWISKOWYCH NA PRACOWNIKÓW PRZEMYSŁOWYCH Z WYKORZYSTANIEM TECHNOLOGII BUSINESS INTELLIGENCE Dr inż. Andrzej KAMIŃSKI Instytut Informatyki i

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Metody drążenia danych D1.3

KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Metody drążenia danych D1.3 KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:

Bardziej szczegółowo

ROZWIĄZANIE BUSINESS INTELLIGENCE TARGIT

ROZWIĄZANIE BUSINESS INTELLIGENCE TARGIT ROZWIĄZANIE BUSINESS INTELLIGENCE TARGIT Plan prezentacji Systemy Business Intelligence Architektura i funkcje systemu Targit Prezentacja na żywo: Dla zarządów i menedżerów Dla analityków i kontrolerów

Bardziej szczegółowo

Ekonometria dynamiczna i finansowa Kod przedmiotu

Ekonometria dynamiczna i finansowa Kod przedmiotu Ekonometria dynamiczna i finansowa - opis przedmiotu Informacje ogólne Nazwa przedmiotu Ekonometria dynamiczna i finansowa Kod przedmiotu 11.5-WK-IiED-EDF-W-S14_pNadGenMOT56 Wydział Kierunek Wydział Matematyki,

Bardziej szczegółowo

PREZENTACJA FUNKCJONALNA SYSTEMU PROPHIX

PREZENTACJA FUNKCJONALNA SYSTEMU PROPHIX PREZENTACJA FUNKCJONALNA SYSTEMU PROPHIX Architektura i struktura funkcjonalna systemu PROPHIX PROPHIX Corporate Performance Management (Zarządzanie Wydajnością Firmy) System do samodzielnego planowania,

Bardziej szczegółowo

Zasady sprawnego i efektywnego sterowania przepływami materiałów i wyrobów

Zasady sprawnego i efektywnego sterowania przepływami materiałów i wyrobów Zasady sprawnego i efektywnego sterowania przepływami materiałów i wyrobów prof. nadzw. PO dr hab. inż. Andrzej Szymonik Opole 2012/2013 www.gen-prof.pl 1. Pojecie sterowania i regulacji Regulacja, sterowanie,

Bardziej szczegółowo

KSIĘGA POMOCNICZA Efektywne narzędzie do księgowania transakcji masowych

KSIĘGA POMOCNICZA Efektywne narzędzie do księgowania transakcji masowych KSIĘGA POMOCNICZA Efektywne narzędzie do księgowania transakcji masowych Wstęp Przedsiębiorstwa chcące konkurować w warunkach cyfrowej rewolucji muszą przykładać dużą wagę do jakości danych i informacji

Bardziej szczegółowo

Bazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych

Bazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych Plan wykładu Bazy Wykład 14: Hurtownie Bazy operacyjne i analityczne Architektura hurtowni Projektowanie hurtowni Małgorzata Krętowska, Agnieszka Oniśko Wydział Informatyki PB Bazy (studia dzienne) 2 Rodzaje

Bardziej szczegółowo

Spis treści. Część I Wprowadzenie do pakietu oprogramowania Analysis Services

Spis treści. Część I Wprowadzenie do pakietu oprogramowania Analysis Services Spis treści Wstęp... ix Odkąd najlepiej rozpocząć lekturę?... ix Informacja dotycząca towarzyszącej ksiąŝce płyty CD-ROM... xi Wymagania systemowe... xi Instalowanie i uŝywanie plików przykładowych...

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Systemy Decision suport systems Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: obowiązkowy Poziom studiów: studia II stopnia

Bardziej szczegółowo

2014-03-17. Misja. Strategia. Cele UNIT4 TETA BI CENTER. Plan prezentacji. Grupa UNIT4 TETA. Grupa kapitałowa UNIT4 UNIT4 TETA BI CENTER

2014-03-17. Misja. Strategia. Cele UNIT4 TETA BI CENTER. Plan prezentacji. Grupa UNIT4 TETA. Grupa kapitałowa UNIT4 UNIT4 TETA BI CENTER Plan prezentacji Prowadzący: Mateusz Jaworski m.jaworski@tetabic.pl 1. Grupa kapitałowa UNIT4. 2. Grupa UNIT4 TETA. 3. UNIT4 TETA BI CENTER. 4. TETA Business Intelligence. 5. Analiza wielowymiarowa. 6..

Bardziej szczegółowo

Zwykły magazyn. Centralny magazyn

Zwykły magazyn. Centralny magazyn Zwykły magazyn Centralny magazyn Celem mojej pracy jest zaprezentowanie i przedstawienie w formie pisemnej zasad prawidłowego funkcjonowania magazynów zarówno w przemyśle jak i handlu oraz zarządzanie

Bardziej szczegółowo

Sylabus przedmiotu: Data wydruku: Dla rocznika: 2014/2015. Kierunek: Opis przedmiotu. Dane podstawowe. Efekty i cele. Opis. 1 z 6

Sylabus przedmiotu: Data wydruku: Dla rocznika: 2014/2015. Kierunek: Opis przedmiotu. Dane podstawowe. Efekty i cele. Opis. 1 z 6 Sylabus przedmiotu: Specjalność: Informatyka w zarządzaniu Wszystkie specjalności Data wydruku: Dla rocznika: 2014/2015 Kierunek: Wydział: Zarządzanie Ekonomii, Zarządzania i Turystyki Dane podstawowe

Bardziej szczegółowo

Agenda. O firmie. Wstęp Ksavi. Opis funkcjonalności systemu Ksavi Auditor. Podsumowanie

Agenda. O firmie. Wstęp Ksavi. Opis funkcjonalności systemu Ksavi Auditor. Podsumowanie Agenda O firmie Wstęp Ksavi Opis funkcjonalności systemu Ksavi Auditor Podsumowanie O firmie Na rynku od 2001 roku 60 zatrudnionych pracowników Dogłębna znajomość branży Projekty informatyczne dla największych

Bardziej szczegółowo

ANALIZA DANYCH. OD TEGO WSZYSTKO SIĘ ZACZYNA.

ANALIZA DANYCH. OD TEGO WSZYSTKO SIĘ ZACZYNA. MARZEC 2018 ANALIZA DANYCH. OD TEGO WSZYSTKO SIĘ ZACZYNA. Prezentacja wyników badania poziomu stosowania analizy danych w polskich przedsiębiorstwach. Partner merytoryczny: Szanowni Państwo Jest mi bardzo

Bardziej szczegółowo

Analityka danych w środowisku Hadoop. Piotr Czarnas, 27 czerwca 2017

Analityka danych w środowisku Hadoop. Piotr Czarnas, 27 czerwca 2017 Analityka danych w środowisku Hadoop Piotr Czarnas, 27 czerwca 2017 Hadoop i Business Intelligence - wyzwania 1 Ładowane danych do Hadoop-a jest trudne 2 Niewielu specjalistów dostępnych na rynku Dostęp

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE INŻYNIERIA PRZESTRZENNA W LOGISTYCE E. Logistyka. Niestacjonarne. I stopnia (inżynierskie) VII. Dr Cezary Stępniak

PRZEWODNIK PO PRZEDMIOCIE INŻYNIERIA PRZESTRZENNA W LOGISTYCE E. Logistyka. Niestacjonarne. I stopnia (inżynierskie) VII. Dr Cezary Stępniak Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj

Bardziej szczegółowo

Bazy analityczne (hurtownie danych, bazy OLAP)

Bazy analityczne (hurtownie danych, bazy OLAP) Bazy analityczne (hurtownie danych, bazy OLAP) Materiały pomocnicze. Bazy produkcyjne (transakcyjne) i analityczne Większość systemów baz danych to systemy produkcyjne, inaczej nazywane transakcyjnymi,

Bardziej szczegółowo

Proces ETL. Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska {kris,

Proces ETL. Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska {kris, Proces ETL Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska {kris, tegra}@eti.pg.gda.pl - 1 - Proces ETL - 2 -

Bardziej szczegółowo

Zarządzanie Zapasami System informatyczny do monitorowania i planowania zapasów. Dawid Doliński

Zarządzanie Zapasami System informatyczny do monitorowania i planowania zapasów. Dawid Doliński Zarządzanie Zapasami System informatyczny do monitorowania i planowania zapasów Dawid Doliński Dlaczego MonZa? Korzyści z wdrożenia» zmniejszenie wartości zapasów o 40 %*» podniesienie poziomu obsługi

Bardziej szczegółowo

One Size Doesn t Fit All, czyli case study stworzenia BI dostosowanego do strategicznych, operacyjnych oraz analitycznych potrzeb

One Size Doesn t Fit All, czyli case study stworzenia BI dostosowanego do strategicznych, operacyjnych oraz analitycznych potrzeb One Size Doesn t Fit All, czyli case study stworzenia BI dostosowanego do strategicznych, operacyjnych oraz analitycznych potrzeb X Kongres Business Intelligence Warszawa, 17.03.2016 Joanna Łuczak Multi-Partnerski

Bardziej szczegółowo

Migracja Business Intelligence do wersji

Migracja Business Intelligence do wersji Migracja Business Intelligence do wersji 2015.1 Copyright 2014 COMARCH Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest

Bardziej szczegółowo

Migracja XL Business Intelligence do wersji

Migracja XL Business Intelligence do wersji Migracja XL Business Intelligence do wersji 2019.0 Copyright 2018 COMARCH Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci

Bardziej szczegółowo

Prezentacja publiczna projektu

Prezentacja publiczna projektu Prezentacja publiczna projektu Zintegrowany System Zarządzania Grupą Szpitali w celu podniesienia jakości, dostępności i kompleksowości udzielanych świadczeń, zapewnienia konkurencyjności szpitali publicznych

Bardziej szczegółowo

Dopasowanie IT/biznes

Dopasowanie IT/biznes Dopasowanie IT/biznes Dlaczego trzeba mówić o dopasowaniu IT-biznes HARVARD BUSINESS REVIEW, 2008-11-01 Dlaczego trzeba mówić o dopasowaniu IT-biznes http://ceo.cxo.pl/artykuly/51237_2/zarzadzanie.it.a.wzrost.wartosci.html

Bardziej szczegółowo

Praktyczne aspekty pozyskiwania wiedzy z danych z perspektywy matematyka w bankowości. 2014-01-23 (VI zajęcia) Jakub Jurdziak

Praktyczne aspekty pozyskiwania wiedzy z danych z perspektywy matematyka w bankowości. 2014-01-23 (VI zajęcia) Jakub Jurdziak Praktyczne aspekty pozyskiwania wiedzy z danych z perspektywy matematyka w bankowości 2014-01-23 (VI zajęcia) Jakub Jurdziak CEL ZAJĘĆ: Prezentacja nowoczesnego banku uniwersalnego jako organizacji opartej

Bardziej szczegółowo

Sage - BI Warszawa, 18.V.2016

Sage - BI Warszawa, 18.V.2016 Sage - BI Warszawa, 18.V.2016 Jak wykorzystać dostęp do informacji w podejmowaniu dobrych decyzji biznesowych? Aneta Jarczyńska 18.05.2016 5/23/2016 3 BIBIBI 5/23/2016 4 Czy moja firma jest gotowa na wykorzystanie

Bardziej szczegółowo

dr inż. Paweł Morawski ICT w Logistyce semestr zimowy 2018/2019

dr inż. Paweł Morawski ICT w Logistyce semestr zimowy 2018/2019 dr inż. Paweł Morawski ICT w Logistyce semestr zimowy 2018/2019 kontakt / informacje dr inż. Paweł Morawski Katedra Gospodarki Elektronicznej SAN e-mail: pmorawski@spoleczna.pl www: http://pmorawski.spoleczna.pl

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE. Wprowadzenie do biznesu. Filologia. stacjonarne. I stopnia. Katedra Języka Biznesu. ogólnoakademicki.

PRZEWODNIK PO PRZEDMIOCIE. Wprowadzenie do biznesu. Filologia. stacjonarne. I stopnia. Katedra Języka Biznesu. ogólnoakademicki. Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Wprowadzenie do biznesu Filologia stacjonarne I stopnia Rok 3 Semestr

Bardziej szczegółowo

Księgarnia PWN: Pod red. Celiny Olszak i Ewy Ziemby - Strategie i modele gospodarki elektronicznej. Spis treści

Księgarnia PWN: Pod red. Celiny Olszak i Ewy Ziemby - Strategie i modele gospodarki elektronicznej. Spis treści Księgarnia PWN: Pod red. Celiny Olszak i Ewy Ziemby - Strategie i modele gospodarki elektronicznej Spis treści Wstęp... 13 CZĘŚĆ I. Systemy gospodarki elektronicznej Rozdział 1. Wyzwania ery wiedzy (Celina

Bardziej szczegółowo

Migracja Business Intelligence do wersji

Migracja Business Intelligence do wersji Migracja Business Intelligence do wersji 2016.1 Copyright 2015 COMARCH Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest

Bardziej szczegółowo

Eksploracja procesów otwierając czarne pudełko

Eksploracja procesów otwierając czarne pudełko Eksploracja procesów otwierając czarne pudełko Na gruncie zainteresowania biznesowymi analizami danych z jednej strony, i na gruncie zainteresowania metodami ciągłego doskonalenia procesów biznesowych

Bardziej szczegółowo

Budowa modeli wymagań dla Regionalnych Systemów Informacji Medycznej opartych o hurtownie danych

Budowa modeli wymagań dla Regionalnych Systemów Informacji Medycznej opartych o hurtownie danych Dr Jerzy ROSZKOWSKI Management Systems Consulting Budowa modeli wymagań dla Regionalnych Systemów Informacji Medycznej opartych o hurtownie danych TIAPiSZ 09 Definiowanie wymagań Główny problem: Jak definiować

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2014/2015

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2014/2015 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu WydziałNauk o Bezpieczeństwie obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 201/2015 Kierunek studiów: Bezpieczeństwo

Bardziej szczegółowo

Bazy Danych. Bazy Danych i SQL Podstawowe informacje o bazach danych. Krzysztof Regulski WIMiIP, KISiM,

Bazy Danych. Bazy Danych i SQL Podstawowe informacje o bazach danych. Krzysztof Regulski WIMiIP, KISiM, Bazy Danych Bazy Danych i SQL Podstawowe informacje o bazach danych Krzysztof Regulski WIMiIP, KISiM, regulski@metal.agh.edu.pl Oczekiwania? 2 3 Bazy danych Jak przechowywać informacje? Jak opisać rzeczywistość?

Bardziej szczegółowo

Zasady sprawnego i efektywnego sterowania przepływami materiałów i wyrobów. dr hab. inż. Andrzej Szymonik prof. PŁ

Zasady sprawnego i efektywnego sterowania przepływami materiałów i wyrobów. dr hab. inż. Andrzej Szymonik prof. PŁ Zasady sprawnego i efektywnego sterowania przepływami materiałów i wyrobów dr hab. inż. Andrzej Szymonik prof. PŁ www.gen-prof.pl Łódź 2016/2017 1. Pojecie sterowania i regulacji Regulacja, sterowanie,

Bardziej szczegółowo

Harmonogram Akademii Kompetencji Comarch

Harmonogram Akademii Kompetencji Comarch Harmonogram Akademii Kompetencji Grupa warsztatowa nr 1 9.04.13 16.04.13 23.04.13 07.05.13 Ogólny wstęp o u, oprogramowaniu Optima i szansach słuchaczy po zakończeniu zajęć + e- commerce z wykorzystaniem

Bardziej szczegółowo

PRZEWODNIK PO WYBRANYM PRZEDMIOCIE. Modelowanie procesów logistycznych

PRZEWODNIK PO WYBRANYM PRZEDMIOCIE. Modelowanie procesów logistycznych PRZEWODNIK PO WYBRANYM PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Modelowanie logistycznych Logistyka Stacjonarne I stopnia Rok 3 Semestr Jednostka prowadząca Osoba sporządzająca

Bardziej szczegółowo

Rok akademicki: 2014/2015 Kod: EAR-2-106-IS-s Punkty ECTS: 4. Kierunek: Automatyka i Robotyka Specjalność: Informatyka w sterowaniu i zarządzaniu

Rok akademicki: 2014/2015 Kod: EAR-2-106-IS-s Punkty ECTS: 4. Kierunek: Automatyka i Robotyka Specjalność: Informatyka w sterowaniu i zarządzaniu Nazwa modułu: Systemy informatyczne w produkcji Rok akademicki: 2014/2015 Kod: EAR-2-106-IS-s Punkty ECTS: 4 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Automatyka

Bardziej szczegółowo

Technologie informacyjne

Technologie informacyjne dr inż. Paweł Morawski Technologie informacyjne semestr letni 2016/2017 kontakt / informacje dr inż. Paweł Morawski Katedra Marketingu i Logistyki SAN e-mail: pmorawski@spoleczna.pl www: http://pmorawski.spoleczna.pl

Bardziej szczegółowo

Gospodarka magazynowa - opis przedmiotu

Gospodarka magazynowa - opis przedmiotu Gospodarka magazynowa - opis przedmiotu Informacje ogólne Nazwa przedmiotu Gospodarka magazynowa Kod przedmiotu 06.9-WZ-LogP-GM-S16 Wydział Kierunek Wydział Ekonomii i Zarządzania Logistyka / Zarządzanie

Bardziej szczegółowo

Gospodarka magazynowa - opis przedmiotu

Gospodarka magazynowa - opis przedmiotu Gospodarka magazynowa - opis przedmiotu Informacje ogólne Nazwa przedmiotu Gospodarka magazynowa Kod przedmiotu 06.9-WZ-LogP-GM-S16 Wydział Kierunek Wydział Ekonomii i Zarządzania Logistyka / Logistyka

Bardziej szczegółowo