w zbiorze liczb naturalnych N (N,M N): N Mmodw k N: N M=kw M N=kw w zbiorze liczb całkowitych Z (N,M Z): N Mmodw k Z: N M=kw
|
|
- Tadeusz Turek
- 6 lat temu
- Przeglądów:
Transkrypt
1 Kogruece Lczby ogruete (przyta ą ce) modulo w N (w moduł przytawaa) w zborze lczb aturalych N (NM N): N Mmodw N: N Mw M Nw w zborze lczb całowtych Z (NM Z): N Mmodw Z: N Mw Kogrueca relaca rówowaŝ oś c: zwrota (refleve): N Nmodw ymetrycza (ymmetrc): N Mmodw M Nmodw przechoda (tratve): N Mmodw&M Pmodw N Pmodw. zachowawcza (dfferet) wobec dodawaa odemowaa mo ea N Mmodw Q Pmodw (N±Q) (M±P)modw N Mmodw Q Pmodw N Q M Pmodw. Jauz Berat '4 6 gruda 4 RNS Klay ogruec Klay ogruec (rówowaŝ oś c wzglę dem relac przytawaa) w zborze lczb aturalych N N w:r {N N:N rmodw; r<w} w zborze lczb całowtych Z w U r Z w:r {Z Z:Z rmodw; w/ r< w/ } N N w : r w U r Z Z r rezta z dzelea (redue) lczby całowte (aturale) przez moduł w w : r Zauwa my e w N : Nw : r Zw : r Nw : r Zw : r w N 7:5 {596 } Z 7: { } N 7: {85 } Z 7: { 685 } Jauz Berat '4 6 gruda 4 RNS
2 Podzel lczby perwze Podzel lczby w N Nmodw w N Nawę zy wpóly (po)dzel NWD (greatet commo dvor GCD) (XY)a N (a X a Y) b N: (b>a) (b X b Y) Lczby wzglę de perwze (relatvely prme): (XY). Algorytm Euldea Je l X>Y oraz w X w Y to w (X Y) w c w (XmodY). St d wya e w (Ymod(XmodY)) td. dopó rezta e et rówa. Wtedy otat podzel et NWD(XY). Xdvw loraz całowty X/w Xmodw rezta z dzelea całowtego X/w Xw Xdvw+Xmodw (X Xmodw) modw Jauz Berat '4 6 gruda 4 RNS Sto Eratoteea Je l z c gu oleych lczb aturalych uuemy podzele przez (parzyte) at pe podzele przez (co trzec ) at pe podzele przez 5 (co p t po ród wzytch) etc. to w c gu pozota tylo lczby perwze. Je l a N oraz a>n/a to w c gu N oleych lczb aturalych e ma u lczb podzelych przez a (zotały wcze e wyre loe) Wzyte lczby perwze (oprócz ) eparzyte Algorytm:. Utwórz c g oleych lczb eparzytych <N. Zad w c gu perwz lczb A ró od (et a pozyc A (A+)/). W mece a de lczby c gu umezczoe a pozyc A +A wpz 4. Je el A <N powró do w przecwym raze zao cz Nameza wpóla welorotoś ć NWW (leat commo multply LCM) [X X X m ]W N : X W Z N: (Z<W) : X Z Jauz Berat '4 6 gruda 4 RNS 4
3 Fuca Eulera (ϕ(n)) lczba lczb aturalych <N wzglę de perwzych z lczb ą N tuca: co druga lczba aturala et podzela przez po ród epodzelych przez co trzeca et podzela przez po ród epodzelych przez co p ta et podzela przez 5 etc. TWIERDZENIE Je l podzelam N lczby p p p m czyl e e e p p... p m p N m to ϕ ( N ) p p pm N... p p p m DOWÓD: (przez ducę lub wyprowadzee a podtawe wyŝ e podaego woowaa tucyego) p Jauz Berat '4 6 gruda 4 RNS 5 Małe twerdzee Fermata Nech p bę dze lczbą perwzą zaś a e et podzela przez p ((pa)). Wówcza a p modp oraz a p amodp. DOWÓD. Soro p e dzel a to a da lczba c gu a a a (p ) a ale y do e lay reztowe Z p:r ( p : a amodp). A zatem ( a)( a)( a) ((p ) a)a p (p )! (p )! modp Poewa ((p )!p) oraz (pa) w c ((a p ) (p )!p)p a zatem a p modp oraz a a p amodp. Twerdzee Eulera Woe: a p a modp Jeś l ϕ(n) et lczb lczb mezych od N wzgl de perwzych z N to oraz ( ) a ϕ N ϕ ( a N ) a mod N mod N Jauz Berat '4 6 gruda 4 RNS 6
4 Ch e twerdzee o reztach Nech W{w w...w m : : (w w )}oraz W m w. Dla X <W reprezetaca X m : X modw w W et uatowa. DOWÓD. Załó my e Y<W Z<W Y Z: m:y Zmodw. Zatem m:w (Y Z) a poewa W[[w w w m ]] to W (Y Z). Soro eda Y Z to Y Z W co przeczy zało eu w c YZ Sytem RNS(w w w m ) Reprezetaca X modw modw m modw m : w W w baze W {...w } dla ogruec w zborze N { w /... w / } dla ogruec w zborze Z WNIOSEK: W yteme RNS(w w w m ) N m: m ± w ± w m ± m w m modw Jauz Berat '4 6 gruda 4 RNS 7 Ie wła cwo c reprezetac reztowych JeŜ el rezty z dzelea lczby przez moduły wzglę de perwze ą obe rówe to ą oe rówe rezce z dzelea przez loczy tych modułów ( w w ) & X mod w X mod w q X mod( ww ) q. DOWÓD (pro ce) Je l Xmodw q oraz Xmodw q to (X q)modw oraz (X q)modw zatem X q w X q w d wya e X q w w zatem (X q)mod(w w ) w c Xmod(w w )q. WŁASNOŚ Ć : Je l a X oraz a w to (ax)mod(aw)a(xmodw) (ax)mod(aw)ax aw ax/aw a(x w X/w )a(x modw) Odwrotoś ć multyplatywa (multplcatve vere) w yteme RNS z mod w z mod w. Jauz Berat '4 6 gruda 4 RNS 8
5 Podzelo lczb () ale β mod w ( mod w)( β mod w) mod w w c poewa β mamy β mod( β ± ) m β mod( β ± ) ( m) β mod ( β ) β mod ( β + ) mod ( β ) ( ) mod ( β + ) reguły podzelo c przez 9 w yteme dze tym 785 mod 9 (7+8+5) mod mod (7 8+5) mod 4 Je l βa ± to β mod a ± oraz β mod a ( ± ) reguły podzelo c przez a w yteme o baze βa ± 785 mod (7+8+5) mod mod Jauz Berat '4 6 gruda 4 RNS 9 Podzelo lczb () β / / + β )( β ) X ( β gdze β + l X warto cam cyfr po ower (β β ). Ale et β mod( β m mod( ± ) ± ) β β ( m) zatem: β mod ( β ) / X mod ( β ) β mod ( β + ) / ( ) X mod ( β + ) 45 mod 45 mod ( +) ( 45) mod ( +) 5 6 mod FF mod ( ) 6 (+5) 6 mod ( ) mod mod ( ) 8 (+56) 8 mod ( ) 8 8 Jauz Berat '4 6 gruda 4 RNS
6 Oreowo rezt a mod w ± a mod w ( ± ) ore ogruec β mod w & < : β mod w półore ogruec β mod w & < : β mod w rezty pot g baz β wzgl dem modułów β ± powtarza oreowo m mod( ± ) β mod( β ± ) β β ( m) rezty pot g baz + β mod( β ± ) ( m ) β mod( β ± ) β wzgl dem modułów ( β ± β + β mod( β ± β + ) β ) powtarza oreowo: β mod( β ± β + ) m β β mod( β ± β + ) [ β ( m β )]mod( β ± β + ) ± Jauz Berat '4 6 gruda 4 RNS Ch e twerdzee o reztach owera odwrota Nech W{w w...w : : (w w )} W ww... w oraz Ww. Jeś l X <W to reprezetaca X : X modw w W et uatowa przy tym gdze X X ( mod w ) modw Jauz Berat '4 6 gruda 4 RNS ˆ mod w odwrotoś ć multyplatywa w ŵ wzglę dem modułu DOWÓD (eformaly). Je l mod w et odwroto c multyplatyw ŵ to et reprezetac reztow ( mod w ) w yteme RNS(w w w m ) bo lczba ta et podzela przez wzyte w z wy tem w. Poewa rezta z umy et rówa ume rezt w c w. X et reprezetac reztow lczby X o warto c dae wyra eem w awae oraz a de lczby przyta ce do e modulo W.
7 Ch e twerdzee o reztach owera odwrota Nech W{w w...w : : (w w )} W ww... w oraz Ww. Jeś l X <W to reprezetaca X : X modw w W et uatowa przy tym ˆ X X ( mod w ) modw gdze w mod w odwrotoś ć multyplatywa ŵ wzglę dem modułu w. D O W Ó D. Nech p mod w. Poewa X mod w oraz W w zatem ( ( mod w ) ) modw ( p ( X mod w )) modw ( p ( X w X / w ) ) modw ( X p ) modw a podtawe zachowawczo c ogruec () X p modw ( X modw ) Jauz Berat '4 6 gruda 4 RNS p modw X p modw. Aby dowe prawdzwo c tezy wytarczy w c wyaza e ( p ) modw. Poewa z udowodoego wcze e lematu (.49) wya e (y) amodyd amodd amodyd za W w w... w w et loczyem lczb wzgl de perwzych w c wytarczy wyaza prawdzwo poprzeda mplac Ale. () w : ( p )mod w ( p )modw w : w / zatem w () ( p )mod w ( p )mod w ( ( mod w ))mod w. St d wya prawdzwo at pa mplac () co dowodz tezy. Jauz Berat '4 6 gruda 4 RNS 4
8 Wybór ytemu reztowego Dobór modułów argumety zare reprezetowaych lczb loczy wzytch modułów łatwo zybo wyoaa dzała modulo łatwo ower ower odwrote moduły β β β + dobrze peła wymagaa (β β ) (β β +) oraz (β β +) (gdy β parzyte) w yteme dwóowym e l (m) to ( m ) (lczby Meree a) przy pezee dodawaa ~ proporcoale do log z lczby modułów m w ce modułów tym trudeza owera odwrota opce W{ + } W{ + } W{ <...<< ( )} Jauz Berat '4 6 gruda 4 RNS 5 Kowera z ytemu tałobazowego a ytem RNS(β + β β ) A X { β RNS : ( a mod w )( β mod w )} mod w reguły podzelo c reguły ower z ytemu aturalego a RNS dla modułów o potac β β β +. β l a + l l A a β ( a β ) β A β l gdze A warto cam cyfr lczby A w yteme o baze β. Poewa A β zatem A mod β A mod β oraz + l l A mod( β ) { A β }mod( β ) { A }mod( β ) A mod( β + ) { A β }mod( β + ) { ( ) A }mod( β + ) Jauz Berat '4 6 gruda 4 RNS 6
9 Kowera z ytemu reztowego a ytem tałobazowy (CRT) z edy reztowe (wag) z mod z mod w w Warto c lczby X<WΠw o reprezetac... et zatem (CRT) X ( z ) modw W celu wyzaczea -te edy z wytarczy wyoa w oblcze. Mamy w w W mod w w Oblczae edye reztowych z ( mod w ): Jauz Berat '4 6 gruda 4 RNS 7 ( ( mod w ))mod w mod w ))mod w [( mod w )( rozw zae rówaa ( ( mod w )] mod w odwrócoy algorytm Euldea zapuemy ao um weloroto c ( mod ) ( mod ) [ dv + mod ]... małe twerdzee Fermata ((pa) a p modp Kowera z ytemu reztowego a ytem tałobazowy Sytem reztowy RNS(a+aa ) (ap mu by parzyte) Mamy W(a+) a (a ). Oblczymy lczby ŵ ww ( a + ) a mod w ww ( a + )( a ) mod w ( ) w w w a( a ) w mod w ( ) ( ) ˆ ˆ oraz ch odwroto c multyplatywe ( mod w ) mod w mod( a ) mod( a ) a / mod w mod a mod a mod w mod( a + ) mod( a + ) a / + St d z ( a + ) a ( / ) z ( a + ) ( a ) z a ( a ) ( a / ) a zatem warto c lczby X o reprezetac r r r et X (r z + r z + r z ) mod (a+) a (a ). + Jauz Berat '4 6 gruda 4 RNS 8
10 Kowera z ytemu reztowego a ytem tałobazowy przyłady () Sytem reztowy ( + ). Mamy W( +) ( ). Oblczymy lczby ŵ ˆ ww ( + ) mod w ˆ ww ( + )( ) mod w ( ) ˆ ww ( ) mod w ( ) ( ) w w w oraz ch odwroto c multyplatywe mod w mod( ) mod( ) mod w mod mod mod w mod( + ) mod( + ) St d z + a ( + ) a z ( + ) ( ) z ( ) ( ) zatem warto c lczby X o reprezetac r r r et X (r z + r z + r z ) mod ( ). + Jauz Berat '4 6 gruda 4 RNS 9 Kowera z ytemu reztowego a ytem tałobazowy przyłady () W yteme reztowym (7) mamy X (7). Wyzaczmy X. Mamy W 74. Oblczymy lczby ŵ W / w 6 mod w 6mod7 W / w 4 mod w mod w W / w w mod w ˆ ˆ oraz ch odwroto c multyplatywe mod w mod w mod w mod w mod w mod w w mod w ± mod w mod w ˆ ± St d z 6 6mod4 z 4 8mod4 z mod4 zatem X (( ) 6 +( ) 4 + ) mod 4 5 mod 4 7. Rzeczyw ce X (7) 7 mod 7 7 mod 7 mod. Jauz Berat '4 6 gruda 4 RNS
11 Oblczae odwroto c multyplatywych () Odwrócoy algorytm Euldea (... p ( A mod ) ( mod B ) + ( C mod D ) mod ) [ dv + mod ]... p + Jedy w yteme RNS(7) mamy W 74. Oblczymy lczby W / w 6 mod w 6mod7 W / w 4 mod w mod w W / w w mod w ˆ ˆ mod w ) t w 6 7t 6 ( 6 + ) t 6 ( t) t zatem t oraz t czyl t w 4 t ( 5 ) t (5 t) ˆ zatem oraz t 5 t w t ( + ) t ( t) + ˆ zatem oraz t oraz ch odwroto c multyplatywe ( w w Jauz Berat '4 6 gruda 4 RNS ŵ Oblczae odwroto c multyplatywych () Jedy w yteme RNS(7) małe twerdzee Fermata ( w ) mod w ( mod w ) ( ) Mamy W 74. Oblczymy lczby ŵ W / w 6 mod w 6mod7 W / w 4 mod w mod w W / w w mod w ˆ oraz ch odwroto c multyplatywe ( 7 ˆ 7 Jauz Berat '4 6 gruda 4 RNS w mod w ) ( ) mod7 (6 mod7)(6 mod7) 6 mod7 zatem 6 mod7 mod w ( ) mod (4 mod)(4 mod) 4 mod zatem 4 mod ( ) mod ( mod )( mod ) mod zatem mod St d z 6 6mod4 z 4 8mod4 z mod4
12 Sytem wadratowo-reztowy QRNS arytmetya lczb zepoloych (oblczae traformaty Fourera). reprezetaca reztowa edot urooe. q mod w q mod w. problem: zalezee zboru modułów dla tórych et rozw zae rówaa q mod w. DEFINICJA Lczb r perwz wzgl dem w N ta e rówae mod w r ma rozw zae azywa rezt ą wadratow ą (quadratc redue) wzgl dem w. Je el atomat rówae mod w r e ma rozw zaa to r azywa e-rezt ą wadratow ą (quadratc oredue) wzgl dem w. Jauz Berat '4 6 gruda 4 RNS Rezty wadratowe Poewa et dołade (w) rezt ezerowych modulo w a a de rówae mod w r ma albo dwa rozw zaa eprzyta ce oraz (lub w bo mod w ( w ) mod w) albo e ma rozw zaa w c przy eparzytym w tee dołade (w)/ rezt oraz (w)/ e-rezt wadratowych. Rezty wadratowe wzgl dem w wyzaczymy rozw zu c rówae mod r metod oleych prób dla... 6 (. (w ) mod w) Zaduemy odpowedo: mod 4 mod 4 mod 4 mod 5 mod 6 mod. Zatem reztam wadratowym wzgl dem (w arytmetyce uzupełeowe): 4 4. Jauz Berat '4 6 gruda 4 RNS 4
Systemy resztowe. Kongruencje. Liczby kongruentne (przystaj ce) modulo w (w moduł przystawania) (N,M ): N M(modw) k : N M=kw M N=kw
Kogruecje Lczby ogruete (przytaj ce) modulo w (w moduł przytawaa) (N,M ): N M(modw) : NMw MNw Kogruecja relacja rówowa o c: zwrota (reflexve): N N(modw), ymetrycza (ymmetrc): N M(modw) M N(modw), przechoda
Relacje, grupy, ciała
Relace Relace, grupy, cała Relaca w zborze X podzbór produtu artezańego ρ X X ρ y Relaca rówowaŝośc (equvalece) zwrota ρ ymetrycza ρ y y ρ przechoda ρ y & y ρ z ρ z Zaada abtrac Relaca rówowaŝośc dzel
Systemy resztowe. Kongruencje. Liczby kongruentne (przystaj ce) modulo w (w moduł przystawania) (N,M ): N M(modw) k : N M=kw M N=kw
Kongruencje Lczby ongruentne (przytaj ce) modulo w (w moduł przytawana) (N,M ): N M(modw) : N Mw M Nw Kongruencja relacja równowa no c: zwrotna (reflexve): N N(modw), ymetryczna (ymmetrc): N M(modw) M
Indukcja matematyczna
Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya
ARYTMETYKA KOMPUTERÓW
Jau Berat, profeor adw. Poltecha Wrocława Wydał Eletro Itytut Iformaty, Automaty Roboty Załad Archtetury Komputerów ARYTMETYKA KOMPUTERÓW Wrocław p. bud. C3 7 3 396 7 3 745 - Jau.Berat@pwr.wroc.pl http://www.a.ct.pwr.wroc.pl/materaly/arytmetya
X R>0 dzielenie znakowane (signed division) znak reszty = znak dzielnej R>0 dzielenie modularne (modulus division) znak reszty dodatni X D D R
} m ekwecyje dzelee całkowte Iloraz uotet rezta remader z dzelea dzelej dvded rzez dzelk dvor to lczby oraz take e rozw zaa oraz take e rzy tym oraz > dzelee zakowae ged dvo zak rezty zak dzelej > dzelee
6. *21!" 4 % rezerwy matematycznej. oraz (ii) $ :;!" "+!"!4 oraz "" % & "!4! " )$!"!4 1 1!4 )$$$ " ' ""
Memy fow 09..000 r. 6. *!" ( orz ( 4 % rezerwy memycze $ :;!" "+!"!4 orz "" % & "!4! " $!"!4!4 $$$ " ' "" V w dowole chwl d e wzorem V 0 0. &! "! "" 4 < ; ;!" 4 $%: ; $% ; = > %4( $;% 7 4'8 A..85 B..90
N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3
35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(
Analiza Matematyczna I.1
Aalza Matematycza I. Sera, Potr Nayar Zadae. Nech a k >, k =,..., b d lczbam rzeczywstym o tym samym zaku. Udowodj,»e prawdzwa jest erówo± + a + a... + a + a + a +... + a. Czy zaªo»ee,»e lczby a k maj
Instrukcja obiegu i kontroli dokumentów powodujących skutki finansowo-gospodarcze w ZHP Spis treści
C h o r ą g i e w D o l n o l ą s k a Z H P U c h w a ł a n r 2 1 / I X / 2 0 1 5 K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 2 10. 5. 2 0 1 5 r. w s p r a w i e I n s t r u
Zmiana bazy i macierz przejścia
Auomaya Roboya Algebra -Wyład - dr Adam Ćmel cmel@agh.edu.pl Zmaa bazy macerz prześca Nech V będze wymarową przesrzeą lową ad całem K. Nech Be e będze bazą przesrze V. Rozważmy ową bazę B e... e. Oczywśce
Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą
W Z Ó R U M O W Y n r 1 4 k J Bk 2 0 Z a ł» c z n i k n r 5 z a w a r t a w G d y n i w d n i u 1 4 ro ku p o m i 2 0d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j ei d n o s t k» b
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Wybrane zagadnienia teorii liczb
Wybrane zagadnienia teorii liczb Podzielność liczb NWW, NWD, Algorytm Euklidesa Arytmetyka modularna Potęgowanie modularne Małe twierdzenie Fermata Liczby pierwsze Kryptosystem RSA Podzielność liczb Relacja
Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?
Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)
Matematyka dyskretna. 10. Funkcja Möbiusa
Matematyka dyskreta 10. Fukcja Möbusa Defcja 10.1 Nech (P, ) będze zborem uporządkowaym. Mówmy, że zbór uporządkoway P jest lokale skończoy, jeśl każdy podzał [a, b] P jest skończoy, a, b P Uwaga 10.1
Z e s p ó ł d s. H A L i Z
C h o r ą g i e w D o l n o l ą s k a Z H P P L A N P R A C Y K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j I 2 0 1 5- V I 2 0 1 6 1. C h a r a k t e r y s t y k a C h o r ą g w i C h o r ą g
MADE IN CHINA czyli SYSTEM RESZTOWY
MADE IN CHINA czyli SYSTEM RESZTOWY System ten oznaczmy skrótem RNS (residue number system czyli po prostu resztowy system liczbowy). Wartość liczby w tym systemie reprezentuje wektor (zbiór) reszt z dzielenia
X i T (X) = i=1. i + 1, X i+1 i + 1. Cov H0. ( X i. k 31 ) 1 Φ(1, 1818) 0, 12.
Zadae p (X p (X ( ( π 6 6 e 6 X m ( π 6 6 e 6 ( X C e m 6 X, gdze staªa C e zale»y od statystyk X (X,, X 6, a m jest w ksze od zera Zatem p (X/p (X jest emalej c fukcj statystyk T (X 6 X ªatwo pokaza,»e
I n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p
A d r e s s t r o n y i n t e r n e t o w e j, n a k t ó r e j z a m i e s z c z o n a b d z i e s p e c y f i k a c j a i s t o t n y c h w a r u n k ó w z a m ó w i e n i a ( j e e ld io t y c z y )
Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa
W Z Ó R U M O W Y z a w a r t a w G d y n i w d n i u 2 0 1 4 r po m i d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j i j e d n o s t k a b u d e t o w a ( 8 1-5 3 8 G d y n i a ), l
F u l l H D, I P S D, I P F u l l H D, I P 5 M P,
Z a ł» c z n i k n r 6 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k ó w Z a m ó w i e n i a Z n a k s p r a w yg O S I R D Z P I 2 7 1 02 4 2 0 1 5 W Z Ó R U M O W Y z a w a r t a w G d y
Dzielenie. Dzielenie pozycyjne
zelene ozycyjne zelene dzelene całkowte: dzelna (dvdend), dzelnk 0 (dvor) Iloraz (uotent) rezta R (remander) z dzelena to lczby take, e R, R rozw zana (,R ) oraz (,R ) take, e R, rzy tym R R, R, R oraz
Miary statystyczne. Katowice 2014
Mary statystycze Katowce 04 Podstawowe pojęca Statystyka Populacja próba Cechy zmee Szereg statystycze Wykresy Statystyka Statystyka to auka zajmująca sę loścowym metodam aalzy zjawsk masowych (występujących
Krzyżanowski R. 2016. Wpływ lotnych związków orzecha włoskiego Juglans regia L. na zachowanie mszyc Panaphis juglandis (Goeze, 1778) i Chromaphis juglandicola (Kaltenbach, 1843). Wyd. UPH, Siedlce (ISBN: 978-83-7051-801-1). https://doi.org/10.13140/RG.2.2.28916.86402
ą ę Ę ę ę ę ę ę ę ę Ę ę ę Ą Ą Ą ę Ą Ą Ę ę Ą ę ę ę ą Ź Ź ń ę ć ż Ź Ź Ź Ź ń ż ź Ź ż ń ż Ź Ź ż ę ę Ź ź ą Ź Ź ą
n ó g, S t r o n a 2 z 1 9
Z n a k s p r a w y G O S I R D Z P I2 7 1 0 6 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A D o s t a w a w r a z z m o n t a e m u r z» d z e s i ł o w n i z
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 70 1 3 7 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e w r a z z r o z s t a w i e n i e m o g
Matematyka dyskretna. Andrzej Łachwa, UJ, 2019 Zadania 1-100
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl Zadania 1-100 Udowodnij, że A (B C) = (A B) (A C) za pomocą diagramów Venna. Udowodnij formalnie, że (A B i A C) A B C oraz że (A
PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X
PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac
SOWA - ENERGOOSZCZĘDNE OŚWIETLENIE ULICZNE METODYKA
Załączk r do Regulamu I kokursu GIS PROGRAM PRIORYTETOWY: SOWA - ENERGOOSZCZĘDNE OŚWIETLENIE ULICZNE METODYKA. Cel opracowaa Celem opracowaa jest spója metodyka oblczaa efektu ograczaa emsj gazów ceplaraych,
Reprezentacje grup symetrii. g s
erezentace ru ymetr Teora rerezentac dea: oeracom ymetr rzyać oeratory dzałaące w rzetrzen func zwązać z nm funce, tóre oeratory te rzerowadzaą w ebe odobne a zb. untów odcza oerac ymetr rozważmy rzeztałcene
δ δ δ 1 ε δ δ δ 1 ε ε δ δ δ ε ε = T T a b c 1 = T = T = T
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 8 9 6-7 7 X M O D E L O W A N I E P A S Z C Z Y Z N B A Z O W Y C H K O R P U S W N A P O D S T A W I E P O M W S P R Z D N O C I O W Y C H
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 03 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e t e l e b i m ó w i n a g ł o n i e n i
1. Wykład NWD, NWW i algorytm Euklidesa.
1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.
Rozdział 1. Nazwa i adres Zamawiającego Rozdział 2. Informacja o trybie i stosowaniu przepisów Rozdział 3. Przedmiot zamówienia
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 1 0 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f S p r z» t a n i e i u t r z y m a n i e c z y s t o c i g d y
6. K o ł a 7. M i s a
S U P 6 0 9 v. 2 0 16 G R I L L R U C H O M Y, P R O S T O K Ą T N Y, Z D O L N Ą I B O C Z N Ą P Ó Ł K Ą S U P 6 0 9 I N S T R U K C J A M O N T A 7 U I B E Z P I E C Z N E G O U 7 Y T K O W A N I A S
Repetytorium z Matematyki Elementarnej Wersja Olimpijska
Repetytorium z Matematyi Elemetarej Wersja Olimpijsa Podae tutaj zadaia rozwiązywae były w jedej z grup ćwiczeiowych Są w więszości ieco trudiejsze od pozostałych zadań przygotowaych w ramach przedmiotu
Chorągiew Dolnośląska ZHP Honorowa Odznaka Przyjaciół Harcerstwa
C h o r ą g i e w D o l n o l ą s k a Z H P W r o c ł a w, 3 0 k w i e t n i a 2 0 1 5 r. Z w i ą z e k H a r c e r s t w a P o l s k i e g o K o m e n d a n t C h o r ą g w i D o l n o 6 l ą s k i e j
, , , , 0
S T E R O W N I K G R E E N M I L L A Q U A S Y S T E M 2 4 V 4 S E K C J I G B 6 9 6 4 C, 8 S E K C J I G B 6 9 6 8 C I n s t r u k c j a i n s t a l a c j i i o b s ł u g i P r z e d r o z p o c z ę
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 0 33 2 0 1 7 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t ó w G d y s k i e g o C e
Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa
Z a ł» c z n i k n r 5 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k Zó aw m ó w i e n i a Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 1 1 2 0 14 W Z Ó R U M O W Y z a w a r t a w Gd y n
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 0 4 52 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A W y k o n a n i e p o m i a r ó w i n s t a l a c j i e l e k t r y c
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 5 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r z e g l» d ó w k o n s e r w a c y j n o -
SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA
Z n a k s p r a w y GC S D Z P I 2 7 1 0 1 42 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r a c p i e l g n a c y j n o r e n o w a c y j n
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
2 7k 0 5k 2 0 1 5 S 1 0 0 P a s t w a c z ł o n k o w s k i e - Z a m ó w i e n i e p u b l i c z n e n a u s ł u g- i O g ł o s z e n i e o z a m ó w i e n i u - P r o c e d u r a o t w a r t a P o l
Twierdzenie Eulera. Kongruencje wykład 6. Twierdzenie Eulera
Kongruencje wykład 6 ... Euler, 1760, Sankt Petersburg Dla każdego a m zachodzi kongruencja a φ(m) 1 (mod m). Przypomnijmy: φ(m) to liczba reszt modulo m względnie pierwszych z m; φ(m) = m(1 1/p 1 )...
Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2
Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w
Ź Ź Ó Ł Ś Ź Ń Ż Ę Ę ź Ę Ź ĘĄ ż ź Ę Ź Ż ź Ź Ł ź Ę Ż ż Ż Ą ź ż Ż Ż ż Ź ż ć ć ć Ż ż ż Ź ż ż Ź Ź Ż ć ć Ą Ż ć Ż Ń Ó ż ć ż Ż ż Ż Ź Ż ż ż Ę ż Ź Ź Ź Ź Ź ĄĄ ź Ż Ź Ź Ź Ż Ź Ź ź Ż Ź ź ź ź Ś Ź Ę ĘĄ ż Ż Ę ż ć Ś ĄĄ Ę
ź Ł Ą Ę Ź Ę Ę Ą Ę Ę Ę Ę Ę Ź Ą Ę Ą Ź Ę Ź Ó ć Ź Ó Ę Ź Ź ć ć Ę ć Ó Ó Ę Ę Ę Ę Ó Ę Ę ć Ć Ł Ó Ź ć ć ć Ę ć Ę Ł Ź Ź Ł ć ź ź Ę ć Ś Ą ć ć Ą ć Ś Ę Ź Ę Ź Ę ć Ó Ń Ę Ś Ę ź Ź Ę Ę Ć Ę Ń Ę Ę ć Ą Ę ć Ę ć Ę Ź Ę Ć Ę ź ć
I. Podzielność liczb całkowitych
I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc
ź ż ć ć Ę ż ż ż ż ż ż ż ć ż ź Ę ć ż ż ż Ę ż ż ż ż ż ż ż ź ź ż ż ć ź ź ż ź ź ć ź ż ź ć ź ź ć ź Ę ź ż ź ż ć Ę ż ż ż ć ż ż ż ź ż ż ż ż ż ż ż ć ć ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ć ć ć ć ć ć Ę ż Ę ż ż
Ł Ą ż ż Ś Ą ż ż Ń Ę ż Ą ż ż Ą ć Ą ż ż Ą Ń ż ż Ę ż ż ż ż ćż ż Ś Ź ż Ź ć ż ż ż ż ż ć ż ż ć ż ć ż ż Ś ż ć ż ż ż ć ż ż ż ż ż ż ż Ź ż ć ż ż ż ć Ź ćż ż ć ż ż ż ż Ż Ń ż ż ż ż Ź ć ż ć ż ć ż ż ż ż ż ć ż ż ż Ź ć
JEDNOWYMIAROWA ZMIENNA LOSOWA
JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:
W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
Równania rekurencyjne
Rówaa reurecyje Ja stosować do przelczaa obetów obatoryczych? zaleźć zwąze reurecyjy, oblczyć la początowych wartośc, odgadąć ogóly wzór, tóry astępe udowaday stosując ducję ateatyczą. W etórych przypadach,
PROJEKT DOCELOWEJ ORGANIZACJI RUCHU DLA ZADANIA: PRZEBUDOWA UL PIASTÓW ŚLĄSKICH (OD UL. DZIERŻONIA DO UL. KOPALNIANEJ) W MYSŁOWICACH
P r o j e k t d o c e l o w e j o r g a n i z a c j i r u c h u d l a z a d a n i a : " P r z e b u d o w a u l. P i a s t ó w Śl ą s k i c h ( o d u l. D z i e r ż o n i a d o u l. K o p a l n i a n e
Analiza Matematyczna Ćwiczenia. J. de Lucas
Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y
Podprzestrzenie macierzowe
Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0
ć Ę Ż ć ć ć Ż Ź
Ł ć ć Ź Ź Ą ź Ż ć Ę Ż ć ć ć Ż Ź Ź Ź Ż Ż Ń ć ć Ń Ż Ź Ż Ź Ż ć Ó Ń Ż ć Ż ć Ę ć ć Ę Ż Ź Ż Ź Ź ć Ż Ź Ź Ź Ż ć Ź Ź Ź Ź Ź Ż Ż Ę Ż ć Ę Ę Ź ć Ż Ż ĘĄ Ź Ź ć Ż Ź Ą Ż Ść Ż Ę Ź Ż Ż Ż Ź Ż Ż ć ć ć ŻŻ ć ć ć ć Ę Ż ć ć Ż
ń ń ń ń Ą Ź Ń ń ń Ą Ą Ą Ś Ą ń ń Ą ń Ą Ą ń ń Ą ń ń ń Ą Ą Ź ń ń Ż Ą ń Ż ń Ń ń ń ń ń ń ń ń ń ń ń Ą Ą Ą ń Ć ń ń Ą ń ń Ć ń Ź Ą ń Ź ń Ą Ą Ą Ą ń Ą Ą Ą Ó Ą Ą Ą Ą Ż ń ń Ś ń ń Ą ń Ą ń Ś Ć Ą Ą ń ń ń Ś Ą Ą ń Ą ń
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Wyniki pierwszego kolokwium Podstawy Programowania / INF
1 Ab Hasan 240917 B 0,8 0,7-1,5 50% 2 Ad Tomasz 241149 A 1,0 0,9 0,8 2,7 90% 3 Al Adam 241152 A 0,8 0,5 0,5 1,8 60% 4 An Jan 241780 C 0,3 0,0-0,3 10% 5 An Jakub 241133 A 0,8 0,9 1,0 2,7 90% 6 An Kacper
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 3 12 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k aw r a z z d o s t a w» s p r
Teoria liczb. Magdalena Lemańska. Magdalena Lemańska,
Teoria liczb Magdalena Lemańska Literatura Matematyka Dyskretna Andrzej Szepietowski http://wazniak.mimuw.edu.pl/ Discrete Mathematics Seymour Lipschutz, Marc Lipson Wstęp Teoria liczb jest dziedziną matematyki,
CONNECT, STARTUP, PROMOTE YOUR IDEA
Dz ę u ę z r - T A ry. K z w ź ó ży u w USA www.. łą z sz s ł z ś F u T A ry! C yr t 2018 y Sy w Gór Wy rwsz S Fr s, 2018 Wszyst r w z strz ż. N ut ryz w r z wsz ł ś u r tu sz - w w st st z r. K w ą w
NARZÊDZIA PNEUMATYCZNE
K l uc z uda ro w y 6 1 0 N m 1 /2 3 68 2, 6 k od: MA 2 4 6 0 Z est a w - k l uc z uda ro w y 36 0 N m 1 /2 260 16 4, 3 K l uc z uda ro w y 1 2 8 0 N m 1 /2 k o mpo zyt K l uc z uda ro w y 1 350 N m 1/2
2 0 0 M P a o r a z = 0, 4.
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X A N A L I Z A W Y T R Z Y M A O C I O W A S Y S T E M U U N I L O C K 2, 4 S T O S O W A N E G O W C H I R U R G I I S Z C Z
Daniela Spurtacz, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 08/09. Tresci rozwiązanych
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 2 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k a u r a w i s a m o j e z d n
Ę ę ę Łó-ź ----
-Ę- - - - - - -ę- ę- - Łó-ź -ś - - ó -ą-ę- - -ł - -ą-ę - Ń - - -Ł - - - - - -óż - - - - - - - - - - -ż - - - - - -ś - - - - ł - - - -ą-ę- - - - - - - - - - -ę - - - - - - - - - - - - - ł - - Ł -ń ł - -
7. M i s a K o ł o
S U P 4 1 2 v. 2 0 16 G R I L L K O C I O Ł E K 5 R E D N I C A 4 2 c m, R U C H O M Y S U P 4 1 2 I N S T R U K C J A M O N T A 7 U I B E Z P I E C Z N E G O U 7 Y T K O W A N I A S z a n o w n i P a
W. Guzicki: Liczby pierwsze 1 LICZBY PIERWSZE. Warszawa, 11 kwietnia 2013 r.
W. Guzicki: Liczby pierwsze 1 LICZBY PIERWSZE W. Guzicki: Liczby pierwsze 2 Zagadnienie odróżniania liczb pierwszych od złożonych i rozkładanie tych ostatnich na ich czynniki pierwsze uchodzi za najważniejszeiodużympraktycznymznaczeniuwarytmetyce...samapowaga
Ń Ś Ó Ó Ć Ś ŃŃ Ó Ą
Ń Ó Ń Ń Ś Ń Ą Ń Ą Ź Ź Ą Ś Ż Ń Ć Ń Ń Ń Ń Ń Ś Ó Ó Ć Ś ŃŃ Ó Ą Ń Ń Ź Ś ĄŃ Ż Ń Ą Ć Ś Ą Ą Ń Ó Ą Ą Ś Ó Ą Ń Ą Ą Ą Ą Ń Ą Ś Ś Ą Ń Ą Ć Ó Ą Ś Ń Ą Ą Ą Ą Ń Ą Ń Ą Ą Ą Ą Ż Ż Ś Ń Ń Ń Ó Ó Ś Ż Ó Ą Ń Ń Ń Ń Ń Ą Ą Ń Ą Ń Ą Ą
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 07 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t Gó w d y s k i e g o C e n
Pierwiastki pierwotne, logarytmy dyskretne
Kongruencje wykład 7 Definicja Jeżeli rząd elementu a modulo n (dla n będącego liczba naturalną i całkowitego a, a n) wynosi φ(n) to a nazywamy pierwiastkiem pierwotnym modulo n. Przykład Czy 7 jest pierwiastkiem
STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA
STATYSTYKA MATEMATYCZNA WYKŁAD ESTYMACJA PUNKTOWA Nech - ezay parametr rozkładu cechy X. Wartość parametru będzemy estymować (przyblżać) a podstawe elemetowej próby. - wyberamy statystykę U o rozkładze
W W Y D A N I E S P E C J A L N E S z a n o w n i P a ń s t w o! Spis t reści: y d arz e ni a c z e rw c ow e w 3 P oz nani u, r. Z
M 50-r o c z n i c a P o z n a ń s k i e g o C z e r w c a 56 r. KAZIMIERA IŁŁAKOWICZÓWNA Ro z s t r z e l a n o m o j e s e r c e C h c i a ł a m o k u l t u r z e n a p i s a ć n a p r a w d ę i n t
W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej. Literatura. W. Rudin: Podstawy analizy matematycznej, PWN, Warszawa, 1982.
Wyłady z Aalzy rzeczywstej zespoloej w Matematyce stosowaej Lteratura W Rud: Podstawy aalzy matematyczej, PWN, Warszawa, 1982 W Rud: Aalza rzeczywsta zespoloa, PZWS, Warszawa, 1986 W Szabat: Wstęp do aalzy
q (s, z) = ( ) (λ T) ρc = q
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X W Y Z N A C Z A N I E O D K S Z T A C E T O W A R Z Y S Z Ą C Y C H H A R T O W A N I U P O W I E R Z C H N I O W Y M W I E
K S I Ą Ż Ę TŻP P R U S C Y A H O H E N Z O L L E R N O W I E PWP X VŁ X I XPW.P 2 4 1
K S I Ą Ż Ę TŻ R U S C Y A 2 4 1 Ż L B R E C H T M A 2 4 2 O j c i e c- F R Y D E R Y K S TŻ R S Z Y s. W B I O G R.ŻL B R E C H TŻ M a t k a-z O F IŻJŻ G I E L L O N KŻ s. R o d z e ń s t w o-b I O G
Arytmetyka komputerów
Arytmety Arytmety omputerów rytmety lycz rytmety rozzerzeń eończoych dopuemy bruące pozyce rytmety omputerow rytmety ogrczoego zreu wy poz zreem dmr overflow podtwowe dzł rytmetycze dodwe odemowe moŝee
Chorągiew Dolnośląska ZHP 1. Zarządzenia i informacje 1.1. Zarządzenia
C h o r ą g i e w D o l n o l ą s k a Z H P W r o c ł a w, 3 0 l i s t o p a d a2 0 1 4 r. Z w i ą z e k H a r c e r s t w a P o l s k i e g o K o m e n d a n t C h o r ą g w i D o l n o 6 l ą s k i e
MISKOLC. ubytovací katalóg. 1 www.hellomiskolc.hu
O í O OÓW OOWY 1 www í,, ý, ľ x š, í ť, čť, š š čý ý ľ, ý, ž ž,, ý č í Uč ľ, ň ý ľ í í í žť ť š ý ž ý č ž ý ô, š ď š í O 16 -í š äčš ž? ôž ť ž čť! ý ľ x č ý ť žť šť äčší žý ý í í ď, šš, č, í, í žčíš íš
Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska
Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik
M G 4 2 7 v. 2 0 1 5 G R I L L P R O S T O K Ą T N Y R U C H O M Y 5 2 x 6 0 c m z p o k r y w ą M G 4 2 7 I N S T R U K C J A M O N T A 7 U I B E Z P I E C Z N E G O U 7 Y T K O W A N I A S z a n o w
NIEZIEMSKIE OSIEDLE PRZY PUSZCZY
NIEZIEMSKIE OSIEDLE PRZY PUSZCZY 7 NIEBO Nieziemskie osiedle No w e Os i e d l e n i e p r z y pa d kowo n o s i n a z w ę 7 NIEBO chcemy, a b y je g o p r z y s z l i m i es z- k a ń c y c z u l i się
8. N i e u W y w a ć u r z ą d z e n i a, g d y j e s t w i l g o t n e l ug b d y j e s t n a r a W o n e n a b e z p o 6 r e d n i e d z i a ł a n i
M G 4 0 1 v 4 G R I L L E L E K T R Y C Z N Y M G 4 0 1 I N S T R U K C J A M O N T A V U I B E Z P I E C Z N E G O U V Y T K O W A N I A S z a n o w n i P a s t w o, d z i ę k u j e m y z a z a k u p
Opis i zakres czynności sprzątania obiektów Gdyńskiego Centrum Sportu
O p i s i z a k r e s c z y n n o c is p r z» t a n i a o b i e k t ó w G d y s k i e g o C e n t r u m S p o r t u I S t a d i o n p i ł k a r s k i w G d y n i I A S p r z» t a n i e p r z e d m e c
BQR FMECA/FMEA. czujnik DI CPU DO zawór. Rys. 1. Schemat rozpatrywanego systemu zabezpieczeniowego PE
BQR FMECA/FMEA Przed rozpoczęcem aalzy ależy przeprowadzć dekompozycję systemu a podsystemy elemety. W efekce dekompozycj uzyskuje sę klka pozomów: pozom systemu, pozomy podsystemów oraz pozom elemetów.
P o l s k a j a k o k r a j a t a k ż e m y P o l a c y s t o i m y p r d s n s ą j a k i e j n i g d y n i e m i e l i ś m y i p e w n i e n i g d y m i e ć n i e b ę d e m y J a k o n o w i c o n k o
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w
0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M =
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X O P T Y M A L I Z A C J A K O N S T R U K C J I F O R M Y W T R Y S K O W E J P O D K Ą T E M E F E K T Y W N O C I C H O D
( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości
Zadae. Nech Nech (, Y będze dwuwymarową zmeą losową o fukcj gęstośc 4 x + xy gdy x ( 0, y ( 0, f ( x, y = 0 w przecwym przypadku. S = + Y V Y E V S =. =. Wyzacz ( (A 0 (B (C (D (E 8 8 7 7 Zadae. Załóżmy,
Gmina Wrocław Wrocław, pl. Nowy Targ 1/8 tel. (071)
IWESTOR PRZEDSTWICIEL IWESTOR G Wł - Wł T -- Wł I S O Ośę - Wł T + u F + E u@ JEDOSTK PROJEKTOW IIPROGEO PROJJEKT SS - Wł u u -- x -: @ ZW ZDI TEMT OPRCOWI Z S Tu S Włu - I : Z u łą ż u L- O Gu EURO Kó
1 Wynagrodzenie Wykonawcy zostanie podzielone na równe raty płatne cykliczne za okresy 2 tygodniowe w. okresie obowiązywania umowy.
W Z Ó R U M O W Y N r :: k J Bk 2 0 1 5 Z a ł» c z n i k n r 4 A z a w a r t a w G d y n i d n i a :::::: 2 0 1 5 r o k u p o m i d z y G d y s k i m C e n t r u m S p o r t u j e d n o s t k» b u d e