WYKŁAD 6. Równowaga chemiczna.
|
|
- Piotr Olejniczak
- 6 lat temu
- Przeglądów:
Transkrypt
1 WYŁAD 6. Równowg hemzn. Potenjł hemzny Dl ukłu złożonego ze skłnków,,...,,... entl swobon jest sumą entl swobonyh skłnków: G G G G G G(, T, n, n, n,...) 3 Potenjł hemzny: G n, T, n G n, T, k n k Tk wę, jeżel rzy stłyh rmetrh stnu T, nstęuje zmn lzb mol oszzególnyh skłnków o n, to G = n, zmn G regentów wynos: G G n W ogólnym rzyku zmn entl swobonej ukłu złożonego z klku skłnków może tkże wynkć ze zmny fzyznyh rmetrów stnu (, T): G ( H TS) ( U V ) ST TS ( Q V V V) ST TS Borą o uwgę, że Q=TS okonują uroszzeń, z ołązen obu wyrżeń l G w rzyku ogólnym otrzymujemy: G V ST n W stłej temerturze o stłym śnenem zmn G wynk tylko ze zmn skłu mesznny regująej.
2 Potenjł hemzny gzu oskonłego Oblzmy zmnę entl swobonej n mol gzu oskonłego w stłej temerturze, któr zhoz rzy zmne śnen o wrtoś stnrowej (= Atm) o owolnego śnen. Z owyższego równn wynk: G V n Po słkownu tego równn otrzymujemy: G G n ln G G n ln (to smo możn równeż otrzymć ne zkłją nezmennej temertury). Ztem: G G ln ln n T, n Ponewż rzyjmuje sę śnene w stne stnrowym = 5 P ( tm), wę n otenjł hemzny zęsto rzyjmuje sę owyższy wzór w ost: ln rzy zym śnenu n moy wzoru onego owyżej rzysuje sę wrtość bezwymrową oznzjąą śnene w jenostkh 5 P. Zmn entl swobonej G w rekj hemznej równne równowg rekj W rekj hemznej zhoząej w mesznne skłnków A, B, C, D: A + bb C +D A B - substrty, C D roukty,, b,, - wsółzynnk stehometryzne.
3 W fze gzowej l kżego z regentów: G n ln n rzy zym oznz śnene rjlne -tego skłnk. Zefnujmy stoeń zwnsown rekj (wsółrzęną rekj): n n b b n n Zmn entl swobonej wskutek newelkego ostęu rekj: G G n n n n C D D A A B B = C D A b B Postwją otenjły hemzne skłnków = + ln otrzymmy: C D G C D A b B ln b A B G G ln C D A B b Stn równowg rekj hemznej W wrunkh zotermzno-zobryznyh w stne równowg jest: G To oznz, że neskońzene młemu rzesunęu stnu ukłu w stronę substrtów lub w stronę rouktów, tj. młej lez nezerowej wrtoś, oow zerow zmn entl swobonej ukłu, ską wynk, że wyrżene w nwse kwrtowym m wrtość zerową, wę: 3
4 G ln C D A B b ln C D b A B jest stłą równowg rekj. Po zstąenu śneń ząstkowyh rzez ułmk molowe (rwo Dlton): ( śnene łkowte mesznny rekyjnej) otrzymuje sę oobną równość sełnną rzez ułmk molowe regentów: C D b A W roztworze rozeńzonym, używją stężeń molowyh możn zsć: C D A B b Symbole w nwsh kwrtowyh oznzją stężen molowe. B Powyższe równn osują relje męzy stężenm, śnenm lub ułmkm molowym zy jkmkolwek nzej wyrżonym lośm regentów, osągnym w końowym stum rekj, gy ukł regująy osąg stn równowg termoynmznej. Wskzują one, że rekje n ogół ne zhozą o łkowtego wyzern substrtów, lez o momentu osągnę równowg męzy roesm tworzen rozu rouktów. Równn te wyrżją tzw. rwo złn ms, które sformułowl Gulberg Wge (Oslo, ~864-67). 4
5 Stłą równowg w owyższyh wzorh możn oblzyć znją stnrową entlę swoboną rekj G : G ln G e Zleżność stłej równowg o temertury umożlw wyznzene entl rekj: ln G H TS S R H R T H ln onst. lub: ln H R T T H T ln T T Sorzązją wykres zleżnoś ln o owrotnoś temertury, który ownen być funkją lnową, z wrtoś wsółzynnk kerunkowego tej rostej możn wyznzyć H. Z owyższyh wyrżeń możn otrzymć (r-ne vn t Hoff): ln T H rzy złożenu, że H ne zleży o temertury. 5
6 Aktywność wsółzynnk ktywnoś Efektywne stężen lub śnen regentów ne zwsze okzują sę równe h wrtośom nomnlnym, wynkjąym z loś nego skłnk w określonej objętoś. Ostęstw o nomnlnyh wrtoś wystęują szzególne wyrźne w roztworh o użyh stężenh (n.. mol/ltr, lub nwet mnejszyh), tkże w srężonyh gzh. Są one skutkem wystęująyh tkh wrunkh ozływń molekuł regentów, z reguły ozływń rzyągjąyh, które rowzą o tworzen r molekuł (merów) lub wększyh gregtów, o skutkuje wrost zmnejszenem efektywnej lzby molekuł regująyh, tkże nnym efektm. W elektrolth n. wystęuje zjwsko tworzen r jonów o rzewnyh znkh, które wykzują włśwoś ząstek obojętnyh elektryzne. W elu uwzglęnen tyh zjwsk rowząyh o zmnejszen efektywnyh wrtoś śnen /lub stężen, używne jest ojęe ktywnoś : l śneń, lub l stężeń molowyh. Wsółzynnk ktywnoś l gzów są, lez w ezh < (rzy użyh stężenh, w elektrolth, nwet.5) Jeżel w rekj berze uzł zyste ło stłe lub ez (stnową rzy tym n. ośroek, w którym zhoz rekj), to rzyjmujemy jej ktywność z równą, onewż nn wrtość ktywnoś ne zmenjąej sę n ogół w stotnym stonu w trke rzebegu rekj ne młby sensu. T uwg onos sę szzególne o rekj z uzłem jonów w roztworh wonyh, n. ysojj kwsowo-zsowej (ktywność woy = ) Stłe równowg są z zsy welkośm bezwymrowym, o wynk z efnj (or. orzen wykł): ln G Często jenk są owne wrz z h wymrem (n. = 3 ltr/mol, =5 tm ). Wynk to ze stosown w lorze rekj stężeń lub śneń formlne wrz z wymrem tyh welkoś. Używne wymru stłej m znzene o tyle, że nformuje, jkego rozju jest stł równowg, tzn. zy, zy zy nn. 6
7 Przykł Wykres rzestw zleżność stłej równowg rekj CO + H CO + H O o temertury. Wyznzyć H tej rekj orównć z wrtośą H, którą możn oblzyć n ostwe stnrowyh entl tworzen regentów [8-9 kl/mol]. (Br ) Proes owrotny zyl roukj gzu genertorowego (Trzeb. 99: 8.3 kl/mol) Przykł Mją wrtość stłej równowg l rekj z rzykłu (wynosząą.65 w temerturze C), oblzyć stłe równowg. CO CO H O H C [ CO] [ H O] [ CO ] [ H ] Borą o uwgę, że: =, orz = ( stężene molowe) ostnemy: CO CO H O H C...? Ogólne: = n = () n gze: n = ( + ) ( + b) 7
8 Przykł 3 Dl rekj SO + O SO 3 mją = 3.45 tm - w T = o śnenem tm, oblzyć: () w T = o śnenem tm, jeżel H = 45. kl = onst. () w tej temerturze. SO3 SO O Z r-n vn t Hoff: R T T 8.35 H ( ) ln.78 l = 3.45 tm - wynk stą, że w T= jest: =.435 tm - SO3 SO3 SO3 tm.435 SO O SO O SO O SO3 SO3 J tm SO O SO O mol P m mol P 39.3 ltr mol Przykł 4: Jk zmen sę równowg rekj egzotermznej wskutek wzrostu temertury regentów? (Reguł rzekory Le Chteler-Brun). 8
RÓWNOWAGA CHEMICZNA. Reakcje chemiczne: nieodwracalne ( praktycznie nieodwracalne???) reakcje wybuchowe, np. wybuch nitrogliceryny: 2 C H 2
RÓWNOWG CHEMICZN N O 4 NO Rekje hemizne: nieowrlne ( rktyznie nieowrlne???) rekje wyuhowe, n. wyuh nitroglieryny: C 3 H 5 N 3 O 9 6 CO + 3 N + 5 H O + / O rekje rozu romieniotwórzego, n. roz urnu gy jeen
TEORIA WAGNERA UTLENIANIA METALI
TEORIA WAGNERA UTLENIANIA METALI PROCES POWSTAWANIA ZGORZELIN W/G TAMANN A (90) Utlenz tl Utlenz Zgorzeln tl + SCHEMAT KLASYCZNEGO DOŚWIADCZENIA PFEILA (99) Powetrze Powetrze SO Zgorzeln SO Fe Fe TEORIA
µ (T ) - oznacza standardowy molowy potencjał chemiczny składnika czystego i pod
WYZNACZANIE AKTYWNOŚCI ROZPUSZCZALNIKA WSTĘP Aktywność Dl roztworów doskonłyh rwdzwy jest nstęująy zwązek otenjłu hemznego skłdnk ze stęŝenem: µ + RT ln x (1) = µ gdze µ oznz stndrdowy otenjł hemzny skłdnk
PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 1
PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA Wykłd 1 PODSTAWY CHEMII Wykłdow Prof. dr hb. inż. Mrt Rdek, B-6, III. 306, tel (1) (617) 5-6 e-mil: rdek@gh.edu.l Stron www: htt://glxy.ui.gh.edu.l/~rdek/ htt://www.gh.edu.l/
Metoda prądów obwodowych
Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń
OSZACOWANIE ENERGII DYFUZJI W PRZYPADKU WILGOTNEGO POWIETRZA
ROCZNIKI INŻYNIERII BUOWLANEJ ZESZYT 7/007 Komsj Inżyner Bdowlnej Oddzł Polskej Akdem Nk w Ktow OSZACOWANIE ENERGII YFUZJI W PRZYPAKU WILGOTNEGO POWIETRZA Jerzy WYRWAŁ Andrzej MARYNOWICZ Jdwg ŚWIRSKA Poltenk
EKONOMIA MENEDŻERSKA. Wykład 2 Analiza popytu. Optymalna polityka cenowa. 1 ANALIZA POPYTU. OPTYMALNA POLITYKA CENOWA.
Wykłd Anlz popytu. Optymln poltyk cenow. 1 ANALIZA OYTU. OTYMALNA OLITYKA CENOWA. rzedmotem wykłdu jest prolem zrządzn zyskem poprzez oprcowne wdrożene odpowednej strteg różncown cen, wykorzystując do
Sformułowanie zagadnienia. c c. Analiza zagadnienia dla przypadku m = 4 i n = 3. B 2. c A. c A
ZGDNIENIE TRNSPORTOWE Sformułowne zgdnen Przypuśćmy, że z m punktów odprwy,, K, m m być wysłny w lośh,, K, m ednorodny produkt do n punktów przyęć,, K, n. odboru przymuą produkt w lośh b, b, K, bn. Kżdy
Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy
Semntyk i Weryfikj Progrmów - Lortorium Dziłni n ułmkh, krotki i rekory Cz. I. Dziłni n ułmkh Prolem. Oprowć zestw funkji o ziłń rytmetyznyh n ułmkh zwykłyh posti q, gzie, są lizmi łkowitymi i 0. Rozwiąznie
Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH
Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.
WYBRANE ZAGADNIENIA Z DYNAMIKI GAZÓW
JB emetr II / WYBNE ZGDNIENI Z DYNIKI GZÓW Porzedno omwlśmy zgdnen rzeływu łynów neścślwych, które dorowdzły n do równń Ner- Stoke oujące ruch łynu ścślwego neścślwego orz nne dl tłej gętośc: Euler, Bernoull
Zkaład Elektroanalizy i Elektrochemii Katedra Chemii Nieorganicznej i Analitycznej Uniwersytet Łódzki ul.tamka 12, Łódź
Zkłd Elektronlzy Elektrohem tedr Chem Neorgnznej Anltyznej Unwersytet Łódzk l.tmk 9-403 Łódź Dr Pweł rzyzmonk Łódź mrze 04 P wykłd Wstę - sensory z detekją otenjometryzną Elektrody Rodzje membrn Potenjł
Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19
Rozwąze ektóryh zdń tregowyh do I kolokwum sem. zmowy, 8/9 Zd.. V = ost, = 98 K W wrukh dtyzyh Q = ΔU =. Końową temperturę zjdzemy rozwązują rówe ΔU =. Zm eerg wewętrzej zhodz wskutek rekj hemzej jlepej
FUGATYWNOŚCI I AKTYWNOŚCI
TRMODYNAMIKA TCHNICZNA I CHMICZNA Część VI TRMODYNAMIKA ROZTWORÓW TRMODYNAMIKA ROZTWORÓW FUGATYWNOŚCI I AKTYWNOŚCI a) Wrowadzene Potenjał hemzny - rzyomnene G n de,t, n j G na odstawe tego, że otenjał
Zkaład Elektroanalizy i Elektrochemii Katedra Chemii Nieorganicznej i Analitycznej Uniwersytet Łódzki ul.tamka 12, Łódź. Dr Paweł Krzyczmonik
Zkłd Elektronlzy Elektrohem tedr Chem Neorgnznej Anltyznej Unwersytet Łódzk l.tmk 9-403 Łódź r Pweł rzyzmonk Łódź mrze 05 P wykłd Wstę - sensory z detekją otenjometryzną Elektrody Rodzje membrn Potenjł
2. Funktory TTL cz.2
2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)
5. Zadania tekstowe.
5. Zni tekstowe. Przykł. Kolrz połowę rogi pokonł ze śrenią prękością 0 km/, rugą połowę z prękością 50 km /. Wyzncz śrenią prękość kolrz n cłej trsie. nliz : pierwsz połow rogi rug połow rogi 0 km/ prękość
( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.
Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()
Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel,
utomtyk Robotyk lgebr -Wykłd - dr dm Ćmel cmel@ghedupl Równn lnowe Nech V W będą przestrzenm lnowym nd tym smym cłem K T: V W przeksztłcenem lnowym Rozwżmy równne lnowe T(v)w Powyższe równne nzywmy równnem
Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak
Metody numeryzne Wyłd nr 7 dr. Potr Fronz Cłowne numeryzne Cłowne numeryzne to przylżone olzne łe oznzony. Metody łown numeryznego polegją n przylżenu ł z pomoą odpowednej sumy wżonej wrtoś łownej unj
Pojęcia podstawowe Prawo działania mas Związek stałej równowagi z funkcjami termodynamicznymi Izobara van t Hoffa
Równwg chemczn.8.. jęc dstwwe.8.. w dzłn ms.8.3. Zwązek stłej ównwg z funkcjm temdynmcznym.8.4. Izb vn t Hff.8.5. Iztem vn L- lnck.8.6. Reguł Le Chtele-Bwn.8.7. Ilścw nlz stnu ównwg RÓWNOWG CHEMICZN W
Wyznaczenie współczynnika podziału kwasu octowego pomiędzy fazą organiczną a wodną
Ćwzene 13 Wyznazene współzynnka podzału kwasu otowego pomędzy fazą anzną a wodną Cel ćwzena Celem ćwzena jest wyznazene współzynnka podzału kwasu otowego pomędzy fazą anzną (butanolem) a wodną w oparu
ω a, ω - prędkości kątowe członów czynnego a i biernego b przy
Prekłne Mechncne PRZEKŁADNIE MECHANICZNE Prekłne mechncne są wykle mechnmm kołowym prenconym o prenesen npęu o włu slnk wykonuącego ruch orotowy o cłonu npęowego msyny rooce, mechnmu wykonwcego lu wprost
TERMODYNAMIKA TECHNICZNA I CHEMICZNA
TRMODYNAMIKA TCHNICZNA I CHMICZNA Część IV TRMODYNAMIKA ROZTWORÓW TRMODYNAMIKA ROZTWORÓW FUGATYWNOŚCI I AKTYWNOŚCI a) Wrowadzene Potenjał hemzny - rzyomnene de G n na odstawe tego, że otenjał termodynamzny
Ś Ś Ś Ś Ś Ś Ę Ą Ę ŚĘ Ę Ś ń Ę Ę Ą Ł Ż Ń Ł ć Ą ć Ł Ę Ó ć Ź ć ź ń Ń ń Ś Ą Ę Ł Ę Ą Ę ń ć ń Ź ć ń ć ń Ś ń ŚĆ ć ź Ł Ę Ę Ś Ę Ę Ę ń ŚĘ Ń Ę Ę ń ŚĘ Ę Ę Ś Ś ć ń Ę ń Ś Ę ć ć Ę Ę ć ź ć ń Ę Ń ń ć Ł Ę Ę Ę Ę ć Ę ć ć ź
Roztwory rzeczywiste (1) Roztwory rzeczywiste (2) Funkcje nadmiarowe. Również w temp. 298,15K, ale dla CCl 4 (A) i CH 3 OH (B).
Roztwory rzezywiste (1) Również w tep. 98,15K, le dl CCl 4 () i CH 3 OH (). 15 Τ S 5 H,,4,6,8 1-5 - -15 G - Che. Fiz. TCH II/1 1 Roztwory rzezywiste () Ty rze dl (CH 3 ) CO () i CHCl 3 (). 15 5 Τ S -5,,4
Rozpraszania twardych kul
Wyłd XVIII Rozprszn twrdych u Rozwżmy oddzływne twrdych u opsywne potencjłem V r r Ponewż potencjł jest seryczne symetryczny uncję ową możn zpsć w postc ( r Cm R Ym( m gdze Ym( to hrmon seryczne Rozprszne
Ćwiczenie 15. Maria Bełtowska-Brzezinska WYZNACZANIE WSPÓŁCZYNNIKA PODZIAŁU W UKŁADZIE DWÓCH NIE MIESZAJĄCYCH SIĘ CIECZY
Ćzene 15 Mr Bełtsk-Brzeznsk WYZNACZANIE WSPÓŁCZYNNIKA PODZIAŁU W UKŁADZIE DWÓCH NIE MIESZAJĄCYCH SIĘ CIECZY Zgdnen: Welkś ntensyne ekstensyne. Rztry dsknłe rzezyste. Ptenjł hezny. Systey ktynś. Wsółzynnk
AKADEMIA MORSKA W GDYNI
AKAEMIA MORSKA W GYNI TEMAT: Blok rytmetyzne PROWAZĄCY :... t wykonn ćwzen... t on srwozn... Wykonwy: Rok Oen Gr. Uwg 1. Zuowć ukł ółsumtor, oć tlę stnów. 4 5 2 1 6 3 1 2 s -Tel stnów wyełnć s 0 0 0 1
WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ
ĆWICZENIE 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Opis kł pomirowego A) Wyzzie ogiskowej sozewki skpijąej z pomir oległośi przemiot i obrz o sozewki Szzególie proste, rówoześie
Obliczenia w roztworach
Oblizeni z wykorzystniem równowgi w roztworh Oblizeni w roztworh Jkie są skłdniki roztworu? tóre rekje dysojji przebiegją łkowiie (% dysojji)? tóre rekje osiągją stn równowgi? tóre z rekji równowgowyh
mechanika analityczna 1
mechnk nlyczn neelywsyczn.d.nu, E.M.fszyc Kók kus fzyk eoeycznej ve-8.06.07 współzęne uogólnone punk melny... weko wozący: pękość: ę pzyspeszene: lczb sopn swoboy: v v v f v v współzęne uogólnone: (,,...
TERMODYNAMIKA II.A PROJEKT [WŁASNOŚCI PŁYNÓW ZŁOŻOWYCH - PODSTAWY] SPIS TREŚ CI. andrzej.magdziarz@agh.edu.pl. http://home.agh.edu.
TERMODYNAMIKA II.A PROJEKT [WŁASNOŚI PŁYNÓW ZŁOŻOWYH - PODSTAWY] andrzej.magdzarz@agh.edu.l htt://home.agh.edu.l/magdz erson 0.10 (005/09/0) SPIS TREŚ I 1. DWUFAZOWY UKŁAD GAZ-IEZ... 1.1. ILOŚĆ SUBSTANJI,
Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju
Rozdził 3 Cłki niewłściwe 3. Wprowdzenie Omwine w poprzednim rozdzile cłki oznczone są cłkmi funkcji ciągłych n przedzile domkniętym, więc funkcji ogrniczonych n przedzile skończonym. Wiele zgdnień prktycznych
- Badanie ruchu ciał pod wpływem działających na nie sił. - Badanie stanów równowagi. KINEMATYKA PUNKTU MATERIALNEGO
MECHANIKA Mechnk klsycn Knemyk Dynmk Kneyk Syk - Dł fyk jmujący sę ruchem, równowgą oływnem cł. - Oper sę n rech sch ynmk Newon b ruchy cł mkroskopowych (mechnk newonowsk). - Nuk o ruchu be uwglęnen wywołujących
ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu.
ZADANIA OTWARTE ZADANIE 1 DWUDZIESTOŚCIAN FOREMNY Wiemy, że z trzech złotych prostokątów możn skonstruowć dwudziestościn foremny. Wystrczy wykzć, że długości boków trójkąt ABC n rysunku obok są równe.
Rozwiązania maj 2017r. Zadania zamknięte
Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1
WYKŁAD nr Wielomian M (s) ma pierwiastki wielokrotne oraz równe zero
WKŁD nr. Welomn m perwt welorotne orz równe zero J zznczono poprzeno ążąc o uogólnen wzorów umożlwjących przetwene opowez elementów utomty opnego owolną trnmtncją przy owolnym ygnle wymuzjącym wprowzono
ph ROZTWORÓW WODNYCH
ph ROZTWORÓW WODNYCH ph roztworów monyh kwsów i zsd H O H O A α 00 % MeOH Me OH MeOH α 00 % np.: HCl, r, HI, HNO, HClO i HClO NOH, OH, CsOH i ROH [H O [OH MeOH ph - log poh - log MeOH Mone kwsy dwuprotonowe,
Diagram fazowy ciecz-para (6a)
Digrm fzowy iez-pr (6) P=onst X B =onst tylko iez x B =X B Chem. Fiz. TCH II/09 1 Wrunki izoryzne mją większe znzenie prktyzne. Nsz tłok jest niewżki i porusz się ez tri, ztem we wnętrzu ylindr pnuje ły
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Poltechnk Gdńsk Wydzł Elektrotechnk Automtyk Ktedr Inżyner Systemów Sterown Teor sterown Podstwy lgebry mcerzy Mterły pomocncze do ćwczeń lbortoryjnych 1 Część 3 Oprcowne: Kzmerz Duznkewcz, dr hb. nż.
Obliczenia z wykorzystaniem równowagi w roztworach
Obliczeni z wykorzystniem równowgi w roztworch Obliczeni w roztworch Jkie są skłdniki roztworu? tóre rekcje dysocjcji przebiegją cłkowicie (1% dysocjcji)? tóre rekcje osiągją stn równowgi? tóre z rekcji
WYZNACZANIE STAŁEJ RÓWNOWAGI KWASOWO ZASADOWEJ W ROZTWORACH WODNYCH
Politehni Śląs WYDZIŁ CHEMICZNY KTEDR FIZYKOCHEMII I TECHNOLOGII POLIMERÓW WYZNCZNIE STŁEJ RÓWNOWGI KWSOWO ZSDOWEJ W ROZTWORCH WODNYCH Opieun: Miejse ćwizeni: Ktrzyn Kruiewiz Ktedr Fizyohemii i Tehnoii
Równania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3)
ownn oznczkowe Równn óżnczkowe. Wstę Równne óżnczkow nzw ównne zwejące funkcje newdoe zenne nezleżne oz ocodne funkcj newdoc lu c óżnczk. Pzkłd d 5 d d sn d. d d e d d d. z z z z. ównne óżnczkowe zwczjne
RÓWNOWAGI JONOWE W ROZTWORACH WODNYCH
RÓWNWAGI JNWE W RZTWRACH WDNYCH ILCZYN JNWY WDY, ph H H H H H H H [H [H W wrunkh stndrdowyh (p 101,5 hp, t 5 o C) [H 1 10 1 [H w W zystej wodzie, w temperturze 5 o C, stężeni i [H są równe: [H 1 10 7 mol/dm
TENSOR W ZAPISIE LAGRANGE A I EULERA
TENSOR W ZAPISIE LAGRANGE A I EULERA N postwe skłowych wektor przemeszczeń obczmy skłowe tensor oksztłcen. Tensor oksztłcen może być w zpse Lgrnge b Eer. We współrzęnych Lgrnge rch cząsteczk est opsny
ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW
1 ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GANULOMETYCZNEJ SUOWCÓW I PODUKTÓW 1. Cel zkres ćwczen Celem ćwczen jest opnowne przez studentów metody oceny mterłu sypkego pod względem loścowej zwrtośc frkcj
Środek masy i geometryczne momenty bezwładności figur płaskich 1
Środek ms geometrzne moment bezwłdnoś fgur płskh Środek ms fgur płskej Zleżnoś n współrzędne środk ms, fgur płskej złożonej z fgur regulrnh rs.. możem zpsć w nstępują sposób: gdze:. pole powerzhn -tej
Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury.
Proces decyzyny: 1. Sformułu sno problem decyzyny. 2. Wylcz wszyste możlwe decyze. 3. Zdentyfu wszyste możlwe stny ntury. 4. Oreśl wypłtę dl wszystch możlwych sytuc, ( tzn. ombnc decyz / stn ntury ). 5.
T. Hofman, Wykłady z Termodynamiki, Wydział Chemiczny PW, kierunek: Biotechnologia, sem. letni 2015/2016 I. TERMODYNAMIKA UKŁADÓW REAGUJĄCYCH
T. Hfmn, Wykłdy z Termdynmk, Wydzł Chemzny PW, kerunek: Btehnl, em. letn 5/6 WYKŁAD 3-8. I. Termdynmk ukłdów reuąyh J. Równw ez-r w ukłdh dwukłdnkwyh I. TERMODYNAMIKA UKŁADÓW REAGUJĄCYCH 6. Ukłd z reką
a a a ; ; ; (1.2) przez [ a ij ], czyli zbiór elementów w i-tym wierszu i w j-tej kolumnie. Wymiary ( n m) stanowią stopień macierzy.
. PODSWY LGEBY CIEZY.. Ukły równń liniowyh Ukł n równń o m niewiomyh x K x m m L L L L L x K x n nm m n możn zpisć w posti tli liz (mierzy): (.) x x x x x x x x x x zpisć w posti mierzowej. Wprowzją nstępująe
Entalpia swobodna reakcji chemicznej (1)
Entlpi swobodn ekcji chemicznej () Dl ekcji: (znne są liczne pzypdki, choćby izomeyzcj) Jeżeli dojdzie do infinitezymlnej zminy skłdu mieszniny ekcyjnej, czyli postępu ekcji, dξ, tk że dn dξ, zś dn dξ,
Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające
Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci
Opis modelu ASET. Dane wejściowe, które trzeba wprowadzić do tego programu to: procent strat ciepła; średnia wysokość płomienia;
Os modelu ASE Poząek modelown srefowego sęg drugej ołowy l sedemdzesąy XX weku. Z zsem ojwły sę modele różnąe sę sonem złożonoś o zwązne było z elm modelown. Głównym złożenem wększoś model srefowy jes
WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:
YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą
Stan równowagi chemicznej
Stan równowagi hemiznej Równowaga hemizna to taki stan układu złożonego z roduktów i substratów dowolnej reakji odwraalnej, w którym szybkość owstawania roduktów jest równa szybkośi ih rozadu Odwraalność
FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA.
Oprownie: Elżiet Mlnowsk FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Określeni podstwowe: Jeżeli kżdej lizie x z pewnego zioru lizowego X przporządkown jest dokłdnie jedn liz, to mówim,
Równanie van der Waalsa - stanu gazu rzeczywistego. Gazy rzeczywiste
015-10-9 Gz rzeczywisty Równnie vn der Wls - stnu gzu rzeczywistego Przy ciśnieniu gzu rosnącym do jego objętość dąży do ewnej wrtości stłej Cząsteczki gzu mją skończone objętości! V eff V N b Zmniejszenie
Rachunek prawdopodobieństwa i statystyka matematyczna.
Rchunek rwdoodobieństw i sttystyk mtemtyczn. Zd 8. {(, : i } Zleżność tą możn rzedstwić w ostci nstęującej interretcji grficznej: Arkdiusz Kwosk Rfł Kukliński Informtyk sem.4 gr. Srwdźmy, czy odne zmienne
METODY KOMPUTEROWE 11
METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Mchł PŁOTKOWIAK Adm ŁOYGOWSKI Konsultcje nukowe dr nż. Wtold Kąkol Poznń / METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Metod wżonych rezduów jest slnym nrzędzem znjdown
f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)
Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co
ANALIZA ANKIETY SKIEROWANEJ DO UCZNIÓW ZESPOŁU SZKÓŁ
ANALIZA ANKIETY SKIEROWANEJ DO UCZNIÓW ZEOŁU SZKÓŁ Bni nkietowe zostły przeprowzono w rmh relizji projektu eukyjnego Nie wyrzuj jk lei. Celem tyh ń yło uzysknie informji n temt świomośi ekologiznej uzniów
MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej
Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe
Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP
Progrmowie z więzmi (CLP) mjąc w PROLOGu: p(x) :- X < 0. p(x) :- X > 0. i pytjąc :- p(x). dostiemy Abort chcelibyśmy..9 CLP rozrzeszeie progrmowi w logice o kocepcję spełii ogriczeń rozwiązie = logik +
SPEKTROSKOPIA MOLEKULARNA
SPEKTROSKOPIA MOLEKULARNA Ćwzene 1 Badane wązana wodorowego za pomoą spektroskop absorpyjnej w podzerwen. A. BADANIE AUTOASOCJACJI ALKOHOLU OKTYLOWEGO ODCZYNNIKI Substanja badana: oktanol (d=0.83 g/m 3
Ł Ł ŁÓ Ę ó ź ś óź ś ó Ó ż Ł Ł Ń Łó ó Ś ó ó ż ó Ó ś ś ż ż ż śó Ó ó ś ó ś ś Ó ś ś Ś ó Ś Ż ż Ó Ć ó Ó Ź Ż ż ś Ó Ó ż ś Ż Ż Ż ó Ź śó ó Ż Ż ż ó ż ó ś ś ć ó Ś Ó ż Ć Ż ś ó ć Ż ż Ó Ś ó ś ó Ó Ż Ż Ż Ś ó ć ś Ó Ż Ż
Tensor liniowa jednorodna funkcja: wektor wektor b=f(a) a ( ˆ) [ˆ ( ˆ) ˆ ( ˆ) ˆ. Równanie b=f(a) można więc zapisać w postaci
ensor f liniow jenoron funkj: wektor wektor =f f f f W nm ukłie współręnh i,j,k - tensor jko mier f ˆ ˆ i j kˆ f ˆ i f ˆ j f kˆ le f iˆ [ˆ if ˆ i ˆjf ˆ i kf ˆ ˆ] i ˆ [ˆ ˆ ˆ ˆ ˆ f j if j jf j kf ˆ] j f
Równania i nierówności kwadratowe z jedną niewiadomą
50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej
RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I.
RACHUNEK CAŁKOWY Funkcj F jest funkcją pierwotną funkcji f n przedzile I R, jeżeli F (x) = f (x), dl kżdego x I. Przykłd. Niech f (x) = 2x dl x (, ). Wtedy funkcje F (x) = x 2 + 5, F (x) = x 2 + 5, F (x)
Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna
1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,
3. Równanie Bernoulliego dla przepływu płynów doskonałych
Równnie Bernoullieo l rzeływu łynów okonłyc Równnie Bernoullieo wyrż zę, że w rucu utlony nieściśliweo łynu ielneo obywjący ię w olu ił ciężkości, cłkowit eneri łynu kłjąc ię z enerii kinetycznej, enerii
Znajdowanie analogii w geometrii płaskiej i przestrzennej
Gimnzjum n 17 im. Atu Gottge w Kkowie ul. Litewsk 34, 30-014 Kków, Tel. (12) 633-59-12 Justyn Więcek, Atu Leśnik Znjdownie nlogii w geometii płskiej i pzestzennej opiekun pcy: mg Doot Szczepńsk Kków, mzec
Q = a 3. równ. równ. N 2 (g) + 3H 2 (g) 2 NH 3 (g) θ H
ĆWICZENIE 4. Wyzncznie stłych dysocjcji kwsów metodą potencjometryczną. Bdnie wpływu podstwników n równowgę dysocjcji kwsów krboksylowych. STATYKA CEMICZNA. Stł równowgi oszukiwnie wyrżeni opisującego
Wykład 9: Różne rodzaje zbieżności ciągów zmiennych losowych. Prawa wielkich liczb.
Rchuek prwopoobieństw MA1181 Wyził T, MS, rok k. 2013/14, sem. zimowy Wykłowc: r hb. A. Jurlewicz Wykł 9: Róże rozje zbieżości ciągów zmieych losowych. rw wielkich liczb. Zbieżość z prwopoobieństwem 1:
Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule
Fizyk Kurs przygotowwczy n studi inżynierskie mgr Kmil Hule Dzień 3 Lbortorium Pomir dlczego mierzymy? Pomir jest nieodłączną częścią nuki. Stopień znjomości rzeczy często wiąże się ze sposobem ich pomiru.
Zapis wskaźnikowy i umowa sumacyjna
Zpis wskźnikow i mow smcjn Pokzć, że e ikm e ikm Pokzć, że e e δ ikm jkm Dn jest mcierzow reprezentcj tensor 7 7 7 ), ), c) 7 7 Podć dziewięć skłdowch d zdefiniownch związkiem: Wrnki nierozdzielności możn
2.3.1. Iloczyn skalarny
2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi
Definicje. r r r r. Struktura kryształu. Sieć Bravais go. Baza
Definije Sieć Brvis'go - Nieskońzon sieć punktów przestrzeni tkih, że otozenie kżdego punktu jest identyzne Nieskońzon sieć punktów przestrzeni otrzymnyh wskutek przesunięi jednego punktu o wszystkie możliwe
Zadania. I. Podzielność liczb całkowitych
Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.
Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna
lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci
TORY PLANET (Rozważania na temat kształtów torów ruchu planety wokół stacjonarnej gwiazdy)
Rysz Chybicki TORY PLANET (Rozwżni n tet ksztłtów toów uchu lnety wokół stcjonnej gwizy) (Posługiwnie się zez osoby tzecie ty tykułe lub jego istotnyi fgenti bez wiezy uto jest wzbonione) MIELEC Plnecie
Minimalizacja automatu
Minimlizj utomtu Minimlizj utomtu to minimlizj lizy stnów. Jest to trnsformj utomtu o nej tliy przejśćwyjść n równowżny mu (po wzglęem przetwrzni sygnłów yfrowyh) utomt o mniejszej lizie stnów wewnętrznyh.
Zasady wyznaczania minimalnej wartości środków pobieranych przez uczestników od osób zlecających zawarcie transakcji na rynku terminowym
Załązn nr 3 Do zzegółowyh Zasad rowadzena Rozlzeń Transa rzez KDW_CC Zasady wyznazana mnmalne wartoś środów oberanyh rzez uzestnów od osób zleaąyh zaware transa na rynu termnowym 1. Metodologa wyznazana
Opracowała: mgr inż. Ewelina Nowak
Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów ierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach rojektu Era inżyniera ewna lokata na rzyszłość Oracowała: mgr inż.
Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:
Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz
4.6. Gramatyki regularne
4.6. Grmtyki regulrne G = < N,T,P,Z > jest grmtyką prwostronnie liniową, jeśli jej produkcje mją postć: ( i) U xv x T * U,V N ( ii) U x G = < N,T,P,Z > jest grmtyką prwostronnie regulrną, jeśli jej produkcje
Regionalne Koło Matematyczne
Regionlne Koło Mtemtyzne Uniwersytet Mikołj Kopernik w Toruniu Wyził Mtemtyki i Informtyki http://www.mt.umk.pl/rkm/ List rozwiązń zń nr 8, grup zwnsown (3.03.200) O izometrih (..) Wektorem uporząkownej
Hydroliza i bufory. Hydroliza soli Bufory Krzywe miareczkowania Wskaźniki ph
Hydroliz i bufory Hydroliz oli Bufory rzywe mirezkowni Wkźniki ph 1 Hydroliz Proe rozkłdu jkiejś ubtnji ntępująy pod wpływem wody Hydroliz oli - rekje nionów lub ktionów z zątezkmi wody ole łbyh kwów i
Wykład 2. Funkcja logarytmiczna. Definicja logarytmu: Własności logarytmu: Logarytm naturalny: Funkcje trygonometryczne
Wykłd 2 Funkcj rytmiczn, Deinicj rytmu: Włsności rytmu: 2 u 2 u b c c b 2 2 Lorytm nturlny: Funkcje tryonometryczne Funkcje tryonometryczne kąt ostreo: b c sin cos t ct b c b c b Mir łukow kąt wyrż się
BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ
ADANIE ZAEŻNOŚCI PRZENIKANOŚCI MAGNETYCZNEJ FERRIMAGNETYKÓW OD TEMPERATURY 1. Teori Włściwości mgnetyczne sstncji chrkteryzje współczynnik przeniklności mgnetycznej. Dl próżni ten współczynnik jest równy
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby
G i m n a z j a l i s t ó w
Ko³o Mtemtyzne G i m n z j l i s t ó w 1. Lizy,, spełniją wrunki: (1) ++ = 0, 1 () + + 1 + + 1 + = 1 4. Olizyć wrtość wyrżeni w = + + Rozwiąznie Stowrzyszenie n rzez Edukji Mtemtyznej Zestw 7 szkie rozwizń
Programy współbieżne
Specyfikownie i weryfikownie Progrmy współieżne Mrek A. Bednrczyk, www.ipipn.gd.pl Litertur wiele prc dostępnych w Sieci np.: http://www.wikipedi.org/ Specyfikownie i weryfikcj progrmy współieżne PJP Prosty
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Kls drug A, B, C, D, E, G, H zkres podstwowy 1. FUNKCJA LINIOWA rozpoznje funkcję liniową n podstwie wzoru lub wykresu rysuje
LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&
LISTA: Projektownie ukłdów drugiego rzędu Przygotownie: 1. Jkie włsności m równnie -ego rzędu & &+ b + c u jeśli: ) c>; b) c; c) c< Określ położenie biegunów, stbilność, oscylcje Zdni 1: Wyzncz bieguny.
Maria Bełtowska-Brzezinska WYZNACZANIE STAŁEJ DYSOCJACJI SŁABEGO ELEKTROLITU METODĄ KONDUKTOMETRYCZNĄ
Ćwene 0 Mr Bełtwsk-Brensk WYZNCZNIE STŁEJ DYSOCJCJI SŁBEGO ELETROLITU METODĄ ONDUTOMETRYCZNĄ Zgdnen: Ptenjł heny, rtwry dsknłe reywste. Pwnwtw hene. Równwg w rekj henej. Prw dłn s. Równn ry hry vn't Hff
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Energia aktywacji jodowania acetonu. opracowała dr B. Nowicka, aktualizacja D.
Ktedr Chemii Fizycznej Uniwersytetu Łódzkiego Energi ktywcji jodowni cetonu oprcowł dr B. Nowick, ktulizcj D. Wliszewski ćwiczenie nr 8 Zkres zgdnień obowiązujących do ćwiczeni 1. Cząsteczkowość i rzędowość