Opis modelu ASET. Dane wejściowe, które trzeba wprowadzić do tego programu to: procent strat ciepła; średnia wysokość płomienia;
|
|
- Łucja Zielińska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Os modelu ASE Poząek modelown srefowego sęg drugej ołowy l sedemdzesąy XX weku. Z zsem ojwły sę modele różnąe sę sonem złożonoś o zwązne było z elm modelown. Głównym złożenem wększoś model srefowy jes odzł środowsk ożru n odrębne srefy (zwykle dwe). Polegjąy on n slnu jednego lub klku merłów w omeszzenu umeszzony w ewnej odległoś od jego śn. Wydzelne eł w srefe sln określne jes orzez ojedynzą krzywą szybkoś wydzeln eł (mo ożru) w funkj zsu (krzyw HRR- ng. He Relese Re). Progrm ASE-W jes kolejną rozszerzoną wersją rogrmu ASE ASE-B. ASE jes kronmem oodząym od ngelskego Avlble Sfe Egress me oznz douszzlny bezezny zs ewkuj. Progrm ASE orowny zosł w roku w USA w ośrodku nukowym NIS (Nonl Insue of Sndrds nd enology) - (dwnej NBS) rzez L.Y.Cooer D.W.Srou. Do sworzen modelu użyo język FORRAN. Progrm en oblz douszzlny zs ewkuj z ojedynzego omeszzen objęego ożrem. Podswą do oblzeń zsu ewkuj jes emerur ołożene wrswy gorąego dymu. Produky sln wydosją sę n zewnąrz jedyne rzez neszzelnoś - zkłd sę że drzw okn są zmknęe. Dne wejśowe kóre rzeb wrowdzć do ego rogrmu o: roen sr eł; średn wysokość łomen;
2 kryer określjąe zgrożene ży wykrye ożru; wysokość omeszzen; owerzn odłog omeszzen; wroś szybkoś wydzeln eł odzs ożru. W wynku oblzeń orzymuje sę emerurę grubość orz sężene wrswy gorąego dymu w funkj zsu. Dną wyjśową jes równeż zs wykry ożru zs o kórym może nsąć zgrożene ży osób rzebywjąy w rozrywnym omeszzenu. Wersj ASE rogrm komuerowy ASE-B orowny zosł w NIS w 985 roku rzez W.C.Wlon z rzeznzenem do wykorzysn n komuer osobsy. Oblzn jes emerur ołożene wrswy gorąego dymu w ojedynzym omeszzenu z zmknęym drzwm oknm z omoą łwej szybkej enk oblzenowej nsnej w języku BASIC. W rzydku ego rogrmu użykownk mus wrowdzć wroś generownego eł w kolejny rzedzł zsowy ożru. W rzydku ASE-B orzymuje sę dne wyjśowe w os: emerury gruboś wrswy gorąego dymu w funkj zsu. W odróżnenu od ASE ne oblzne jes sężene dymu zs zgrożen ży wykry ożru. Njnowsz wersj ASE-W sworzon w SGSP dzł n kee rogrmsyznym DELPHI kóry umożlw szybke rzewrzne dny zmęywne wynków grfzną rezenję. Progrm zdowny zosł do środowsk Wndows o znzne ułwło obsługę sm rogrm sł sę brdzej zyelny. Symuluje wrunk ożru roes wyełnn dymem ojedynzego omeszzen. Może być wykorzysn do symulj ożru w ukłdze omeszzeń. Wymgne dne wejśowe obejmują gruy dny: - -
3 geomer omeszzen- wysokość owerzn odłog omeszzen; nformje o źródle ogn (y ożru); dne doyząe szybkoś wydzeln eł. Znzne ułwene w obsłudze snow możlwość wybrn wejśowej rkerysyk sln z lsy dosęny merłów lny owszene sosowny jko merły wyosżen wnęrz. Wrowdzone krzywe HRR bzują n rzezywsy es ognowy rzerowdzony w USA. Progrm oblz emerurę górnej wrswy wysokość wrswy łodnej. Orzymne wroś mogą być rzenoszone do rkuszy klkulyjny. W forme belryznej orzymywne są rzebeg zsowe: emerury wrswy odsufowej wysokość wrswy łodnej gęsość srumen eł od łomen gęsość srumen eł wymennego w ukłdze wrsw gorą - odłog. Wynk oblzeń możn odwzorowć grfzne z omoą wykresów. Progrm jko dne wyjśowe rkuje e rmery kóre są sone z unku wdzen rowdzen ewkuj osób z budynku. Dlego eż równn roedury oblzeń odnoszą sę do roesów rządząy I fzą rozwoju ożru. Model rozwoju ożru Zkłd sę że ożr owsje w omeszzenu w ewnej odległoś od sufu sje sę źródłem energ roduków sln. W wynku rekj sln jes wydzelne eło kóre ogrzew unosząe sę nd ognskem ożru gzy. Sref sln owoduje formowne kolumny konwekyjnej. N skuek owsły w wynku różny gęsoś mędzy gorąym gzm zmnym ośrodkem zewnęrznym sł wyoru gorąe roduky rozkłdu ermznego sln worzą gorąy srumeń - 3 -
4 unosząy sę w kerunku sufu. Po doru zderzenu z sufem kolumn konwekyjn ogn rozływ sę worzą wrswę gorąą zw. srumeń odsufowy. Grubość ej wrswy w rke ożru rośne. Powsje owerzn rozdzłu omędzy wrswą odsufową łodnym owerzem znjdująym sę onżej. Przyjmuje sę że newelk zęść zmnego owerz ouszz omeszzene rzez różne owory n. neszzelnoś rzy złożenu że drzw okn owory wenylyjne w omeszzenu są zmknęe. Złożene o jes zgodne z rzezywsym rozwojem ożru wewnęrznego onewż w oząkowej jego fze drzw okn są w sne konsrukyjne wyrzymć desrukyjne oddzływne łomen gorąy gzów. Cykl oblzenowy jes rzerywny dl zsu kr o znzy wedy gdy: Z ( kr) (emerur srefy zdymen wzrośne do emerury w wynku kórej owsje kryyzny srumeń romenown) lbo Z( kr) (łszzyzn rozdzłu rzekrozy rkerysyzny ozom Z kr) sm wrsw odsufow sje sę nebezezn ( dl ludz lub znzne zmnejsz wdozność
5 Dynmk rzeływu gzu odzs ożru wewnęrznego. Srefę sln rzyjmuje sę jko unkowe źródło wydzeln energ znjdująe sę n odłodze lub owyżej owodująe owsne kolumny konwekyjnej. Wysokość wrswy odsufowej sle zwększ sę wyer on zmne owerze rzez owór znjdująy sę w oblżu odłog. Mędzy wrswą gorąą łodnym owerzem owsje łszzyzn rozdzłu. Ponewż śnene w omeszzenu uleg ylko neznznym wnom rzyjmuje sę że śnene w omeszzenu m wrość słą. Wobe ego w dowolnym unke w kżdej wl zsu możn odneść gęsość doskonłego: gdze: do emerury osługują sę równnem snu gzu - gęsość emerur oząkow ons () - średn gęsość owerz w omeszzenu objęym ożrem - 5 -
6 - średn emerur owerz w omeszzenu objęym ożrem. N ej odswe możn swerdzć że m wyższ emerur ożru ym gęsość worząej sę kolumny konwekyjnej jes mnejsz gzy slnowe mją wększą zdolność do rozrszn sę w mosferze (dyssyj). Bezośredno od emerury zleży szybkość rozwoju ożru. Isonym jes fk że dym jes nośnkem energ. Zkłd sę że znn jes relj określją zmnę łkowego srumen energ emownego ze srefy sln w funkj zsu Q. Dosęne są dne orzymne n drodze dośwdzeń doyząe zleżnoś Q dl różny subsnj sljąy sę w różny konfgurj geomeryzny. Energ wydzelon Q w srefe sln zęśowo jes ron rzez romenowne sry e określ wsółzynnk r. r określ zęść energ kór jes rzekzywn n ogrzne gzów kolumny konwekyjnej owodują owsne sły wyoru ru gzów. Średną emerurę łkowy srumeń msy m w kolumne konwekyjnej w odległoś Z od srefy sln (od wrunkem że Z znjduje sę onżej owerzn rozdzłu) możn osć wzorm: Q * 3 < Z Z () () m g Z Z * 3 Q < Z Z () (3) gdze: Q * C r Q g Z Z (4) m g - rzyśeszene zemske wynosząe 98 s - 6 -
7 C określone dl dnej subsnj eło włśwe rzy słym śnenu[ kj kg K ] Z () - zmenn w zse odległość mędzy srefą sln (ognskem ożru) owerzną rozdzeljąą wrswę górną (o odwyższonej emerurze) wrswę dolną (wrswę oddzływn romenown elnego wrsw łodn). Zgodne z odswowym złożenem modelu srefowego nsęuje dobre meszne wewnąrz sref o owoduje że emerur w dowolnym unke dnej srefy jes k sm. Do określen srumen msy gzu wyływjąego z omeszzen rzez neszzelnoś n ozome odłog jes sosown zleżność: m e Q C Q C dl dl Z Z ( ) ( ) (5) gdze: Z () - zmenn w zse odległość mędzy źródłem ogn (srefą sln) łszzyzną rozdzłu - ołożene ognsk ożru nd odłogą - wlow wrość zęś welkoś Q ronej orzez konwekję romenowne do owerzn konsrukj budowlnej omeszzen wrość wyrż sę wzorem: Q SRAC. Q C - eło włśwe - 7 -
8 - emerur wrswy odsufowej. Powyższe równne osuje srumeń msy gzu wyływjąego z omeszzen. W rzydku gdy owerzn rozdzłu osągne ozom odłog zn. Z = - łe owerze znjdująe sę oząkowo w omeszzenu zosne wynęe n zewnąrz. Mesznn dymu owerz wyełn łe omeszzene. Średną gęsość wrswy odsufowej możn zdefnowć jko: H Z H Z dz (6) gdze: H - wysokość od ognsk ożru do sufu omeszzen. Blns msy dl srefy oddzływn elnego (doln wrsw) w omeszzenu rzedsw sę z omoą równń: dz A d m m e m e Z Z Z ( ) H Z ( ) (7) Z ( ) gdze: A - owerzn omeszzen w kórym zsnł ożr - odległość ognsk ożru od odłog. m - welkoś określone równnm (5) (3) e m Po odswenu równń () (6) do równn energ dl wrswy górnej dymu orzymuje sę blns energeyzny w os: C Q d A H Z dl Z H (8) - 8 -
9 - 9 - Z dl d d A C H Q (9) Przedswone owyżej równn energ msy rozwązywne są numeryzne. W elu uroszen kolejny równń wrowdz sę nsęująe zmenne bezwymrowe: Q Q L Z () gdze: L - oznz rkerysyzny zs wymr Q - rkerysyzne eło ożru n. z Q możn rzyjąć Q jeżel Q jes różne od. - bezwymrowe ołożene owerzn rozdzłu -bezwymrow emerur wrswy odsufowej. Przyjmują zmenne bezwymrowe do równń () - (5) (7) - (9) orzymuje sę zleżność: d d () d d () gdze:
10 - - L A C Q L L H 3 C L g Q A Zsne w os bezwymrowej równn (8) rowdz do wzoru: dl d
MODELOWANIE POŻARÓW-Modele analityczne
SGSP - SUDIA MAGISERSKIE MODELOWANIE POŻARÓW-Modele nlyczne dr hb. MAREK KONECKI, rof. SGSP Wrzw 009 EORIA KOLUMN KONWEKCYJNYCH OGNIA (KKO) Kolun oowo yeryczn Prery KKO zybkość rzeływu y (rueń) w o KKO
WYBRANE ZAGADNIENIA Z DYNAMIKI GAZÓW
JB emetr II / WYBNE ZGDNIENI Z DYNIKI GZÓW Porzedno omwlśmy zgdnen rzeływu łynów neścślwych, które dorowdzły n do równń Ner- Stoke oujące ruch łynu ścślwego neścślwego orz nne dl tłej gętośc: Euler, Bernoull
TEORIA WAGNERA UTLENIANIA METALI
TEORIA WAGNERA UTLENIANIA METALI PROCES POWSTAWANIA ZGORZELIN W/G TAMANN A (90) Utlenz tl Utlenz Zgorzeln tl + SCHEMAT KLASYCZNEGO DOŚWIADCZENIA PFEILA (99) Powetrze Powetrze SO Zgorzeln SO Fe Fe TEORIA
Metoda prądów obwodowych
Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń
Dla danego czynnika termodynamicznego i dla określonej przemiany ciepło właściwe w ogólności zależy od dwóch niezależnych
Ciepło włśiwe Nieh zynnik ermodynmizny m sn określony przez emperurę orz iśnienie p. Dl dowolnej elemenrnej przeminy zzynjąej się od ego snu możemy npisć dq [J/kg] ( Równnie ( wiąże pohłninie lub oddwnie
WYKŁAD 6. Równowaga chemiczna.
WYŁAD 6. Równowg hemzn. Potenjł hemzny Dl ukłu złożonego ze skłnków,,...,,... entl swobon jest sumą entl swobonyh skłnków: G G G G G...... G(, T, n, n, n,...) 3 Potenjł hemzny: G n, T, n G n, T, k n k
EKONOMIA MENEDŻERSKA. Wykład 2 Analiza popytu. Optymalna polityka cenowa. 1 ANALIZA POPYTU. OPTYMALNA POLITYKA CENOWA.
Wykłd Anlz popytu. Optymln poltyk cenow. 1 ANALIZA OYTU. OTYMALNA OLITYKA CENOWA. rzedmotem wykłdu jest prolem zrządzn zyskem poprzez oprcowne wdrożene odpowednej strteg różncown cen, wykorzystując do
Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak
Metody numeryzne Wyłd nr 7 dr. Potr Fronz Cłowne numeryzne Cłowne numeryzne to przylżone olzne łe oznzony. Metody łown numeryznego polegją n przylżenu ł z pomoą odpowednej sumy wżonej wrtoś łownej unj
OSZACOWANIE ENERGII DYFUZJI W PRZYPADKU WILGOTNEGO POWIETRZA
ROCZNIKI INŻYNIERII BUOWLANEJ ZESZYT 7/007 Komsj Inżyner Bdowlnej Oddzł Polskej Akdem Nk w Ktow OSZACOWANIE ENERGII YFUZJI W PRZYPAKU WILGOTNEGO POWIETRZA Jerzy WYRWAŁ Andrzej MARYNOWICZ Jdwg ŚWIRSKA Poltenk
( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.
Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()
Ą ś Ę ń ń ń Ć ś ć Ę Ę ż ę ę ż ż ż ź ć ż Ę ś ż ż ż ń ź ż ę Ą ę ę Ć ż ć Ę Ę ż Ó ś ż ż ż ś ż ź ć Ą ś ź ę Ę ń śł ż ę ż ń Ą Ó ń Ę Ż Ę ę ę ż ć ż ń ś ń Ć ń ć żę ś Ę ń ę ś Ę Ę ż ćż ć ę ż Ę ż ś Ę ń ć ś ż Ą ń ż
µ (T ) - oznacza standardowy molowy potencjał chemiczny składnika czystego i pod
WYZNACZANIE AKTYWNOŚCI ROZPUSZCZALNIKA WSTĘP Aktywność Dl roztworów doskonłyh rwdzwy jest nstęująy zwązek otenjłu hemznego skłdnk ze stęŝenem: µ + RT ln x (1) = µ gdze µ oznz stndrdowy otenjł hemzny skłdnk
ZADANIA Z GEOMETRII RÓŻNICZKOWEJ NA PIERWSZE KOLOKWIUM
ZADANIA Z GEOMETRII RÓŻNICZKOWEJ NA PIERWSZE KOLOKWIUM. Koło o promieniu n płszczyźnie Oxy oczy się bez poślizgu wzdłuż osi Ox. Miejsce geomeryczne opisne przez punk M leżący n obwodzie ego koł jes cykloidą.
Ł Ł Ń Ą Ę Ó Ś ę Ż żń ĆŻ Ż ś ść Ż Ó Ż Ż ń ść ń ę Ź ż Ż Ż ż ń ż ń Ż ÓŻ Ś Ó Ź Ż Ż Ź Ż ń Ż ś Ż Ż Ż Ż ść ż Ż Ż ń ń ść Ż ś Ż ś ż ś Ó ę ś ś Ż ż śż ś ż ę ę Ó Ż Ś Ó Ż Ó Ż ń ż ś Ż ń ż Óż ń ś ę ć Ż Ż ś żż Ż ś Ś Ż
- Badanie ruchu ciał pod wpływem działających na nie sił. - Badanie stanów równowagi. KINEMATYKA PUNKTU MATERIALNEGO
MECHANIKA Mechnk klsycn Knemyk Dynmk Kneyk Syk - Dł fyk jmujący sę ruchem, równowgą oływnem cł. - Oper sę n rech sch ynmk Newon b ruchy cł mkroskopowych (mechnk newonowsk). - Nuk o ruchu be uwglęnen wywołujących
Rozpraszania twardych kul
Wyłd XVIII Rozprszn twrdych u Rozwżmy oddzływne twrdych u opsywne potencjłem V r r Ponewż potencjł jest seryczne symetryczny uncję ową możn zpsć w postc ( r Cm R Ym( m gdze Ym( to hrmon seryczne Rozprszne
ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW
1 ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GANULOMETYCZNEJ SUOWCÓW I PODUKTÓW 1. Cel zkres ćwczen Celem ćwczen jest opnowne przez studentów metody oceny mterłu sypkego pod względem loścowej zwrtośc frkcj
Ę Ś ę ł ł ęł ś ę ń ł ń ść ń ę ś ś ś ł ś ę ł ć ń ę ł ś ń ę ś ć ł ś ś ć ł ń ń Ę ł ę ł ę ś ę ś ł ść ś ł ł ę ę ć ś ć ł ł Ść ść ł ść Ę ę ć ł ć ł ś ł ł ć ł ł ś ł ść ł ś ń ń ń ń ę ę ś ć ł ś ę ń ę ś ś ę ł ł ś
PROFILOWE WAŁY NAPĘDOWE
- 5 - Profilowe wały naędowe INKOA Profil graniasy P3G rójkąny ois Wały graniase INKOA o rofilu P3G charakeryzują się nasęującymi właściwościami: 1. rofile P3G sosuje się do ołączeń soczynkowych wał -
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale
ą ą Ą ł ą Ą Ł ÓŁ Ą ę ą ż ę łą ą łą
Ą ł Ą Ł ÓŁ Ą ę ę ł ł ń ęść ł ł ę ęść źć ć ł ń ś ń ć ń ń ń Ż ł ć ść ń ń Ę ę ĘŚĆ Ó Ł Ł ę ł ś ł Ę ę ń ń ś ś ź ę ś Ę ś ć ś ę Ę ę ć ń ś ś ę ę ć ś Ę ń ź ć ś ś Ł ś Ł ź ł ę Ż ń Ę ń Ę ń ś ę ń ś ś ń ł ś ć ź ń ś
METODY KOMPUTEROWE 11
METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Mchł PŁOTKOWIAK Adm ŁOYGOWSKI Konsultcje nukowe dr nż. Wtold Kąkol Poznń / METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Metod wżonych rezduów jest slnym nrzędzem znjdown
Sformułowanie zagadnienia. c c. Analiza zagadnienia dla przypadku m = 4 i n = 3. B 2. c A. c A
ZGDNIENIE TRNSPORTOWE Sformułowne zgdnen Przypuśćmy, że z m punktów odprwy,, K, m m być wysłny w lośh,, K, m ednorodny produkt do n punktów przyęć,, K, n. odboru przymuą produkt w lośh b, b, K, bn. Kżdy
Ą Ą Ł ĘŁ ą ą ą ą ż Ę ć ą ó ą ę ą ą ź ę ż ó ą ć ą ą ą ć ż ó ó ó Ń ńą ą ę ą Ń ę ż ą ó ą ą ą ą ą ą ą ó ęż ęż ę ą ą ę ą ą ę ż ą ż ĘŚ ź ę ą ż ą ó ą ą ó ą ę Ą ą ż ń ęż ęż ń ę ó ć ż ą ń ń ż ń ó ć ą ą ó ó ę ń
Ż ś ćł ę ś ś ź ć ę ł ś ś ę ę ę ę ę łę ę ś ę Ś ę ę ł ę ę ę Ń ć Ś ć ę ś Ś Ź Ć ę ę Ę ę ś ę ł ę ę Ć ł ę ć ę ś ę ę ę ść ę ź ś ś ę Ć ę ę ę ł ć ź ę ć ś ł
Ą ł ł ś Ń ś ę Ź ł ę Ł ść ę ę ę ś ćź ł ę ś ć ę ś ę ę ę ę ś ęś ś Ż ś ćł ę ś ś ź ć ę ł ś ś ę ę ę ę ę łę ę ś ę Ś ę ę ł ę ę ę Ń ć Ś ć ę ś Ś Ź Ć ę ę Ę ę ś ę ł ę ę Ć ł ę ć ę ś ę ę ę ść ę ź ś ś ę Ć ę ę ę ł ć ź
Niezawodność i Diagnostyka
Kedr Merolog Opoelekronk Wydzł Elekronk Telekomunkcj Informyk Polechnk Gdńsk Nezwodność Dgnosyk Ćwczene lororyjne Nr Grfczne nlyczne meody esown hpoez o rozkłdch czsów prcy do uszkodzen w celu wyznczen
TESTOWANIE HIPOTEZY O KOMPLETNOŚCI ZBIORU ARGUMENTÓW
TESTOWANIE HIPOTEY O KOMPLETNOŚCI BIORU ARGUMENTÓW Pweł Szołysek RELACJA PODOBIEŃSTWA I TESTOWANIE KOMPLETNOŚCI BIORU ARGUMENTÓW RELACJA PODOBIEŃSTWA - AŁOŻENIA Proces es opsny z poocą funkc wyrowe wyrowo
Modelowanie sił skrawania występujących przy obróbce gniazd zaworowych
Scentfc Journls Mrtme Unversty of Szczecn Zeszyty ukowe Akdem Morsk w Szczecne 29, 7(89) pp. 63 67 29, 7(89) s. 63 67 Modelowne sł skrwn występujących przy obróbce gnzd zworowych Cuttng forces modelng
Ł Ą Ą Ń ć ź Ł Ł Ł Ś Ł ź Ź ć ź ć Ź ć Ź ć ć Ź ź ć ć Ó Ś Ę Ś Ś Ń ć ć ć ć Ś Ź Ź ć ć ć ć Ź ź Ę ć ć Ę ć ć ć ć Ź ć ć Ć ć Ę ź ź ć ź ć Ź Ę Ź ź ź Ę Ź Ę Ś Ą ć Ź ź ć ź ć Ę Ę ć Ę ć Ń Ś Ę Ó Ó ć Ó Ę Ź Ę Ę ź ć ć ć Ć
n ó g, S t r o n a 2 z 1 9
Z n a k s p r a w y G O S I R D Z P I2 7 1 0 6 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A D o s t a w a w r a z z m o n t a e m u r z» d z e s i ł o w n i z
Ą ć ę ż ż Ż ć ć Ż ć ń ę ę Ż ń ż ęż ę ę Ę ż ż ĘŚ ę Ż Ż Ż Ż Ż Ż Ż Ż ż ż ń ę ęż ęż Ó ęź Ą ń ę Ś Ż ć ę Ą ę ż ę ż ć ę ę Ż ę ż ż ę ń ń ę Ą ż ę Ł Ą ę ż ę Ą ę ę Ę Ą ę ę ęć ż Ę ęż ż ę Ą Ę ę ę Ą ę ę Ą Ą Ż ć ć Ń
Ś ś Ł ń ń ś ś Ś ś Ę ę ś ę ś ĘŚ ś Ęś ę ĘŚĆ ĘŚ Ęś ĘŚ ĘŚ ę ĘŚĆ ĘŚĆ ĘŚĆ ĘŚĆ Ęś ĘŚĆ ĘŚ ĘŚĆ ń ĘŚĆ ĘŚ ĘŚĆ ę ĘŚ ś Ęś ń ś ś ś ę ź ę ś ę ś Ź ń ę ń ś ń ń ę ń ń ń ń Ę ś ń ęś ń ń ń ę ń Ż ś ń ń ę ń ś ń ń ń ę ś ń ś Ż
Równania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3)
ownn oznczkowe Równn óżnczkowe. Wstę Równne óżnczkow nzw ównne zwejące funkcje newdoe zenne nezleżne oz ocodne funkcj newdoc lu c óżnczk. Pzkłd d 5 d d sn d. d d e d d d. z z z z. ównne óżnczkowe zwczjne
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY. mgr inż. Artur Fiuk
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY mgr nż. Arur Fuk BADANIA WPŁYWU PARAMETRÓW GEOMETRYCZNYCH I TERMOFIZYCZNYCH NA DZIAŁANIE DWUFAZOWEGO TERMOSYFONOWEGO WYMIENNIKA CIEPŁA Rozrawa dokorska Promoor
Ó Ż ź Ó Ą Ż Ó ń ń ć ć ĘŚ Ś ŚĆ Ę ć ć ć ć Ś Ź ń ź ŚĆ ń Ś ź ć ć Ó ć ć ź ć ć ć ń ń Ł ć ź ć ń Ś ć ć ć Ł Ę Ś Ł Ę Ł ć ń ć Ś ź Ć Ś Ś ć ź Ó ź ć ć Ś ń ź Ś ź Ó Ś Ó Ś Ś ń Ś Ś ć ć ń ć ć Ż Ś ć ń ń Ł Ł ń ć ź ć ć Ó ć
Ż ć Ó Ś Ó ć Ę Ó Ś ź Ż Ż Ó Ż ź Ó ÓŚ Ć Ó ź Ó ź Ó Ź ć Ę Ó Ś Ż Ó Ó Ń Ą ź ź Ź Ś Ą Ą Ś Ą Ś ć ć ź ź Ó Ó Ę Ź Ą Ź Ę ĘŚ ć ź Ę Ę ź Ę ć Ś Ś Ę Ż Ż ć Ść ć ć Ń Ż Ś ć Ż Ż Ż Ż Ż Ó Ą Ę Ę Ę Ą Ż Ż Ż Ź Ż ć Ś Ż Ż Ż Ż Ż ć Ś
PARAMETRY ELEKTRYCZNE CYFROWYCH ELEMENTÓW PÓŁPRZEWODNIKOWYCH
ARAMETRY ELEKTRYZNE YFROWYH ELEMENTÓW ÓŁRZEWODNIKOWYH SZYBKOŚĆ DZIAŁANIA wyrażona maksymalną częsolwoścą racy max MO OBIERANA WSÓŁZYNNIK DOBROI D OBIĄŻALNOŚĆ ELEMENTÓW N MAKSYMALNA LIZBA WEJŚĆ M ODORNOŚĆ
Ł Ź Ź Ł Ź Ę Ś Ę Ę Ś Ą Ę Ś Ą Ć Ć ć Ę Ą Ł Ś ć ń ć Ł ć Ź ć Ę Ą Ą Ź ź ź ć ć ć ć ć ń ń ć ć ń Ó ź Ę Ą ć ć ć Ź ć Ź ć ć ń ń ć ń Ó ć Ą ń ć Ę Ą Ą ń ń ń ń ć ń ć ć Ź ć ń Ź ń ń Ć ń ń ń Ę Ą Ś Ą ń ć ń ć ź ń Ę Ś Ą Ąć
ń Ę Ę Ę Ę ń ń Ś ź Ę ś ś Ę Ś Ą Ę Ę Ę Ę Ż Ę Ę ść Ą Ł Ę Ć ć Ś Ę Ę ś Ę Ż Ś Ę Ę ń Ż Ę Ć ź ć Ł ś Ę ś Ż ś Ś ś Ę ć Ł ś Ż ŚĆ Ę ń ŚĆ ść ś ś ń ś Ś ś ś Ęś Ę ć ś ść ń ń Ć ś Ą ń ć Ą Ś ń ś ś ć ć ś źć ć ź ś ń Ę ś Ę ć
Ę ż Ł ś ą ł ść ó ą ż ę ł Ł ś ą ś Ż ż ż ń ż ł ś ń ż żę Ł ż ó ń ę ż ł ńó ó ł ń ą ż ę ż ą ą ż Ń ż ż ż óź ź ź ż Ę ż ś ż ł ó ń ż ć óź ż ę ż ż ńś ś ó ń ó ś
Ę Ł ś ą ł ść ą ę ł Ł ś ą ś Ż ł ś ę Ł ę ł ł ą ę ą ą Ń ź ź ź Ę ś ł ć Ź ę ś ś ś Ę ł ś ć Ę ś ł ś ą ź ą ą ą ą ą ą ą ą ś ą ęń ś ł ą ś Ł ś ś ź Ą ł ć ą ą Ę ą ś ź Ł ź ć ś ę ę ź ą Ż ć ć Ą ć ć ł ł ś ł ś ę ą łą ć
ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Fuzja danych nawigacyjnych w przestrzeni filtru Kalmana
ISSN 733-867 ZESZ NAUKOWE NR (83) AKADEMII MORSKIEJ W SZCZECINIE IV MIĘDZNARODOWA KONFERENCJA NAUKOWO-ECHNICZNA E X L O - S H I 6 Andrzej Stteczny, Andrzej Lsj, Chfn Mohmmd Fzj dnych nwgcyjnych w przestrzen
Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel,
utomtyk Robotyk lgebr -Wykłd - dr dm Ćmel cmel@ghedupl Równn lnowe Nech V W będą przestrzenm lnowym nd tym smym cłem K T: V W przeksztłcenem lnowym Rozwżmy równne lnowe T(v)w Powyższe równne nzywmy równnem
ω a, ω - prędkości kątowe członów czynnego a i biernego b przy
Prekłne Mechncne PRZEKŁADNIE MECHANICZNE Prekłne mechncne są wykle mechnmm kołowym prenconym o prenesen npęu o włu slnk wykonuącego ruch orotowy o cłonu npęowego msyny rooce, mechnmu wykonwcego lu wprost
Rozkłady prawdopodobieństwa 1
Rozkłdy rwdoodoeństw Rozkłdy rwdoodoeństw. Rozkłdy dyskrete cągłe. W rzydku rozkłdu dyskretego określmy wrtośc rwdoodoeństw dl rzelczlej skończoej lu eskończoej lczy wrtośc zmeej losowej. N.... wszystke
Ś Ą Ó ń ń ł ń ń ń ż ęż Ż ń ś ż ż ę Ż ń Ó ł ś ń ł ż ęż Ż Óś ż Ó Ó ż Óś ż Ż ń ż ł ś ż ł ż ż ę ł Ó ś ę ł ś ż ł Ó ś Ź ę ż ś ż ł ż ż Ś ż ś ł ł ł ż ś ę ł ś ż ł ż ś ż ł ł ż ł ż ż ś ł ż Ż ł ś ł ś ł ę ę ę ę ę ł
y zamieszkanie (adres placówki, jeśli wnioskodawcą jest nauczyciel lub pracownik socjalny) z kontaktowy (komórkowy lub stacjonarny)
Dyrekr Szkły Pdwwej nr 11 z Oddzł Inegrcyjny w Suwłkch nek rzyznne cy w rch Rządweg rgru cy uczn w 2012 rku yrwk zkln, n dfnnwne zkuu dręcznków dl dzec rzczynjących nukę w rku zklny 2012/2013 w klch I
Zasady wyznaczania minimalnej wartości środków pobieranych przez uczestników od osób zlecających zawarcie transakcji na rynku terminowym
Załązn nr 3 Do zzegółowyh Zasad rowadzena Rozlzeń Transa rzez KDW_CC Zasady wyznazana mnmalne wartoś środów oberanyh rzez uzestnów od osób zleaąyh zaware transa na rynu termnowym 1. Metodologa wyznazana
PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK
PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK Założena Nech oznacza ozom (warość) badanego zjawska (zmennej) w kolejnch momenach czasu T0, gdze T 0 0,1,..., n 1 oznacza worz szereg czasow. zbór numerów czasu. Cąg
Ń Ł Ń Ó Ł Ę Ó Ó Ę ĘŚ Ó ÓŚ Ó Ę Ć Ó Ć Ę Ł Ó Ę Ć Ś Ż Ś Ś Ó Ó Ś Ń Ś Ó Ę Ę Ż Ć Ś Ó Ę Ó Ę Ę Ę Ę Ó Ś Ę Ę Ł Ć Ć Ś Ó Ę Ź Ę Ż Ź Ś Ź Ę Ę Ę Ó Ó Ó Ę Ę Ę Ę Ó Ę Ę Ć Ę Ć Ł Ź Ę Ę Ś Ń Ę Ć Ź Ó Ź Ó Ó Ę Ć Ć Ć Ź Ę Ę Ć Ę Ę
Porównanie dostępności różnych, nadmiarowych konfiguracji zasilania szaf przemysłowych
Porównne dotępnośc różnych, ndmrowych konfgurcj zln zf przemyłowych Whte Pper 48 Strezczene Przełącznk źródeł zln orz dwutorow dytrybucj zln przętu IT łużą zwękzenu dotępnośc ytemów oblczenowych. Sttytyczne
ź ść Ł Ł Ą ś Ł ć Ę Ń Ż Ż ź Ą Ł ź ĘŁ Ż ś ź ź ś ś ść Ń ś ś ś ź ź ź ś ś ś ś ś Ą ś Ń ź ś ś Ł Ą ś ź ś Ą Ż ś Ń Ż Ą Ż Ę ć ź ść ść ść ś Ż ś ś Ż ź ź ść Ń ś Ł ś ś ś ś ś Ą Ę Ż ś ś ś ś Ż Ą Ż ś Ń Ó ś Ń ś ź ć ś ś ś
Ń Ł ź Ę ź Ę ź Ł ĘŁ Ł Ę Ę ź Ę Ę Ą Ę Ę Ą Ą Ś Ę Ś Ó ź Ę Ę Ę Ł Ą Ą Ę Ą Ź Ę Ó Ę ź Ą Ę Ę Ą Ę ź Ę Ę Ą ź Ą Ę Ę Ą Ę Ę Ń Ę Ę ź Ę Ę Ę Ę Ę Ę Ę Ę Ą Ę Ź Ą Ą Ę Ą Ó Ą Ą Ą Ń Ą Ą Ę Ą Ę Ą ź Ę Ł Ą ź Ę Ł Ę Ę Ę Ę Ę Ą Ł Ą Ą
Ł Ś Óń Ź ń Ń ż ż ć ż ć ć ż ż Ą ż ć Ó Ó ż ż ć ń ń ń Óń Ó ń ń Óć ć ć ń ń ń ń ń Ś ń ń ń ż ć ć Ś Ł ż ń ż ż Ś Ó Ó ń ń ń Ś Ś ć Ó ń Ś ż Ó Ó Ś Ó Ó ż ń Ś Ó Ę ń ń Ó Ó ń ń Ś ż ń Óń Ó Ś ń Ó Ś ń ż ń ż Ó ć ń ń ń ż Ó
Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ
WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Poltechnk Gdńsk Wydzł Elektrotechnk Automtyk Ktedr Inżyner Systemów Sterown Teor sterown Podstwy lgebry mcerzy Mterły pomocncze do ćwczeń lbortoryjnych 1 Część 3 Oprcowne: Kzmerz Duznkewcz, dr hb. nż.
Proces narodzin i śmierci
Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do
ĺ ĺ ę ĺ ż ż ĺ ś ń ś Ł ś ś ę ń ś ś ś ĺ Ż ś ę ń ę ę ę Ż ś ę ń ń ĺ Ł Ż ęć ś Í ż ĺ Ż ę ż ę ę ĺ ę ę ń ĺ ń ĺ ę ś ť ę ś ť Ě ę ń ę ń ż ę ż ę őż ę ę ő ś Ż ś ś í í í ę ô ę ę Í ę ś ę ń ń Ł ń ż ę ś ś ż ś ę ę í ő ę
u (1.2) T Pierwsza zasada termodynamiki w formie różniczkowej ma postać (1.3)
obl_en_wew_enal-2.do Oblizanie energii wewnęrznej i enalii 1. Energia wewnęrzna subsanji rosej Właśiwa energia wewnęrzna, u[j/kg] jes funkją sanu. Sąd dla subsanji rosej jes ona funkją dwóh niezależnyh
Wykład 6 Całka oznaczona: obliczanie pól obszarów płaskich. Całki niewłaściwe.
Wykłd 6 Cłk ozczo: olcze pól oszrów płskch. Cłk ewłścwe. Wprowdźmy jperw ocję sumow: Dl dego zoru lcz {,,..., } symol ozcz ch sumę, z.... Cłk ozczo zosł wprowdzo w celu wyzcz pól rpezów krzywolowych (rys.
Ń Ź ź Ź ć Ę ć Ę Ż Ą ć Ą ć ć Ż ć ć ć Ó Ż ć ć ć ć ć Ź ć Ś Ż ć Ń ć Ż Ć ć Ś Ć Ż Ń ź Ż Ń Ż Ź ć Ę Ś ć ź ć Ż ć Ź ć Ś ć ć ć Ż ć ć ć ć ć ć ć ć Ź ć Ż Ś ć Ń Ń Ź Ź Ź Ź ć Ź Ż Ż Ż Ż Ą Ż ć ć Ż Ż Ź ź Ż Ż Ą ć Ż Ś ć Ż Ó
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S i R D Z P I 2 7 1 0 3 62 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A Z a p e w n i e n i e z a s i l a n i ea n e r g e t y c z ne g o
METODA WYZNACZANIA DYFUZYJNOŚCI CIEPLNEJ NA PODSTAWIE POMIARÓW TERMOWIZYJNYCH. PODSTWY TEORETYCZNE.
ROCZNIKI INŻYNIERII BUDOWLNEJ ZESZY 0/00 Koms Inżyner Budowlne Oddzł Polse dem Nu w Kowh MEOD WYZNCZNI DYFUZYJNOŚCI CIEPLNEJ N PODSWIE POMIRÓW ERMOWIZYJNYCH. PODSWY EOREYCZNE. Zbgnew PERKOWSKI Polehn Opols
ś ę ę Ś Ż Ś ę ę ść ś ś ę Ś Ś Ś Ś ś Ś ż Ż ę ż Ś Ź Ś Ś ś Ś Ś Ż Ś ś ęść ę ę Ś ę ę
ż ęś ę ż Ł ś ż ś ęś ę Ż ę ę ś Ś Ś ś ś Ś ś Ś ę ę ś ę ę Ś Ż Ś ę ę ść ś ś ę Ś Ś Ś Ś ś Ś ż Ż ę ż Ś Ź Ś Ś ś Ś Ś Ż Ś ś ęść ę ę Ś ę ę ś ż ż ż Ż ęść ę Łę ś ś Ź ż Ż ę Ś ś ż Ż Ź Ż ś ś ż ż ż Ż Ż Ź Ś ś Ż Ż Ł ś ś ż
Sprężarki. Wykres pracy indykowanej w tłokowej sprężarce jednostopniowej przedstawiono na rysunku. 1 2 p s. V sk
Srężrk Wykres rcy ndykownej w łokowej srężrce jednosonowej rzedswono n rysunku. 3 4 2 =cons =cons s 2 s s (ssne) o sk rysunku rzyjęo nsęujące oznczen: s oory ssn, oory zworu łocznego, s cśnene ssn, cśnene
Autor: Zbigniew Tuzimek Opracowanie wersji elektronicznej: Tomasz Wdowiak
DNIE UKŁDÓW LOKD UTOMTYCZNYCH uor: Zigniew Tuzimek Oprcownie wersji elekronicznej: Tomsz Wdowik 1. Cel i zkres ćwiczeni Celem ćwiczeni jes zpoznnie sudenów z udową orz dziłniem zezpieczeń i lokd sosownych
Matematyka finansowa 25.01.2003 r.
Memyk fisow 5.0.003 r.. Kóre z poiższych ożsmości są prwdziwe? (i) ( ) i v v i k m k m + (ii) ( ) ( ) ( ) m m v (iii) ( ) ( ) 0 + + + v i v i i Odpowiedź: A. ylko (i) B. ylko (ii) C. ylko (iii) D. (i),
DOBÓR LINIOWO-ŁAMANEGO ROZDZIAŁU SIŁ HAMUJĄCYCH W SAMOCHODACH DOSTAWCZYCH
Zgnew Kmńsk DOBÓ INIOWO-ŁMNEO OZDZIŁU SIŁ HMUJĄCYCH W SMOCHODCH DOSTWCZYCH Streszczene. W rtykule opsno sposoy dooru lnowo-łmnego rozdzłu sł mującyc w smocodc dostwczyc według wymgń egulmnu 3 ECE. Przedstwono
S.A RAPORT ROCZNY Za 2013 rok
O P E R A T O R T E L E K O M U N I K A C Y J N Y R A P O R T R O C Z N Y Z A 2 0 1 3 R O K Y u r e c o S. A. z s i e d z i b t w O l e ~ n i c y O l e ~ n i c a, 6 m a j a 2 0 14 r. S p i s t r e ~ c
Ć ę ą ą ę ó ó ó ó ą ęść ę ó ę ó ą ó ś ą ę ś ó ó ą Ć ą ą ę ó ą ą ę Ę ś ę ę ę ś ó ę ą ą ę ś ę ę ą ę ę ęś ą ę ó ń Ł ń ę ę ó ą ę ń ą ń ęś ą ą ę ó ś ę ó ęś ę ó ó ęś ść ć Ć ę ó ą Ę óż ą ć ą Ć ć ść ć ę ó ć ś
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 8 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e ro b ó t b u d o w l a n y c h w b u d y n k u H
Modele odpowiedzi do arkusza próbnej matury z OPERONEM. Fizyka Poziom rozszerzony
Modele odowiedzi do rkuz rónej ury z OPEONEM Fizyk Pozio rozzerzony Grudzieƒ 007 zdni Prwid ow odowiedê Licz... z zinie wzoru n n enie ol grwicyjnego k GM z zinie wrunku k v GM c v, gdzie M lney, roieƒ
Tensorowe. Wielkości fizyczne. Wielkości i Jednostki UŜywane w Elektryce Wielkość Fizyczna to właściwość fizyczna zjawisk lub obiektów,
Welkośc Jednosk UŜywane w Elekryce Welkość Fzyczna o właścwość fzyczna zjawsk lub obeków, Przykłady: W. f.: kórą moŝna zmerzyć. czas, długość, naęŝene pola elekrycznego, przenkalność elekryczna kryszałów.
Niemili nie będą mili
Ł Ł ś % X - Ś f ś ś ą ą ś ą - ą - ś f ć f ą - ś - f ą - ść ą ś ć ć ś ś ś - : ą f ą ą ą ć ą ą ą f - f - ą - - ą ą ź - ą - ś ą ą ą ś ą ą ś ć ś - ć ść ś ą - ą ą - ą ą ć - f ą f - ą ź ą ć - ą f ą ś - ś ą :
Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury.
Proces decyzyny: 1. Sformułu sno problem decyzyny. 2. Wylcz wszyste możlwe decyze. 3. Zdentyfu wszyste możlwe stny ntury. 4. Oreśl wypłtę dl wszystch możlwych sytuc, ( tzn. ombnc decyz / stn ntury ). 5.
Rachunek prawdopodobieństwa i statystyka matematyczna.
Rchunek rwdoodobieństw i sttystyk mtemtyczn. Zd 8. {(, : i } Zleżność tą możn rzedstwić w ostci nstęującej interretcji grficznej: Arkdiusz Kwosk Rfł Kukliński Informtyk sem.4 gr. Srwdźmy, czy odne zmienne
2 7k 0 5k 2 0 1 5 S 1 0 0 P a s t w a c z ł o n k o w s k i e - Z a m ó w i e n i e p u b l i c z n e n a u s ł u g- i O g ł o s z e n i e o z a m ó w i e n i u - P r o c e d u r a o t w a r t a P o l
Gmina Brzeg ul. Robotnicza Brzeg. Biuro Usług Projektowo - Budowlanych. Maciej Boberski ul. Rynek 10/6, Brzeg
Zą: G B 9- B W: W: B Uł P - B M B /, 9- B N S: DOGI POJEKT WYKONAWCZY Z : P Wś B Bż: S DOGOWA T : P ł Wś B - EWIZJA Ię N ń P K P / P: ż M B OPL//PWOM/ P: ż A Kę OPL//POOD/ N W// D N B Uł P - B M B SPIS
RÓWNANIA TRYGONOMETRYCZNE Z PARAMETREM
ÓWNANIA TYGONOMETYCZNE Z PAAMETEM Do grupy zgdnień eycznyc, w kóryc wysępuje pojęcie preru, nleżą równni rygonoeryczne. ozprywnie równń rygonoerycznyc z prere swrz ożliwość powórzeni i urwleni ożsości
Ń Ż Ó Ó Ó Ż Ę Ó Ś Ó Ę Ś Ś Ó ż Ó Ó Ż Ś Ś Ó Ó Ś Ś Ś Ó Ść Ó ż Ść Ę Ó Ń Ś Ó Ś Ó Ż Ż Ż ć Ż Ó Ó Ż Ś Ó Ś ć Ń ć Ó Ó Ś ż Ś Ż Ż Ść Ó Ś ż ćż ć Ó Ż Ś Ć Ó Ż Ó Ó Ż Ś Ó Ó Ś Ó ż Ó Ż Ź Ś ż Ń Ó Ó Ś ż Ś Ó Ó Ś ż Ś Ś Ś Ć Ż
PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH
SSof Polsk, el. (1) 4843, (61) 414151, info@ssof.pl, www.ssof.pl PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Andrzej Sokołowski Akdemi Ekonomiczn w Krkowie, Zkłd Sysyki W oprcowniu ym przedswiono pewną
Dziś: Pełna tabela loterii państwowej z poniedziałkowego ciągnienia
Dś: l l ń C D O 0 Ol : Z l N 40 X C R : D l ś 0 R 3 ń 6 93 Oź l ę l ę -H O D ę ź R l ś l R C - O ś ę B l () N H śl ź ę - H l ę ć " Bl : () f l N l l ś 9! l B l R Dl ę R l f G ęś l ś ę ę Y ń (l ) ę f ęś
Zanim zapytasz prawnika
2 Zanim zapytasz prawnika 1 Zanim zapytasz prawnika Poradnik dla Klientów Biur Porad Prawnych i Informacji Obywatelskiej Pod redakcją Grzegorza Ilnickiego Fundacja Familijny Poznań Poznań 2012 3 N i n
I 3 + d l a : B E, C H, C Y, C Z, ES, F R, G B, G R, I E, I T, L T, L U V, P T, S K, S I
M G 6 6 5 v 1. 2 0 1 5 G R I L L G A Z O W Y T R Ó J P A L N I K O W Y M G 6 6 5 I N S T R U K C J A U 7 Y T K O W A N I A I B E Z P I E C Z E Ń S T W A S z a n o w n i P a s t w o, D z i ę k u j e m y
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 07 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t Gó w d y s k i e g o C e n
ź Ś ś ś Ś Ś ś ś ś ś ś ś ź ś ś Ś Ś Ś źś Ń Ś ś Ą Ź ś ś ś ś Ś ś ś Ą Ś Ą Ą ś ś Ś Ś ść ś Ś ś ś Ś ś ś ś ź ś Ś Ś Ś Ś ś Ś Ź ś ś ś ś ś Ś ś Ś ć ć Ś Ś Ą ć ć Ś Ś Ś ś Ś ś Ę Ś Ę ś Ś Ś Ś Ś ś ś ś Ś Ś Ś Ś ś ś ć Ć Ę Ś Ś
Ą Ę ŁĘ Ł Ą ń Ł ć Ż ż Ł ń ż ń Ó ń Ż ć Ł ń ć ż Ż Ż ż ż ż ń ć ń ń ń Ą Ś Ż Ż Ż ż ż ć ż Ą Ś Ś Ż ż Ś ż Ś ż ż ż Ż ż ń Ł ż Ż ń ż ń Ą Ś ń ż ń ń Ł ń ż Ż ń ń ć ż Ś ń ń ń Ś ż ż ń ń ń ń Ż ń ń Ł ń ń ż ń ń ń ż Ł ń Ż
Ó Ń Ć ź Ś Ć Ć Ą Ć Ś Ó Ł Ś ź ź Ż ź ź Ę Ę Ę Ś Ó Ś Ą Ś Ł Ł Ę Ę Ę Ę Ć Ć Ś Ś Ę Ą Ę Ł Ę ź Ż Ę Ł Ę Ś Ó Ś Ł Ł ź Ę Ą Ą Ę Ś Ę Ą ź Ą ź ź Ś Ł Ł Ć Ć Ć Ś Ę Ć Ś Ę Ć Ć Ć Ć Ś Ę Ę Ć Ł Ę Ś Ó Ó Ę Ą Ę Ę Ć Ś Ś Ę Ą Ą Ł Ę Ę Ł
Ą Ł Ś ą Źą Ó Ż ŁŃĄ ś ą ś ą ą ż ó ń ą ż ś ś ć ą ś ą ś ć ż ść ó ś ó ą ó ą ń ą ę ą ę ż ń ą ś ó ś ą ą ą ś ś ń ą Ę ą ą ś ś ą ń ó ż ść ęż ęś ś śą ęś ś ą ą ś ż ź ś Ęść ż Ś ń ń ą Ź Ęó ę ó Żą Ń Ń ń ś ż ż ń ó ś
ę Ł Ó ę ę ć ę ę ż ę ę Ź Ć ć ę ę ż ę ę Ł ć ż ż ć ć ź ć ę Ń ć ę ż ę ć ęż Ń ć ż ć ź ę ę ź ę ć ż ć Ź ż ę Ł Ż ż ć Ź ę Ń ż ć ę ę ż ę ę ć ę ż ż ż Ł ę żę ż ć ź ę Ó ć ć ż ć ę ę ę ę ę ć ę Źć ę ę ę ę ę ę ż ż ż ć
Dyskretny proces Markowa
Procesy sochasyczne WYKŁAD 4 Dyskreny roces Markowa Rozarujemy roces sochasyczny X, w kórym aramer jes ciągły zwykle. Będziemy zakładać, że zbiór sanów jes co najwyżej rzeliczalny. Proces X, jes rocesem