P 1. Uzupełnij tabelę. P 2. Uzupełnij tabelę. I. 2 i 2 II. 3 i 1 3. III. 1,2 i 5 6. IV. 1,25 i V. 5 i 1 5
|
|
- Jarosław Szydłowski
- 5 lat temu
- Przeglądów:
Transkrypt
1 Liczby dodatnie i ujemne 41 3 Liczby dodatnie i ujemne 1 Liczby dodatnie i ujemne P 1. Uzupełnij tabelę. Liczba 2 2, Liczba odwrotna 5 17 P 2. Uzupełnij tabelę. Liczba 3 1, Liczba odwrotna P 3. Które pary liczb są parami liczb przeciwnych? I. 2 i 2 II. 3 i 1 3 III. 1,2 i 5 6 IV. 1,25 i V. 5 i 1 5 A. I i II B. I i IV C. IV i V D. III i V P 4. Które pary liczb są parami liczb przeciwnych? I. 6 i 1 6 II. 1 4 i 4 III. 1,2 i IV. 1,25 i 4 5 V. 3 i 3 A. I i III B. I i IV C. II i V D. III i V P 5. Uzupełnij zdania. Liczbą przeciwną do ( 5) jest liczba. Wartość bezwzględna liczby ( 2) jest równa. Liczbami, których wartość bezwzględna jest równa 125, są liczby. P 6. Uzupełnij zdania. Liczbą przeciwną do ( 4) jest liczba. Wartość bezwzględna liczby ( 5) jest równa. Liczbami, których wartość bezwzględna jest równa 250, są liczby. PP 7. Wpisz w okienko odpowiedni znak: <, > lub =. a) c) b) d)
2
3 42 Liczby dodatnie i ujemne PP 8. Wpisz w okienko odpowiedni znak: <, > lub =. a) c) b) d) PP 9. Przepisz liczby: 5; 17 ; 0; 4,2; 2 ; 10 w kolejności rosnącej, wstawiając między nie znak <. 5 PP 10. Przepisz liczby: 7; 2 ; 0; 5,2; 18 ; 3 w kolejności rosnącej, wstawiając między nie znak <. 5 PP 11. W tabeli podane są temperatury zanotowane pewnego dnia w Białymstoku. Godzina Temperatura 9 C 0 C 2 C 11 C Uzupełnij zdania. Najwyższą temperaturę zanotowano o godzinie. Najniższa temperatura zanotowana tego dnia w Białymstoku wynosiła. PP 12. W tabeli podane są temperatury zanotowane pewnego dnia w Gdańsku. Godzina Temperatura 8 C 2 C 0 C 7 C Uzupełnij zdania. Najwyższą temperaturę zanotowano o godzinie. Najniższa temperatura zanotowana tego dnia w Gdańsku wynosiła. 2 Dodawanie liczb całkowitych P 1. Wskaż wyrażenie, którego wartość jest liczbą dodatnią. A. 3 + ( 2) B C. 2 + ( 5) D. 5 + ( 2) P 2. Wskaż wyrażenie, którego wartość jest liczbą dodatnią. A. 4 + ( 2) B. 3 + ( 7) C. 7 + ( 3) D P 3. Oblicz. a) 21 + ( 5) c) b) 21 + ( 5) d)
4 Dodawanie liczb P 4. Oblicz. a) 22 + ( 6) c) b) 22 + ( 6) d) PP 5. Uzupełnij zdania. Suma liczb przeciwnych jest równa. Suma liczb całkowitych jest liczbą. Suma liczb dodatnich jest liczbą. PP 6. Uzupełnij zdania. Suma liczb przeciwnych jest równa. Suma liczb ujemnych jest liczbą. Suma liczb całkowitych jest liczbą. PP 7. Wpisz w puste miejsce odpowiedni znak: <, > lub =. a) 5 + ( 12) + ( 1) 0 b) 17 + ( 4) + ( 13) 0 c) d) ( 100) 0 PP 8. Wpisz w puste miejsce odpowiedni znak: <, > lub =. a) 3 + ( 12) + ( 11) 0 b) 12 + ( 4) + ( 8) 0 c) d) ( 100) 0 PP 9. Oblicz. a) 23 + ( 12) + ( 15) + ( 24) b) 22 + ( 14) + ( 8) + 35 c) ( 1) d) ( 100) + ( 199)
5 44 Liczby dodatnie i ujemne PP 10. Oblicz. a) 43 + ( 22) + ( 5) + ( 24) b) 32 + ( 24) + ( 8) + 53 c) ( 1) d) ( 100) + ( 99) PP 11. Jaką liczbę należy dodać do sumy liczb ( 25) i ( 14), aby otrzymać 1? A. 38 B. 38 C. 40 D. 40 PP 12. Jaką liczbę należy dodać do sumy liczb ( 34) i ( 15), aby otrzymać 1? A. 50 B. 50 C. 48 D Mnożenie i dzielenie liczb całkowitych P 1. Wskaż wyrażenie, którego wynik jest dodatni. A. ( 4) 7 B. ( 2) ( 3) ( 5) C. ( 15) : ( 5) D. 25 : ( 50) P 2. Wskaż wyrażenie, którego wynik jest dodatni. A. ( 3) 8 B. ( 4) ( 3) ( 5) C. 15 : ( 3) D. ( 25) : ( 50) P 3. Oblicz. a) ( 3) ( 6) c) ( 2) ( 7) ( 5) b) 36 : ( 4) d) 7 ( 8) : 4 P 4. Oblicz. a) ( 4) ( 9) c) ( 5) ( 8) ( 2) b) 42 : ( 7) d) 8 ( 6) : 3 P 5. Ula sprawdziła temperaturę powietrza rano, w południe i wieczorem. Zanotowała kolejno wartości: 7 C, 1 C i 4 C. Oblicz średnią tych trzech wartości temperatury. P 6. Zosia sprawdziła temperaturę powietrza rano, w południe i wieczorem. Zanotowała kolejno wartości: 6 C, 1 C i 5 C. Oblicz średnią tych trzech wartości temperatury.
6 Odejmowanie liczb PP 7. Połącz w pary wyrażenia, których wartości są liczbami przeciwnymi. a) ( 4) ( 3) I 12 ( 3) b) ( 4) 5 II 2 ( 6) c) 6 ( 3) III ( 2) ( 9) d) 4 9 IV ( 2) ( 10) PP 8. Połącz w pary wyrażenia, których wartości są liczbami przeciwnymi. a) ( 6) ( 3) I 14 ( 2) b) ( 5) 6 II ( 3) ( 10) c) 8 ( 3) III 2 ( 9) d) 4 7 IV ( 4) ( 6) PP 9. Zapisz wyrażenie i oblicz jego wartość: iloczyn liczb ( 15) i 8 podzielony przez ( 3). PP 10. Zapisz wyrażenie i oblicz jego wartość: iloczyn liczb ( 16) i 5 podzielony przez ( 4). PP 11. Uczestnik konkursu otrzymywał na starcie 48 punktów, za każde dobrze rozwiązane zadanie dostawał 5 punktów, a za błędnie rozwiązane zadanie ( 3) punkty. Ile punktów łącznie zdobył uczestnik, który udzielił pięciu poprawnych odpowiedzi i jedenastu błędnych? PP 12. Uczestnik konkursu otrzymywał na starcie 48 punktów, za każde dobrze rozwiązane zadanie dostawał 5 punktów, a za błędnie rozwiązane zadanie ( 3) punkty. Ile punktów łącznie zdobył uczestnik, który udzielił jedenastu poprawnych odpowiedzi i pięciu błędnych? 4 Odejmowanie liczb całkowitych P 1. Oblicz. a) 4 12 c) ( 4) 12 b) d) ( 21) 35 P 2. Oblicz. a) 5 11 c) ( 5) 11 b) d) ( 22) 36 P 3. Wskaż wyrażenie, którego wynik jest liczbą dodatnią. A. ( 13) ( 5) B. ( 13) 2 C. ( 2) ( 15) D. 5 12
7 46 Liczby dodatnie i ujemne P 4. Wskaż wyrażenie, którego wynik jest liczbą dodatnią. A. ( 15) 2 B. ( 2) ( 13) C. ( 12) ( 7) D P 5. Stan konta pani Malinowskiej na początku miesiąca wynosił 256 zł. Do końca miesiąca zadłużenie wzrosło o 244 zł. Podaj stan konta pani Malinowskiej na koniec miesiąca. A. 12 zł B. 12 zł C. 500 zł D. 500 zł P 6. Stan konta pani Kowalskiej na początku miesiąca wynosił 267 zł. Do końca miesiąca zadłużenie wzrosło o 233 zł. Podaj stan konta pani Kowalskiej na koniec miesiąca. A. 34 zł B. 34 zł C. 500 zł D. 500 zł PP 7. W tabeli podano temperaturę powietrza mierzoną o godzinie 7.00 przez cztery kolejne dni lutego. Dzieƒ Temperatura 9 C 5 C 3 C 11 C Uzupełnij zdania. 4 lutego temperatura była niższa niż 1 lutego o. Różnica między najwyższą a najniższą temperaturą wynosiła. Średnia zanotowanych wartości temperatury była równa. PP 8. W tabeli podano temperaturę powietrza mierzoną o godzinie 7.00 przez cztery kolejne dni lutego. Dzieƒ Temperatura 15 C 8 C 6 C 11 C Uzupełnij zdania. 4 lutego temperatura była wyższa niż 1 lutego o. Różnica między najwyższą a najniższą temperaturą wynosiła. Średnia zanotowanych wartości temperatury była równa. PP 9. Oblicz. a) ( 53) ( 12) ( 15) ( 26) b) 22 ( 14) ( 8) 45 c) ( 34) ( 1) d) ( 301) 500 ( 700) ( 199)
8 Własności działań PP 10. Oblicz. a) ( 63) ( 22) ( 17) ( 24) b) 26 ( 18) ( 8) 55 c) ( 27) ( 2) d) ( 401) 300 ( 500) ( 299) PP 11. Jaką liczbę należy odjąć od różnicy liczb ( 15) i ( 24), aby otrzymać 1? A. 8 B. 8 C. 38 D. 40 PP 12. Jaką liczbę należy odjąć od różnicy liczb ( 24) i ( 31), aby otrzymać 1? A. 6 B. 6 C. 54 D Własności działań na liczbach całkowitych P 1. Oblicz. a) 3 10 ( 7) b) 42 : (19 25) c) 7 + ( 7) + ( 3) ² d) ( 4) ( 8) 22 : ( 2) P 2. Oblicz. a) 4 10 ( 6) b) 48 : (17 25) c) 6 + ( 6) + ( 4) ² d) ( 8) ( 3) 27 : ( 9) P 3. Połącz w pary działania, które mają taki sam wynik. a) I b) 27 : ( 3) + 3 II 49 : ( 7) 5 c) 5 ( 8) III 12 4 ( 6) d) ( 6) ² IV 5 18 ( 7)
Klasa 6. Liczby dodatnie i liczby ujemne
Klasa 6 Liczby dodatnie i liczby ujemne gr A str 1/3 imię i nazwisko klasa data 1 Wyobraź sobie, że na osi liczbowej zaznaczono liczby: 6, 7, 1, 3, 2, 1, 0, 3, 4 Ile z nich znajduje się po lewej stronie
Bardziej szczegółowoKlasa 6. Liczby dodatnie i liczby ujemne
Klasa 6 Liczby dodatnie i liczby ujemne gr A str 1/3 imię i nazwisko klasa data 1 Wyobraź sobie, że na osi liczbowej zaznaczono liczby: 6, 7, 1, 3, 2, 1, 0, 3, 4 Ile z nich znajduje się po lewej stronie
Bardziej szczegółowoSkrypt 2. Liczby wymierne dodatnie i niedodatnie. 3. Obliczanie odległości między dwiema liczbami na osi liczbowej
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Liczby wymierne dodatnie i niedodatnie
Bardziej szczegółowoLiczby całkowite. 1. Liczbą przeciwną do 4 jest liczba: A. 1 4 B. 4 C. 4 D Odczytaj, jakie liczby zaznaczono na osi liczbowej.
Liczby całkowite gr. A str. 1/4... imię i nazwisko...... klasa data 1. Liczbą przeciwną do 4 jest liczba: A. 1 4 B. 4 C. 4 D. 1 4 2. Odczytaj, jakie liczby zaznaczono na osi liczbowej. a =........ b =........
Bardziej szczegółowoLISTA 1 ZADANIE 1 a) 41 x =5 podnosimy obustronnie do kwadratu i otrzymujemy: 41 x =5 x 5 x przechodzimy na system dziesiętny: 4x 1 1=25 4x =24
LISTA 1 ZADANIE 1 a) 41 x =5 podnosimy obustronnie do kwadratu i otrzymujemy: 41 x =5 x 5 x przechodzimy na system dziesiętny: 4x 1 1=25 4x =24 x=6 ODP: Podstawą (bazą), w której spełniona jest ta zależność
Bardziej szczegółowo4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.
Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,
Bardziej szczegółowoSCENARIUSZ LEKCJI MATEMATYKI W KLASIE 1 GIMNAZJUM
SCENARIUSZ LEKCJI MATEMATYKI W KLASIE GIMNAZJUM Temat: Ćwiczenia w dodawaniu i odejmowaniu liczb wymiernych Cele ogólne: - utrwalenie reguł dodawania i odejmowania liczb wymiernych, - wyrabianie sprawności
Bardziej szczegółowoWYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
Bardziej szczegółowoMatematyka podstawowa V. Ciągi
Matematyka podstawowa V Ciągi Teoria ciąg arytmetyczny - pierwszy wyraz ciągu - różnica Kolejny wyraz ciągu arytmetycznego powstaje przez dodanie do poprzedniego różnicy. = + Np. =2,=3 :2,5,8,11 = 4,=2
Bardziej szczegółowoKRYTERIA OCEN DLA KLASY VI. Zespół Szkolno-Przedszkolny nr 1
KRYTERIA OCEN DLA KLASY VI Zespół Szkolno-Przedszkolny nr 1 2 3 KRYTERIA OCEN Z MATEMATYKI DLA KLASY VI LICZBY NATURALNE I UŁAMKI Na ocenę dopuszczającą uczeń powinien: - znać algorytm czterech
Bardziej szczegółowoZESTAW PYTAŃ SPRAWDZAJĄCYCH WIADOMOŚCI MATEMATYCZNE UCZNIÓW KLAS III GIMNAZJUM.
ZESTAW PYTAŃ SPRAWDZAJĄCYCH WIADOMOŚCI MATEMATYCZNE UCZNIÓW KLAS III GIMNAZJUM. Publikacja zawiera przykłady krótkich sprawdzianów wiadomości z zakresu zbiorów liczbowych oraz praw i działań w tych zbiorach
Bardziej szczegółowoSPRAWDZIAN UMIEJĘTNOŚCI MATEMATYCZNYCH
SPRAWDZIAN UMIEJĘTNOŚCI MATEMATYCZNYCH PO KLASIE 3 SZKOŁY PODSTAWOWEJ Autor: Grażyna Wójcicka Konsultacje: Weronika Janiszewska, Joanna Zagórska, Maria Zaorska, Tomasz Zaorski imię i nazwisko 1 Zapisz
Bardziej szczegółowoW zapisie pewnej liczby w systemie rzymskim dwa znaki zastąpiono. D CC LVI Uzasadnij, że liczba ta jest mniejsza od 850.
Zadanie. Czy prawdą jest, że liczba LXV jest mniejsza od liczby XCVIII? Wybierz odpowiedź (tak) lub (nie) i jej uzasadnienie spośród zdań A- A. liczba LXV jest mniejsza od 70, a liczba XCVIII jest większa
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2015/16
Na ćwiczeniach 6.0.205 omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie.. Sformułować uogólnione cechy podzielności
Bardziej szczegółowoPodzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.
Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. W dniu 25 lutego 2014 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest
Bardziej szczegółowoDydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 8
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 8 Scenariusze na temat objętości Niestety scenariusze są słabe, średnia: 1,21 p./3p. Wiele osób zapomniało,
Bardziej szczegółowoArytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm
Arytmetyka Działania na liczbach, potęga, pierwiastek, logarytm Zbiory liczbowe Zbiór liczb naturalnych N = {1,2,3,4, }. Zbiór liczb całkowitych Z = {, 3, 2, 1,0,1,2,3, }. Zbiory liczbowe Zbiór liczb wymiernych
Bardziej szczegółowoChcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.
DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:
Bardziej szczegółowoKURS MATURA ROZSZERZONA część 1
KURS MATURA ROZSZERZONA część 1 LEKCJA Wyrażenia algebraiczne ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Wyrażenie 3 a 8 a +
Bardziej szczegółowoPowtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową *
Powtórzenie podstawowych zagadnień związanych ze sprawnością rachunkową * (Materiały dydaktyczne do laboratorium fizyki) Politechnika Koszalińska październik 2010 Spis treści 1. Zbiory liczb..................................................
Bardziej szczegółowoLista 2 logika i zbiory. Zad 1. Dane są zbiory A i B. Sprawdź, czy zachodzi któraś z relacji:. Wyznacz.
Lista 2 logika i zbiory. Zad 1. Dane są zbiory A i B. Sprawdź, czy zachodzi któraś z relacji:. Wyznacz. Na początek wypiszmy elementy obu zbiorów: A jest zbiorem wszystkich liczb całkowitych, które podniesione
Bardziej szczegółowoRAPORT z diagnozy umiejętności matematycznych
RAPORT z diagnozy umiejętności matematycznych przeprowadzonej w klasach czwartych szkoły podstawowej 1 Analiza statystyczna Wskaźnik Liczba uczniów Liczba punktów Łatwość zestawu Wyjaśnienie Liczba uczniów,
Bardziej szczegółowoCiekawe zadania o... liczbach całkowitych poziom 2
1/6 Małgorzata Rucińska-Wrzesińska Ciekawe zadania o... liczbach całkowitych poziom 2 Zadanie 1 Zapisz w postaci liczb ujemnych: a. temperaturę powietrza zanotowaną pewnego zimowego poranka i wynoszącą
Bardziej szczegółowoJednostki długości i jednostki masy
26 Jednostki długości i jednostki masy 1. Wpisz odpowiednie liczby: 2. W zdaniach zamieszczonych poniżej różne odległości i długości obiektów wyróżniono i oznaczono kolejnymi literami alfabetu. Te same
Bardziej szczegółowoPodstawy Informatyki
Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych
Bardziej szczegółowoLista 1 liczby rzeczywiste.
Lista 1 liczby rzeczywiste Zad 1 Przedstaw liczbę m w postaci W każdym ze składników tej sumy musimy wyłączyd czynnik przed znak pierwiastka Można to zrobid rozkładając liczby podpierwiastkowe na czynniki
Bardziej szczegółowoKurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 9 Zadania ciągi
1 TEST WSTĘPNY 1. (1p) Dany jest ciąg (a n) określony wzorem a n = (-1) n dla n 1. Wówczas wyraz a3 tego ciągu jest równy: A. B. C. - D. - 2. (2p) Ile wyrazów ujemnych ma ciąg określony wzorem a n = n
Bardziej szczegółowoRachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski
Rachunek wektorowy - wprowadzenie dr inż. Romuald Kędzierski Graficzne przedstawianie wielkości wektorowych Długość wektora jest miarą jego wartości Linia prosta wyznaczająca kierunek działania wektora
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, lato 2014/15
Ćwiczenia 5/6, 10, 17.03.2015 (obie grupy) 33. Połączyć podane warunki w grupy warunków równoważnych dla dowolnej liczby naturalnej n. a) liczba n jest nieparzysta b) liczba n jest względnie pierwsza z
Bardziej szczegółowoDZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH.
DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH. Dodawanie,8 zwracamy uwagę aby podpisywać przecinek +, pod przecinkiem, nie musimy uzupełniać zerami z prawej strony w liczbie,8. Pamiętamy,że liczba to samo co,0, (
Bardziej szczegółowoCiekawe zadania o... liczbach całkowitych poziom 3
1/9 Małgorzata Rucińska-Wrzesińska Ciekawe zadania o... liczbach całkowitych poziom 3 Zadanie 1 Zapisz pięć liczb całkowitych co najmniej trzycyfrowych oraz liczby do nich przeciwne. Następnie uszereguj
Bardziej szczegółowo2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,
2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d
Bardziej szczegółowoWYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne tzn.: 1. posiada i
Bardziej szczegółowoSZKOLNA LIGA ZADANIOWA
KLASA 4 - ZESTAW 1 W następujących działaniach wstaw w miejsce gwiazdek brakujące cyfry. Pewna liczba dwucyfrowa ma w rzędzie jedności 5. Jeżeli między jej cyfry wstawimy 0, to liczba ta zwiększy się o
Bardziej szczegółowoArytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI
Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System
Bardziej szczegółowoPendolinem z równaniami, nierównościami i układami
Pendolinem z równaniami, nierównościami i układami 1. Równaniem nazywamy równość dwóch wyrażeń algebraicznych. Równaniami z jedną niewiadomą są, np. równania: 2 x+3=5 x 2 =4 2x=4 9=17 x 3 2t +3=5t 7 Równaniami
Bardziej szczegółowoKlasa Klasa 4. Raport dla ucznia nr 1. Wynik procentowy poszczególnych zadań dla ucznia nr 1
62-55 Wilczyn, 19 Raport dla ucznia nr 1 Maksymalna liczba punktów do zdobycia: 3 Uczeń nr 1 Średnia klasy Średnia ogólnopolska liczba punktów 24 21.14 22.94 wynik procentowy 8% 7% 76% Wynik procentowy
Bardziej szczegółowoMoneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )
Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo
Bardziej szczegółowoKod U2 Opracował: Andrzej Nowak
PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim
Bardziej szczegółowoJarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13
35. O zdaniu 1 T (n) udowodniono, że prawdziwe jest T (1), oraz że dla dowolnego n 6 zachodzi implikacja T (n) T (n+2). Czy można stąd wnioskować, że a) prawdziwe jest T (10), b) prawdziwe jest T (11),
Bardziej szczegółowoEdytor tekstu MS Word 2010 PL. Edytor tekstu MS Word 2010 PL umożliwia wykonywanie działań matematycznych.
Edytor tekstu MS Word 2010 PL. Edytor tekstu MS Word 2010 PL umożliwia wykonywanie działań matematycznych. Edytor tekstu MS Word 2010 PL umożliwia wykonywanie działań matematycznych, pod warunkiem, że
Bardziej szczegółowo1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Bardziej szczegółowoWymagania edukacyjne dla uczniów posiadających orzeczenie PPPP kl. I
Wymagania edukacyjne dla uczniów posiadających orzeczenie PPPP kl. I Liczby zna pojęcie liczby naturalnej, całkowitej, wymiernej (k) rozumie rozszerzenie osi liczbowej na liczby ujemne (p) umie zaznaczać
Bardziej szczegółowoDodawanie liczb binarnych
1.2. Działania na liczbach binarnych Liczby binarne umożliwiają wykonywanie operacji arytmetycznych (ang. arithmetic operations on binary numbers), takich jak suma, różnica, iloczyn i iloraz. Arytmetyką
Bardziej szczegółowodwanaście dwadzieścia osiem trzynaście
Imię i nazwisko, numer z dziennika Imię i nazwisko, numer z dziennika WRZESIEŃ Grupa A 1. Spośród podanych liczb podkreśl a) czarnym kolorem największą liczbę, b) zielonym kolorem najmniejszą liczbę. dwanaście
Bardziej szczegółowoV Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych województwa wielkopolskiego
Kod ucznia Data urodzenia ucznia Dzień miesiąc rok V Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych ETAP REJONOWY Rok szkolny 01/016 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 1
Bardziej szczegółowoSkrypt 1. Liczby wymierne dodatnie. Liczby naturalne, całkowite i wymierne - przypomnienie wiadomości
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 1 Liczby wymierne dodatnie Liczby naturalne,
Bardziej szczegółowoSprawdzian diagnozujący umiejętności matematyczne z zakresu gimnazjum. Kartoteka
Sprawdzian diagnozujący umiejętności matematyczne z zakresu gimnazjum Kartoteka Nr zad. 1. 2. 3. 4. 5. 6. 7. 8. 9. Sprawdzana umiejętność Uczeń: Oblicza potęgi liczb wymiernych o wykładnikach naturalnych
Bardziej szczegółowoRozkład łatwości zadań
Klasa Klasa IVa Rozkład łatwości zadań Średni wynik klasy 23.53 pkt 78% Średni wynik szkoły 22.69 pkt 76% Średni wynik ogólnopolski 22.94 pkt 76% 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4
Bardziej szczegółowo6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.).
6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 0 grudnia 008 r. 88. Obliczyć podając wynik w postaci ułamka zwykłego a) 0,(4)+ 3 3,374(9) b) (0,(9)+1,(09)) 1,() c) (0,(037))
Bardziej szczegółowoZestaw 1 ZESTAWY A. a 1 a 2 + a 3 ± a n, gdzie skªadnik a n jest odejmowany, gdy n jest liczb parzyst oraz dodawany w przeciwnym.
ZESTAWY A Zestaw 1 Organizacja plików: Wszystkie pliki oddawane do sprawdzenia nale»y zapisa we wspólnym folderze o nazwie b d cej numerem indeksu, umieszczonym na pulpicie. Oddajemy tylko ¹ródªa programów
Bardziej szczegółowoPzetestuj działanie pętli while i do...while na poniższym przykładzie:
Pzetestuj działanie pętli while i do...while na poniższym przykładzie: Zadania pętla while i do...while: 1. Napisz program, który wczytuje od użytkownika liczbę całkowitą, dopóki podana liczba jest mniejsza
Bardziej szczegółowo1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)
1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji
Bardziej szczegółowo1. Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi 1 LICZBA GODZIN LEKCYJNYCH
TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. POTĘGI 1. Potęga o wykładniku naturalnym 2-3 2. Iloczyn i iloraz potęg o jednakowych podstawach 3. Potęgowanie potęgi
Bardziej szczegółowoMADE IN CHINA czyli SYSTEM RESZTOWY
MADE IN CHINA czyli SYSTEM RESZTOWY System ten oznaczmy skrótem RNS (residue number system czyli po prostu resztowy system liczbowy). Wartość liczby w tym systemie reprezentuje wektor (zbiór) reszt z dzielenia
Bardziej szczegółowoPlan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł
Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Lp. Temat Kształcone umiejętności 1 Zasady pracy na lekcjach matematyki. Dział I. LICZBY
Bardziej szczegółowoXV WOJEWÓDZKI KONKURS Z MATEMATYKI
XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP
Bardziej szczegółowoZakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Dział programowy. Zakres realizacji 1. Liczby, działania i procenty Liczby wymierne i liczby niewymierne-działania, kolejność
Bardziej szczegółowoWymagania edukacyjne z matematyki dla klasy VII
Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby
Bardziej szczegółowoKryteria ocen z matematyki w klasie IV
Kryteria ocen z matematyki w klasie IV odejmuje liczby w zakresie 100 z przekroczeniem progu dziesiętnego, zna kolejność wykonywania działań, gdy nie występuję nawiasy, odczytuje współrzędne punktu na
Bardziej szczegółowoDydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 8
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 8 Scenariusze na temat objętości Pominięcie definicji poglądowej objętości kolosalny błąd (w podsumowaniu
Bardziej szczegółowoWymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Ocenę dopuszczającą otrzymuje uczeń, który: rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne,
Bardziej szczegółowo- odnajduje część wspólną zbiorów, złączenie zbiorów - wyodrębnia podzbiory;
Edukacja matematyczna kl. II Wymagania programowe Dział programu Poziom opanowania Znajdowanie części wspólnej, złączenia zbiorów oraz wyodrębnianie podzbiorów Liczby naturalne od 0 100 A bardzo dobrze
Bardziej szczegółowoZbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R.
Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Liczby naturalne - to liczby całkowite, dodatnie: 1,2,3,4,5,6,... Czasami
Bardziej szczegółowoWYMAGANIA EDUKACYJNE WRAZ Z KRYTERIAMI OCENIANIA WIADOMOŚCI I UMIEJĘTNOŚCI MATEMATYCZNYCH UCZNIÓW KLAS 5 ROK SZKOLNY 2016/2017
WYMAGANIA EDUKACYJNE WRAZ Z KRYTERIAMI OCENIANIA WIADOMOŚCI I UMIEJĘTNOŚCI MATEMATYCZNYCH UCZNIÓW KLAS 5 ROK SZKOLNY 2016/2017 WYMAGANIA EDUKACYJNE I OKRES II OKRES I. LICZBY NATURALNE rozumieć dziesiątkowy
Bardziej szczegółowoDane są wielomiany, i. Znajdź wielomian. Iloczyn dwóch wielomianów jest wielomianem, suma dwóch wielomianów jest wielomianem.
Zadanie 1 Dane są wielomiany, i Znajdź wielomian To łatwe Iloczyn dwóch wielomianów jest wielomianem, suma dwóch wielomianów jest wielomianem Zadanie 2 Podziel (z resztą) wielomian przez wielomian Przykro
Bardziej szczegółowoLABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q
LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone
Bardziej szczegółowoARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.
ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb
Bardziej szczegółowoWymagania egzaminacyjne z matematyki. Klasa 3C. MATeMATyka. Nowa Era. Klasa 3
Wymagania egzaminacyjne z matematyki. lasa 3C. MATeMATyka. Nowa Era. y są ze sobą ściśle powiązane ( + P + R + D + W), stanowiąc ocenę szkolną, i tak: ocenę dopuszczającą (2) otrzymuje uczeń, który spełnił
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI Klasa IV Stopień dopuszczający otrzymuje uczeń, który potrafi: odejmować liczby w zakresie 100 z przekroczeniem progu dziesiątkowego,
Bardziej szczegółowo2. Wyrażenia algebraiczne
2. Wyrażenia algebraiczne Jeśli liczby r, s są liczbami całkowitymi, to równości od 1) do 5) są prawdziwe dla wszystkich liczb rzeczywistych a, b różnych od zera. Logarytm Logarytmem 10gab liczby dodatniej
Bardziej szczegółowoWybrane wyniki w zakresie umiejętności matematycznych
Wybrane wyniki w zakresie umiejętności matematycznych Struktura badanych umiejętności matematycznych Umiejętności narzędziowe, stosowane w sytuacji typowej stosowane w sytuacji nietypowej Umiejętności
Bardziej szczegółowoOCENIANIE KSZTAŁTUJĄCE NA LEKCJI MATEMATYKI. Scenariusz lekcji proponowany przez Jolantę Strzałkowską nauczyciela matematyki w Gimnazjum nr 1 w Kole
OCENIANIE KSZTAŁTUJĄCE NA LEKCJI MATEMATYKI Scenariusz lekcji proponowany przez Jolantę Strzałkowską nauczyciela matematyki w Gimnazjum nr 1 w Kole Lekcja: matematyka Gimnazjum kl. II Temat: Liczby bardzo
Bardziej szczegółowoXX edycja Międzynarodowego Konkursu Matematycznego PIKOMAT rok szkolny 2011/2012
XX edycja Międzynarodowego Konkursu Matematycznego PIKOMA rok szkolny 2011/2012 Etap I Klasa IV Zastąp znaki zapytania znakami dodawania, odejmowania, mnożenia i dzielenia w taki sposób, aby wyniki obliczeń
Bardziej szczegółowo1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią.
Logika. Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( q p) 3. (p q) (p q). Sprawdź czy wyrażenie ((p q) r) (p (q r)) jest tautologią. 3. Zad 3. Sprawdź czy zdanie: Jeżeli liczba a dzieli się przez i
Bardziej szczegółowoKonkurs dla gimnazjalistów Etap szkolny 12 grudnia 2013 roku
Konkurs dla gimnazjalistów Etap szkolny 1 grudnia 01 roku Instrukcja dla ucznia 1. W zadaniach o numerach od 1. do 1. są podane cztery warianty odpowiedzi: A, B, C, D. Dokładnie jedna z nich jest poprawna.
Bardziej szczegółowoEGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z INFORMATYKI POZIOM PODSTAWOWY CZĘŚĆ
Bardziej szczegółowoWymagania edukacyjna kl. I - III EDUKACJA MATEMATYCZNA
Wymagania edukacyjna kl. I - III EDUKACJA MATEMATYCZNA Klasa I Określa i prezentuje wzajemne położenie przedmiotów na płaszczyźnie Zna kierunki. Liczy po 1 popełniając wiele błędów. Liczy po 10 w zakresie
Bardziej szczegółowoRozwiązania zadań z kolokwium w dniu r. Zarządzanie Licencjackie, WDAM, grupy I i II
Rozwiązania zadań z kolokwium w dniu 15.1.010r. Zarządzanie Licencjackie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f x) = arc cos x x + x 5 ) ) log x + 5. Rozwiązanie. Wymagane
Bardziej szczegółowoWYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:
WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę wymierną na osi liczbowej umie
Bardziej szczegółowoWymagania edukacyjne klasa druga.
Wymagania edukacyjne klasa druga. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. POTĘGI Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi Potęgowanie
Bardziej szczegółowoZestaw 1-1 Organizacja plików: Oddajemy tylko źródła programów (pliki o rozszerzeniach.cpp)!!!
Zestaw 1-1 1. Napisz program pobierający od użytkownika liczbę całkowitą R (R>1) i liczbę rzeczywistą dodatnią S, a następnie informujący ile kolejnych liczb z ciągu 1, R-1, R 2-2, R 3-3, R 4-4, należy
Bardziej szczegółowoModelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd.
Modelowanie wybranych pojęć matematycznych semestr letni, 206/207 Wykład 0 Własności funkcji cd. Ciągłość funkcji zastosowania Przybliżone rozwiązywanie równań Znajdziemy przybliżone rozwiązanie równania
Bardziej szczegółowoEGZAMIN MATURALNY Z INFORMATYKI WYBRANE: ... (system operacyjny) ... (program użytkowy) ... (środowisko programistyczne)
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MIN 2017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY CZĘŚĆ I DATA: 10
Bardziej szczegółowoKod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych.
Kod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych. Jeśli bit znaku przyjmie wartość 0 to liczba jest dodatnia lub posiada wartość 0. Jeśli bit
Bardziej szczegółowoMatura z matematyki?- MATURALNIE, Ŝe ZDAM! Zadania treningowe klasa I III ETAP
Matura z matematyki?- MATURALNIE, Ŝe ZDAM! Zadania treningowe klasa I III ETAP I Zadania zamknięte (pkt) Zadanie Liczba - jest miejscem zerowym funkcji liniowej = x + B. f ( x) = x C. f ( x) = x + D. f
Bardziej szczegółowoKurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 2 Teoria liczby rzeczywiste cz.2
1 POTĘGI Definicja potęgi ł ę ę > a 0 = 1 (każda liczba różna od zera, podniesiona do potęgi 0 daje zawsze 1) a 1 = a (każda liczba podniesiona do potęgi 1 dają tą samą liczbę) 1. Jeśli wykładnik jest
Bardziej szczegółowoLICZBY - Podział liczb
1 LICZBY - Podział liczb Liczby naturalne (N) to liczby, za pomocą których rachujemy. Podział liczb na diagramie prezentuje się następująco 0, 1, 2, 3, 4, 5,, 99, 100, 101,, 999, 1000, Liczby całkowite
Bardziej szczegółowoWIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.
WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery
Bardziej szczegółowoEGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
Bardziej szczegółowoII WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
II WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ ODSTAWOWYCH ETA I - SZKOLNY 14 listopada 2017 r. Godz.10:00 Kod pracy ucznia Suma punktów Czas pracy: 90 minut Liczba punktów możliwych do uzyskania:
Bardziej szczegółowoWymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej
Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. LICZBY RZECZYWISTE I DZIALANIA
Bardziej szczegółowoCIĄGI wiadomości podstawowe
1 CIĄGI wiadomości podstawowe Jak głosi definicja ciąg liczbowy to funkcja, której dziedziną są liczby naturalne dodatnie (w zadaniach oznacza się to najczęściej n 1) a wartościami tej funkcji są wszystkie
Bardziej szczegółowoLista działów i tematów
Lista działów i tematów Szkoła podstawowa. Klasa 4 Liczby i działania Rachunki pamięciowe - dodawanie i odejmowanie O ile więcej, o ile mniej Rachunki pamięciowe - mnożenie i dzielenie Mnożenie i dzielenie
Bardziej szczegółowoScenariusz lekcji matematyki w klasie 3 a z zastosowaniem niektórych elementów OK.
Scenariusz lekcji matematyki w klasie 3 a z zastosowaniem niektórych elementów OK. Temat: Uwielbiam liczyć - Utrwalenie dodawania i odejmowania w zakresie 1000 oraz mnożenia i dzielenia w zakresie 100.
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, lato 2012/13. W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny.
W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie. 1. Dane są liczby naturalne m, n. Wówczas
Bardziej szczegółowoKONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP WOJEWÓDZKI KLUCZ ODPOWIEDZI Zasady przyznawania punktów za każdą poprawną odpowiedź punkt za błędną odpowiedź lub brak odpowiedzi 0 punktów Nr zadania
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Bardziej szczegółowoTest na koniec nauki w klasie trzeciej gimnazjum
3 Przykładowe sprawdziany Test na koniec nauki w klasie trzeciej gimnazjum... imię i nazwisko ucznia...... data klasa Test Liczba x jest wynikiem dodawania liczb + +. Jaki warunek spełnia liczba x? 3 5
Bardziej szczegółowo