ZASADA WZAJEMNOŚCI W ELEKTROSTRYKCJI

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZASADA WZAJEMNOŚCI W ELEKTROSTRYKCJI"

Transkrypt

1 57 ROCZIKI IŻYIERII BUOWLEJ ZESZYT 3/03 Koms Inżynr Bdown Oddzł Pos dm w Ktowcch ZS WZJEMOŚCI W ELEKTROSTRYKCJI Jrzy WYRWŁ Potchn Opos Opo. Wprowdzn Bdown onstrc nżynrs z pływm czs gą szodznom strzn sę co powod obnżn możwośc rzc przwdywnych d nch fnc żytowych. T npożądn fty mogą być spowodown norzystnym wrnm spotcynym (przcążn ngły dynmczny wzrost obcążń) tż nsprzyącym wrnm prcy (wgoć wśn dszcz zmny tmprtry). Zws t wywołą szodzn b zmny strtry wwnętrzn zstosownych w onstrcch mtrłów w onswnc pogorszn ch włścwośc mchncznych. Inną powżną przyczyną szodzń onstrc bdownych są wdy gnrown podczs ch wytwrzn. Możwość ocny zmn stn tchnczngo onstrc rc n powstąc w nch zgrożn moż pozwoć n nnęc wr ndy tstrof bdownych. Stcznym sposobm ocny stn tchnczngo onstrc nżynrsch st wyorzystn mtod ontro nnszcząc tór możwą wyrywn w nch wwnętrznych nwdocznych mropęnęć. ży dn podrść ż z wg n dż wymry onstrc bdownych mtody ontro nnszcząc stosown zzwycz w prtyc (np. bdn trdźwęow mgntyczn rntgnows wyorzystn ms styczn b trmogrf) mogą być łopotw tż wymgć ndy czsowgo wyłączn bdngo obt z spotc. Zzwycz bdn t mą chrtr dorźny b przypdowy. Wd tch pozbwon są mtody ontro nnszcząc bząc n spcyfcznych włścwoścch mtrłów ntgntnych (smrt mtrs). Mtody t stnową podstwę rozwo cągłgo montorng stn onstrc bdownych dostrczącgo nformc w czs rzczywstym możwąc ch przzywn n dowoną odgłość. o mtrłów ntgntnych zczą sę mtrły trostrycyn tórych odsztłcn są proporconn do wdrt ntężn po tryczngo. Są on wyorzystywn do bdowy prztwornów tromchncznych orz mntów pomrowych [] przy czym dttory trostrycyn chrtryzą sę dż człoścą []. Twrdzn o wzmnośc w przypd nsprzężon trostryc przdstwono po rz prwszy w [3]. Symtr równń nsprzężon trostryc nzown był w [4] zś [5] zwr wrsę przyrostową twrdzn o wzmnośc trostryc. W [6] sformłowno twrdzn o wzmnośc w przypd znryzownych zdń brzgowych trmodyfz posprężyst w po tromgntycznym. Z o rozprw

2 58 dotors [7] zwr tortyczn podstwy zstosown pzopomrów do dgnosty onstrc nżynrsch; cytown są w n omówon prc pos zgrnczn z tgo zrs. W nnsz prcy sformłowno zsdę wzmnośc w przypd zgdnn brzgowgo trostryc w tórym o nwdom występą trzy słdow wtor przmszczn potncł tryczny. W odróżnn od wymnonych wyż prc wzgędnono t płn sprzężn po mchnczngo z trycznym.. Zgdnn brzgow zgdnn brzgow trostryc słdą sę: równn równowg równn Gss zwąz gomtryczn σ f 0 () () (3) zwąz mędzy ntężnm po tryczngo go potncłm E. (4) o powyższych równń nży dołączyć zwąz onstyttywn. fnąc ntpę tryczną w postc [8] E E E c E E H (5) otrzymmy nnow sprzężon równn onstyttywn H H E c E E E E (6) gdz c c (7)

3 59 są współczynnm mtrłowym przcn w donym nds ozncz pochodną cząstową zś powtrząc sę ndsy don wszą n smown. W powyższych dwdzst dwóch równnch o nwdom występą nstępąc fnc: szść słdowych tnsor nprężń szść słdowych tnsor odsztłcń trzy słdow wtor przmszczn ndc tryczn trzy słdow wtor trzy słdow wtor ntężn po tryczngo potncł tryczny. Fnc t mszą spłnć nstępąc wrn brzgow: E n ˆ n p n pˆ n ˆ n ˆ n (8) gdz p są częścm powrzchn cł do tórych są przyłożon zdn: przmszczn û sły powrzchnow pˆ potncł tryczny ˆ ndc tryczn ˆ. W c zmnszn czby nwdomych mnmy z powyższych równń tnsory nprężń odsztłcń orz wtory ndc tryczn ntężn po tryczngo E. W rztc otrzymmy łd cztrch sprzężonych nnowych równń trostryc w nstępąc postc: f c tóry po przsztłcnch możn zpsć o 0 (9) c. f 0 (9 ) W powyższych równnch nwdomym są trzy słdow wtor przmszczn potncł tryczny. Fnc t mszą spłnć nstępąc wrn brzgow: p ˆ n ˆ n pˆ n c n ˆ n. n (0) W c proszczn srócn dszych rozwżń równn (9) orz wrn brzgow (0) zpszmy w zwrt oprtorow postc:

4 60 f 0 () gdz c p p f f ˆ. pˆ ˆ ˆ () przy czym st oprtorm nnowym mntm sznym zś f dnym. 3. Rc wzmnośc Jś n cło oddzływć będą dw nzżn przyczyny w nm dw nzżn st przy czym f 0 f 0. f f to wywołą on (3) gdz fnąc nstępący fnconł (formę dwnową) f f (4) d c f p d p d d d d ˆ ˆ f ˆ ˆ d p d p d d d (5) możmy npsć ż f 0 f 0. (6) Odęc powyższych równń stronm prowdz do rc

5 6 f f (7) będąc oprtorową (symboczną) postcą zsdy wzmnośc trostryc. Ponwż z twrdzn Gss-Ostrogrdsgo wyn ż d c d c U p d p d d d d d (8) ztm po wyorzystn symtr stłych mtrłowych dnych zwązm (7) możmy sprowdzć wą stronę rc (7) do nstępąc postc: d z tór wyn ż oprtor stron t rc m postć (9) n st symtryczny. Z o łtwo sprwdzć prw f f f f d ˆ p ˆ p d pˆ pˆ d ˆ ˆ d ˆ ˆ d. d (0) W onswnc (7) przym osttczną postć zsdy wzmnośc trostryc f f d ˆ p ˆ p d pˆ pˆ d d ˆ ˆ d ˆ ˆ d d () Otrzymn zsd w postc () moż zostć wyorzystn do poszwn ntycznych nmrycznych rozwązń w probmów nowych nżynrsch zwąznych z wyorzystnm mtrłów trostrycynych.

6 6 Oznczn symbo wtor ndc tryczn ctrc dspcmnt vctor [C/m ] E wtor ntężn po tryczngo ctrc fd vctor [/m] f wtor sły obętoścow mchnc body forc [/m 3 ] wtor przmszczn stc dspcmnt vctor [m] tnsor odsztłcń symmtrc strn tnsor [-] potncł tryczny ctrc potnt [] tnsor nprężń symmtrc strss tnsor [P] gęstość łdn tryczngo ctrc chrg [C/m 3 ]. Ltrtr [] Mrwcz G.: Mtrły ntgntn zstosown w systmch tywn rdc hłs drgń Bzpczństwo prcy [] Srowł S. Ss R d J.: Włścwośc prztwornów tromchncznych n bz crm trostrycyn Mtrły XLI Otwrtgo Smnrm z sty Gdńs-Jstrzęb Gór [3] Knops R. J. rcproc thorm for frst ordr thory of ctrostrcton ZMP Jorn of ppd Mthmtcs nd Physcs [4] Kb J. Rzp J. Symmtry of qtons of th ctrostrcton ffct Proc. 4 th Intrnton Confrnc on w Trnds n Sttc nd ynmc of Bdngs Brtsv 005. [5] Kb J. Rzp J. Incrmnt formton of rcproc thorm for ctrostrcton ffct Proc. 7 th Intrnton Confrnc on w Trnds n Sttc nd ynmc of Bdngs Brtsv 009. [6] Kb J. Jędrzczy-Kb J. Rcproc thorm for vscostc thrmodffson n th ctromgntc fd ZMM Jorn of ppd Mthmtcs nd Mchncs s [7] Rzp J. Tortyczn podstwy zstosown pzopomrów do dgnosty onstrc nżynrsch (rozprw dotors) Opo 009. [8] Tng Y. Brn R. thortc nyss of th brdown of ctrostrctv oxd fm on mt Jorn of th Mchncs nd Physcs of Sods RECIPROCITY PRICIPLE OF ELECTROSTRICTIO Smmry Th ppr contns drvton of rcprocty prncp for bondry probm of ctrostrcton. Th rsts obtnd n ths wor cn bcom th thortc bss to formt th nmrc sotons of dffrnt scntfc nd ngnrng probms connctd wth ctrostrctv mtrs.

ZASADA WARIACYJNA ELEKTROSTRYKCJI

ZASADA WARIACYJNA ELEKTROSTRYKCJI 7 ROCZIKI IŻYIERII BUOWLEJ ZESZYT 3/03 Koms Iżyr Bdow Oddzł Pos dm w Ktowh ZS WRICYJ ELEKTROSTRYKCJI Jrzy WYRWŁ Poth Opos Opo. Wprowdz Zwso trostry st rzttm obż sę rg pot dpo dowyh przz przyłożo do ośrod

Bardziej szczegółowo

RELACJA WZAJEMNOŚCI W ZAGADNIENIU POCZĄTKOWO-BRZEGOWYM LINIOWEJ TERMOPIEZOELEKTRYCZNOŚCI

RELACJA WZAJEMNOŚCI W ZAGADNIENIU POCZĄTKOWO-BRZEGOWYM LINIOWEJ TERMOPIEZOELEKTRYCZNOŚCI ROCZNK NŻYNR UOWLNJ ZSZY / Koms nżynr owln Ozł Pols m N w Ktowh RLCJ WZJMNOŚC W ZGNNU POCZĄKOWO-RZGOWYM LNOWJ RMOPZOLKRYCZNOŚC Potr GORCK Jrzy WYRWŁ Polthn Ools Ool. Wrowzn W nżynr owln mtrły zoltryzn

Bardziej szczegółowo

MES dla stacjonarnego przepływu ciepła

MES dla stacjonarnego przepływu ciepła ME da staconarngo przpływu cpła Potr Pucńs -ma: ppucn@l5.p.du.p Jrzy Pamn -ma: pamn@l5.p.du.p Instytut Tchnoog Informatycznych w Inżynr Lądow Wydzał Inżynr Lądow Potchn Kraows trona domowa: www.l5.p.du.p

Bardziej szczegółowo

2π Ciągi te są ortogonalne w kaŝdym przedziale < t 0, t 0 +T > o długości T =.

2π Ciągi te są ortogonalne w kaŝdym przedziale < t 0, t 0 +T > o długości T =. Obwody SLS prąd orsowgo SLS PO Obwody SLS prąd orsowgo o obwody SLS prcjąc w s soy przy pobdzch orsowych. Obwody zywy obwod prąd orsowgo OPO b obwod prąd odszłcogo OPO od sygł ssodgo. Mody posępow z OPO:

Bardziej szczegółowo

UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.

UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ. L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl

Bardziej szczegółowo

ANALIZA PRACY SYSTEMU ENERGETYCZNO-NAPĘDOWEGO STATKU TYPU OFFSHORE Z WYKORZYSTANIEM METODY DRZEW USZKODZEŃ

ANALIZA PRACY SYSTEMU ENERGETYCZNO-NAPĘDOWEGO STATKU TYPU OFFSHORE Z WYKORZYSTANIEM METODY DRZEW USZKODZEŃ MGR INŻ. LSZK CHYBOWSKI Politchnik Szczcińsk Wydził Mchniczny Studium Doktorncki ANALIZA PRACY SYSTMU NRGTYCZNO-NAPĘDOWGO STATKU TYPU OFFSHOR Z WYKORZYSTANIM MTODY DRZW USZKODZŃ STRSZCZNI W mtril przdstwiono

Bardziej szczegółowo

ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW

ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW 1 ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GANULOMETYCZNEJ SUOWCÓW I PODUKTÓW 1. Cel zkres ćwczen Celem ćwczen jest opnowne przez studentów metody oceny mterłu sypkego pod względem loścowej zwrtośc frkcj

Bardziej szczegółowo

EFEKTYWNOŚĆ SZACOWANIA BŁĘDÓW A POSTERIORI METODĄ WYRÓWNOWAŻONYCH RESIDUÓW ELEMENTOWYCH W ADAPTACYJNEJ ANALIZIE PŁYT I POWŁOK

EFEKTYWNOŚĆ SZACOWANIA BŁĘDÓW A POSTERIORI METODĄ WYRÓWNOWAŻONYCH RESIDUÓW ELEMENTOWYCH W ADAPTACYJNEJ ANALIZIE PŁYT I POWŁOK MODELOWANIE INŻYNIERSKIE ISNN 1896-771X 32, s. 521-528, Glwc 2006 EFEKTYWNOŚĆ SZACOWANIA BŁĘDÓW A POSTERIORI METODĄ WYRÓWNOWAŻONYCH RESIDUÓW ELEMENTOWYCH W ADAPTACYJNEJ ANALIZIE PŁYT I POWŁOK GRZEGORZ

Bardziej szczegółowo

DYNAMIKA WIRNIKA W USZCZELNIENIACH SZCZELINOWYCH

DYNAMIKA WIRNIKA W USZCZELNIENIACH SZCZELINOWYCH MARCNOWS W.A. Ss Unwrsytt Pństwwy TARASEWCZ J. Ss Unwrsytt Pństwwy UNDERA CZ. Ptn Śwętrzys,., Ps DYNAMA WRNA W USZCZELNENACH SZCZELNOWYCH W ry nzwny jst wływ rtrów szznń n rtrysty dynzn wrn. Sfrłwn równn

Bardziej szczegółowo

Rozwiązanie równania różniczkowego MES

Rozwiązanie równania różniczkowego MES Rozwiązani równania różniczkowgo MES Jrzy Pamin -mail: jpamin@l5.pk.du.pl Instytut Tchnologii Informatycznych w Inżynirii Lądowj Wydział Inżynirii Lądowj Politchniki Krakowskij Strona domowa: www.l5.pk.du.pl

Bardziej szczegółowo

Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel,

Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel, utomtyk Robotyk lgebr -Wykłd - dr dm Ćmel cmel@ghedupl Równn lnowe Nech V W będą przestrzenm lnowym nd tym smym cłem K T: V W przeksztłcenem lnowym Rozwżmy równne lnowe T(v)w Powyższe równne nzywmy równnem

Bardziej szczegółowo

Ż S KŻ Ń C Z Y C Y PWP X I Ł I X I VPW.P W I T T E L S BŻ C H O W I EPPPPPPPPPPPPPPP IP L U K S E M B U R G O W I EPPPPPPPPPPPPPP P X I V MX VP w.a 8

Ż S KŻ Ń C Z Y C Y PWP X I Ł I X I VPW.P W I T T E L S BŻ C H O W I EPPPPPPPPPPPPPPP IP L U K S E M B U R G O W I EPPPPPPPPPPPPPP P X I V MX VP w.a 8 Ż S KŻ Ń C Z Y C Y W X I Ł I X I VW. W I T T E L S BŻ C H O W I E I L U K S E M B U R G O W I E X I V MX V w.a 8 8 W i t t e l s b a c h o w i e L U D W I K W Ż L D E MŻ R L U D W I K I STŻ R S Z Y FŻ

Bardziej szczegółowo

TENSOR W ZAPISIE LAGRANGE A I EULERA

TENSOR W ZAPISIE LAGRANGE A I EULERA TENSOR W ZAPISIE LAGRANGE A I EULERA N postwe skłowych wektor przemeszczeń obczmy skłowe tensor oksztłcen. Tensor oksztłcen może być w zpse Lgrnge b Eer. We współrzęnych Lgrnge rch cząsteczk est opsny

Bardziej szczegółowo

(0) Rachunek zaburzeń

(0) Rachunek zaburzeń Wyłd XII Rch zbzń Mchi wtow Rch zbzń st podstwową mtodą zdowi pzybliżoych ozwiązń óżgo odz ówń występących w fizyc Tt zsti pzdstwioy ch zbzń w zstosowi do ówi Schödig bz czs Ogiczymy się pzy tym do tzw

Bardziej szczegółowo

Ć Ś Ę Ś ź ź ć ź ń ć ź Ł ź ć ń ć ć ć ź Ś ź ć ć ć ń Ę ń ć ń ĆŚ ź Ę ń ń Ę ń ń ń ź ć ćś Ś ć ń ń Ś ć ćł ć ń Ł ń ć ć ć ć Ę ź ć ź ź Ł ć ź Ę ź ć ć ź ń ć ń Ę ć ć ć ć ć Ę ć ć ć ć ć ć ć ć ć ć ń ń ź ź ń ń Ę ń ń Ś

Bardziej szczegółowo

I. RACHUNEK TENSOROWY

I. RACHUNEK TENSOROWY Kodr P. Mch ośrodów cąłych 9. RACHUNEK TENSOROWY. Prmtryc prstr pryęc łd współrędych D st prstrń Eds trówymrow. Kżdy pt t prstr dfowy st pr tróę cb wych współrędym to pt. W prstr Eds ws moż dfowć rtńs

Bardziej szczegółowo

Metoda prądów obwodowych

Metoda prądów obwodowych Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń

Bardziej szczegółowo

Biokominek czarny 90x40 w połysku + gratisy

Biokominek czarny 90x40 w połysku + gratisy Ynn -u Utwrzn : 07 uty 2017 Bmn -u > Bmn zrny 90x40 w płyu + grty Bmn zrny 90x40 w płyu + grty Md : 0126 Bmn zrny 90x40 w płyu + grty rdunt : -u zmy bmn z r&nbp;-u&nbp;z funją rmtrp Wwnętrzn rm wynn t

Bardziej szczegółowo

Rozpraszania twardych kul

Rozpraszania twardych kul Wyłd XVIII Rozprszn twrdych u Rozwżmy oddzływne twrdych u opsywne potencjłem V r r Ponewż potencjł jest seryczne symetryczny uncję ową możn zpsć w postc ( r Cm R Ym( m gdze Ym( to hrmon seryczne Rozprszne

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA. Wykład 2 Analiza popytu. Optymalna polityka cenowa. 1 ANALIZA POPYTU. OPTYMALNA POLITYKA CENOWA.

EKONOMIA MENEDŻERSKA. Wykład 2 Analiza popytu. Optymalna polityka cenowa. 1 ANALIZA POPYTU. OPTYMALNA POLITYKA CENOWA. Wykłd Anlz popytu. Optymln poltyk cenow. 1 ANALIZA OYTU. OTYMALNA OLITYKA CENOWA. rzedmotem wykłdu jest prolem zrządzn zyskem poprzez oprcowne wdrożene odpowednej strteg różncown cen, wykorzystując do

Bardziej szczegółowo

Modelowanie sił skrawania występujących przy obróbce gniazd zaworowych

Modelowanie sił skrawania występujących przy obróbce gniazd zaworowych Scentfc Journls Mrtme Unversty of Szczecn Zeszyty ukowe Akdem Morsk w Szczecne 29, 7(89) pp. 63 67 29, 7(89) s. 63 67 Modelowne sł skrwn występujących przy obróbce gnzd zworowych Cuttng forces modelng

Bardziej szczegółowo

Ł ś Ń Ż Ó Ń Ż Ń Ł Ł

Ł ś Ń Ż Ó Ń Ż Ń Ł Ł Ł Ł Ł Ń Ń Ó Ł ś Ń Ż Ó Ń Ż Ń Ł Ł Ł Ó Ś Ś ś ść ś ć ć ć ś ś ś ś ś Ń ś ś ś ś ś ć ć źć ś ć ś ć ś ść ś ś ś Ł ś ś Ł ć Ł ś ć ć ć ś ś ćł ź ść ść ć ść ś ś ć Ż ś ś ś ć ś ć ć źć ź Ń ś ś Ł Ń ć ś ść Ł źć ś ś ć ćń ć

Bardziej szczegółowo

Szeregi trygonometryczne Fouriera. sin(

Szeregi trygonometryczne Fouriera. sin( Szrg rygoomryz Fourr / Szrg rygoomryz Fourr D js ukj: s os Pożj pod są włsoś ukj kór wykorzysmy w późjszym zs Ozzmy przz zę zspooą pos: Wówzs s os orz os s Fukję zpsujmy w pos: s s os os os u os W szzgóoś

Bardziej szczegółowo

ź Ś ś ś Ś Ś ś ś ś ś ś ś ź ś ś Ś Ś Ś źś Ń Ś ś Ą Ź ś ś ś ś Ś ś ś Ą Ś Ą Ą ś ś Ś Ś ść ś Ś ś ś Ś ś ś ś ź ś Ś Ś Ś Ś ś Ś Ź ś ś ś ś ś Ś ś Ś ć ć Ś Ś Ą ć ć Ś Ś Ś ś Ś ś Ę Ś Ę ś Ś Ś Ś Ś ś ś ś Ś Ś Ś Ś ś ś ć Ć Ę Ś Ś

Bardziej szczegółowo

Wir basteln ein Kartontheater

Wir basteln ein Kartontheater Wr bstl Krtottr SCENARIUSZ LEKCJI Tmt: Wr bstl Krtottr Cl: Uczow: pozją podstwow słowctwo z zkrsu Ttr, rozumją tkst będący strukcją wyko scy ttrlj, wykoują scę do późjszgo przdstw. Kls: SP, klsy 4 6 Md/Mtrły:

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

Pojęcie modelu. Model ekonometryczny. Przykład modelu ekonometrycznego. Klasyfikacja modeli ekonometrycznych. Etapy analizy ekonometrycznej

Pojęcie modelu. Model ekonometryczny. Przykład modelu ekonometrycznego. Klasyfikacja modeli ekonometrycznych. Etapy analizy ekonometrycznej Poęc modlu Modl s o uproszczo przdsw rzczwsośc Lwrc R Kl: Modl s o schmcz uproszcz pomąc so sp w clu wś wwęrzgo dzł form lub osruc brdz somplowgo mchzmu Główą zlą modlu s możlwość go bzpczgo przprowdz

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Włd : Wetor dr nż. Zgnew Slrs sl@gh.edu.pl http://ler.uc.gh.edu.pl/z.slrs/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, nprężene, premescene, ntężene prądu eletrcnego, ntężene pol

Bardziej szczegółowo

WYNIKI MISTRZOSTW KATOWIC W PŁYWANIU SZKÓŁ PONADPODSTAWOWYCH ( R.)

WYNIKI MISTRZOSTW KATOWIC W PŁYWANIU SZKÓŁ PONADPODSTAWOWYCH ( R.) WYNIKI MISTRZOSTW KATOWIC W PŁYWANIU SZKÓŁ PONADPODSTAWOWYCH (12.10.2018 R.) 100 metrów stylem zmiennym dziewcząt 1 WB X LO 1:25,52 17 2 KK I LO 1:25,77 15 3 MZ II LO 1:28,70 14 4 AP III LO 1:30,81 13

Bardziej szczegółowo

Władcy Skandynawii opracował

Władcy Skandynawii opracował W Ł~ D C Y S K~ N D Y N~ W I I K R Ó L O W I E D ~ N I IW. K J S O L D U N G O W I E 1 K R Ó L O W I E D ~ N I IW. K J S O L D U N G O W I E 2 Władcy Skandynawii G E N E~ L O G I~ K R Ó L Ó W D~ N O R

Bardziej szczegółowo

METODY APROKSYMACYJNEGO ROZWIĄZYWANIA RÓWNAŃ RÓŻNICZKOWYCH

METODY APROKSYMACYJNEGO ROZWIĄZYWANIA RÓWNAŃ RÓŻNICZKOWYCH . MEODY APROKSYMACYJEGO ROZWIĄZYWAIA RÓWAŃ.. Uwg wstępn oncpc podstwow W wlu przpdch wżnch z puntu wdzn zstosowń tchncznch znlzn rozwązn równn różnczowgo w postc nltczn st trudn lub wręcz nmożlw do osągnęc.

Bardziej szczegółowo

Sterowanie adaptacyjne silnikiem PMSM z dowolnym rozkładem strumienia

Sterowanie adaptacyjne silnikiem PMSM z dowolnym rozkładem strumienia Prmysłw OSIOŁEK Poltchn Łó, Instytut Automty Strown ptcyjn slnm PS owolnym rołm strumn Strscn. W rtyul prstwono lgorytm strown ptcyjngo slnm mgnsm trwłym owolnym rołm strumn. Do synty lgorytmu stosowno

Bardziej szczegółowo

Ą ń Ś ź ń ć ż Ę Ń Ą ć ń ń ż ń ź ź ź Ż ń ź ń Ą ń ż Ł ż Ę Ż ć ż ń Ę ć ż ż ń Ę ż ń ń Ą ż ń Ąć Ę ń Ę Ł Ą Ż ż Ę Ę ń Ż ż Ż Ę Ę Ę Ę Ę ć ż ż ż ć ćń ż ź Ę ń ż ć Ę ż ż Ę ź Ę ń ż Ę Ę ń Ę Ę ń ć Ż ć ż Ą Ę Ę ź ń ż ń

Bardziej szczegółowo

Ń ź Ń ź Ń ź Ń ź ź Ń Ń Ń Ń ź Ą ź Ń ź Ó Ą ć Ń ć Ń ć ć ć ć ć ź ź ć Ń Ń ć ć Ę Ą ź Ę Ń ć ź Ń ź Ł Ń ć Ń Ą ć Ń ć ć ź Ń ćń Ś ź ź ź ć Ń ź ź Ń Ń Ę Ń ź Ń ź Ń Ą ć ź ć ć Ę ć ź ć Ą ć ź ć Ń ć ć ź ć Ń Ń Ń Ę ć Ą Ą ź Ń

Bardziej szczegółowo

Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury.

Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury. Proces decyzyny: 1. Sformułu sno problem decyzyny. 2. Wylcz wszyste możlwe decyze. 3. Zdentyfu wszyste możlwe stny ntury. 4. Oreśl wypłtę dl wszystch możlwych sytuc, ( tzn. ombnc decyz / stn ntury ). 5.

Bardziej szczegółowo

Badania symulacyjne efektywności kompensacji mocy biernej odbiorów nieliniowych w oparciu o teorię składowych fizycznych prądu TSFP

Badania symulacyjne efektywności kompensacji mocy biernej odbiorów nieliniowych w oparciu o teorię składowych fizycznych prądu TSFP mgr ż. JULIN WOIK dr ż. MRIN KLU Istytt Tchk Iowcyjych EMG prof. dr h. ż. OGDN MIEDZIŃKI Poltchk Wrocłwsk d symlcyj fktywośc kompscj mocy rj odorów lowych w oprc o torę skłdowych fzyczych prąd TFP W rtykl

Bardziej szczegółowo

ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Fuzja danych nawigacyjnych w przestrzeni filtru Kalmana

ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Fuzja danych nawigacyjnych w przestrzeni filtru Kalmana ISSN 733-867 ZESZ NAUKOWE NR (83) AKADEMII MORSKIEJ W SZCZECINIE IV MIĘDZNARODOWA KONFERENCJA NAUKOWO-ECHNICZNA E X L O - S H I 6 Andrzej Stteczny, Andrzej Lsj, Chfn Mohmmd Fzj dnych nwgcyjnych w przestrzen

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa W Z Ó R U M O W Y z a w a r t a w G d y n i w d n i u 2 0 1 4 r po m i d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j i j e d n o s t k a b u d e t o w a ( 8 1-5 3 8 G d y n i a ), l

Bardziej szczegółowo

Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż

Bardziej szczegółowo

Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń

Bardziej szczegółowo

Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż

Bardziej szczegółowo

Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć

Bardziej szczegółowo

III. KINEMATYKA OŚRODKA ODKSZTAŁCALNEGO

III. KINEMATYKA OŚRODKA ODKSZTAŁCALNEGO onerl P Mechn ośroów cąłych III INEMATYA OŚRODA ODSZTAŁALNEO Ops rch cł oszłclneo Obe fzyczny es cłem w rozmen MO eżel zme przesrzeń opoloczną w óre ży pn m swoe ooczene z oreśloną meryą orz obe en e sę

Bardziej szczegółowo

Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa)

Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa) Regresj low (metod jmejszch kwdrtów, metod wrówwcz, metod Guss) stot metod postult Guss współczk prostej kostrukcj prostej teoretczej trsformcj fukcj elowch przkłd Regresj low czm poleg? Jeśl merzoe dwe

Bardziej szczegółowo

3. Rozkład macierzy według wartości szczególnych

3. Rozkład macierzy według wartości szczególnych Rozkłd mcierzy wedłg wrtości szczególnych Wprowdzenie Przypomnimy podstwowe zleżności związne z zstosowniem metody nmnieszych kwdrtów do proksymci fnkci dyskretne Podstwowe równnie m nstępącą postć: +

Bardziej szczegółowo

DYDAKTYCZNA PREZENTACJA PRÓBKOWANIA SYGNAŁÓW OKRESOWYCH

DYDAKTYCZNA PREZENTACJA PRÓBKOWANIA SYGNAŁÓW OKRESOWYCH POZA UIVE RSIY OF E CHOLOGY ACADE MIC JOURALS o 73 Electricl Engineering 3 Wojciech LIPIŃSI* DYDAYCZA PREZEACJA PRÓBOWAIA SYGAŁÓW ORESOWYCH Przedstwiono dydtyczną prezentcję próbowni przebiegów oresowych

Bardziej szczegółowo

METODY KOMPUTEROWE 11

METODY KOMPUTEROWE 11 METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Mchł PŁOTKOWIAK Adm ŁOYGOWSKI Konsultcje nukowe dr nż. Wtold Kąkol Poznń / METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Metod wżonych rezduów jest slnym nrzędzem znjdown

Bardziej szczegółowo

D r. r r r D. Wykład VII. Podstawowe własnow. Źródła a fal elektromagnetycznych. r r. Luminescencja. Natęż. Równania Maxwella. ężenie i indukcja pola

D r. r r r D. Wykład VII. Podstawowe własnow. Źródła a fal elektromagnetycznych. r r. Luminescencja. Natęż. Równania Maxwella. ężenie i indukcja pola Wyłd VII Fl lomgnyzn włśwoś źódł ównn pw Mxwll ównn flow wypowdzn ozwązn lomgnyzn fl płs wo flowy wo Poynng wdmo fl lomgnyznyh Podswow włsnow snoś fl popzzn popgj w póżn w ośodh mlnyh oślon pędość w póżn

Bardziej szczegółowo

K R Ó L O W I E PD Ż N I IPWP.P K J S O L D U N G O W I E P 1 0

K R Ó L O W I E PD Ż N I IPWP.P K J S O L D U N G O W I E P 1 0 1 0 A Królowie Danii K J O L D U N G O W I E. S K J O L D U N G O W I E. E S T R Y D S E N O W I E K R Ó L O W I E D Ż N I IW. S. U N IŻ KŻ L MŻ R S KŻ. O L D E N B U R G O W I E. G L Ü C K S B U R G O

Bardziej szczegółowo

3. Unia kalmarska IE W O EN MAŁGORZATA I 116 ERYK VII POMORSKI 119 KRZYSZTOF III BAWARSKI ESTRYDSII IE DAN W LO KRÓ 115

3. Unia kalmarska IE W O EN MAŁGORZATA I 116 ERYK VII POMORSKI 119 KRZYSZTOF III BAWARSKI ESTRYDSII IE DAN W LO KRÓ 115 K R Ó L O W I E D ~ N I IW. S TE R Y D S E N O W I E 1 1 4 3. Unia kalmarska K R Ó L O W I E D ~ N I IW. S TE R Y D S E N O W I E M~ Ł G O R Z~ T~ I E R Y K V I I O M O R S K I K R Z Y S Z T O F I I I

Bardziej szczegółowo

ZASADY DYNAMIKI. II. Przyspieszenie ciała jest proporcjonalne do przyłoŝonej siły. r r v. r dt

ZASADY DYNAMIKI. II. Przyspieszenie ciała jest proporcjonalne do przyłoŝonej siły. r r v. r dt DYAKA Zsdy dynm Ułdy necjlne, zsd bezwłdnośc, zsd względnośc Defncje welośc dynmcznych Zsdy zchown ędu momentu ędu Ułdy nenecjlne Pc Sły zchowwcze neg otencjln netyczn Zsd zchown eneg ZASADY DYAK. Cło,

Bardziej szczegółowo

STYLE. TWORZENIE SPISÓW TREŚCI

STYLE. TWORZENIE SPISÓW TREŚCI STYLE. TWORZENIE SPISÓW TREŚCI Ćwiczenie 1 Tworzenie nowego stylu n bzie istniejącego 1. Formtujemy jeden kpit tekstu i zznczmy go (stnowi on wzorzec). 2. Wybiermy Nrzędzi główne, rozwijmy okno Style (lub

Bardziej szczegółowo

Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak

Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak Metody numeryzne Wyłd nr 7 dr. Potr Fronz Cłowne numeryzne Cłowne numeryzne to przylżone olzne łe oznzony. Metody łown numeryznego polegją n przylżenu ł z pomoą odpowednej sumy wżonej wrtoś łownej unj

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH

METODA ELEMENTÓW SKOŃCZONYCH METOD ELEMETÓW SOŃCZOC Pzyłd. towni pł fomizm MES. Dn: - m, E. P P m m m B y... Dytyzj. W towniy podził jt ozywity pęt jt mntm, towy węzłm w ozmini MES. Pzy podzi n węzły i mnty w łdzi gonym, nmy mntów

Bardziej szczegółowo

4) Podaj wartość stałych czasowych, wzmocnienia i punkt równowagi przy wymuszeniu impulsowym

4) Podaj wartość stałych czasowych, wzmocnienia i punkt równowagi przy wymuszeniu impulsowym LISA0: Podtwowe człony (obiety) dynmii Przygotownie ) Wymień i opiz włności podtwowych członów (obiety) dynmii potć trnmitncji nzwy i ogrniczeni prmetrów ) Wymień podtwowe człony dynmii dl tórych trnmitncj

Bardziej szczegółowo

± - małe odchylenie od osi. ± - duże odchylenie od osi

± - małe odchylenie od osi. ± - duże odchylenie od osi TYGONOMETRYCZNE Przjmujm, ż znn są dfinicj i podstwow włsności funkcji trgonomtrcznch. Zprzntujm poniżj kilk prktcznch sposobów szbkigo, prktczngo obliczni wrtości funkcji trgonomtrcznch, rozwiązwni równń

Bardziej szczegółowo

Uchwł Nr XXIII/637/2000 Rdy Mst Szczecn z dn 17 kwetn 2000 r. w sprwe ustlen regulmnów trgowsk zloklzownych n terene Gmny Msto Szczecn. N podstwe rt. 18 ust. 2 pkt 15, rt. 41 ust. 4 ustwy z dn 8 mrc 1990

Bardziej szczegółowo

Staruszek do wszystkiego

Staruszek do wszystkiego Struszek wszystkiego tekst; Jeremi Przybory muz.: Jerzy Wsowski rr. voc.: Andrzej Borzym ru- stek wszy j j St l St ru- szek d wszy St ru- szek wszy Tum tu. ttt tu tu utkie-go jest inie-z-wo-dnv wsku#ch.

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą W Z Ó R U M O W Y n r 1 4 k J Bk 2 0 Z a ł» c z n i k n r 5 z a w a r t a w G d y n i w d n i u 1 4 ro ku p o m i 2 0d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j ei d n o s t k» b

Bardziej szczegółowo

1 Wynagrodzenie Wykonawcy zostanie podzielone na równe raty płatne cykliczne za okresy 2 tygodniowe w. okresie obowiązywania umowy.

1 Wynagrodzenie Wykonawcy zostanie podzielone na równe raty płatne cykliczne za okresy 2 tygodniowe w. okresie obowiązywania umowy. W Z Ó R U M O W Y N r :: k J Bk 2 0 1 5 Z a ł» c z n i k n r 4 A z a w a r t a w G d y n i d n i a :::::: 2 0 1 5 r o k u p o m i d z y G d y s k i m C e n t r u m S p o r t u j e d n o s t k» b u d e

Bardziej szczegółowo

TEORIA WAGNERA UTLENIANIA METALI

TEORIA WAGNERA UTLENIANIA METALI TEORIA WAGNERA UTLENIANIA METALI PROCES POWSTAWANIA ZGORZELIN W/G TAMANN A (90) Utlenz tl Utlenz Zgorzeln tl + SCHEMAT KLASYCZNEGO DOŚWIADCZENIA PFEILA (99) Powetrze Powetrze SO Zgorzeln SO Fe Fe TEORIA

Bardziej szczegółowo

6. Dynamika Stan równowagi. ρb(x, y, z) V n t d. Siły

6. Dynamika Stan równowagi. ρb(x, y, z) V n t d. Siły 6. Dynamika P.Pluciński 6. Dynamika 6.1. tan równowagi t ρb d x, y, z P ρüx, y, z ρbx, y, z z n t d x y iły ρb wktor gęstości sił masowych [N/m 3 ] ρb d wktor gęstości sił masowych tłuminia [N/m 3 ] ρü

Bardziej szczegółowo

Aၷ卷 l h w ၷ卷 h w ၷ卷 ၷ卷 wၷ卷 ၷ卷 ၷ卷 ż w ၷ卷 ၷ卷w w ၷ卷 ၷ卷 ၷ卷b w ၷ卷 ᆗ南 ၷ卷w ᐧ号 w. W w ၷ卷 l ၷ卷 ś ၷ卷 h ၷ卷 ၷ卷 l ၷ卷 w. ၷ卷 h ၷ卷 ၷ卷 ၷ卷 l w ၷ卷 h bၷ卷w w ၷ卷 ၷ卷 b l b ၷ

Aၷ卷 l h w ၷ卷 h w ၷ卷 ၷ卷 wၷ卷 ၷ卷 ၷ卷 ż w ၷ卷 ၷ卷w w ၷ卷 ၷ卷 ၷ卷b w ၷ卷 ᆗ南 ၷ卷w ᐧ号 w. W w ၷ卷 l ၷ卷 ś ၷ卷 h ၷ卷 ၷ卷 l ၷ卷 w. ၷ卷 h ၷ卷 ၷ卷 ၷ卷 l w ၷ卷 h bၷ卷w w ၷ卷 ၷ卷 b l b ၷ Wycena zapasów w kontekście nadrzędnych zasad rachunkowości Celem artykułu jest wskazanie niekonsekwencji obowiązujących regulacji prawnych dotyczących wyceny zapasów w odniesieniu do nadrzędnych zasad

Bardziej szczegółowo

Wykład 2: Wektory DR INŻ. ZBIGNIEW SZKLARSKI

Wykład 2: Wektory DR INŻ. ZBIGNIEW SZKLARSKI Włd 2: Wetor DR INŻ. ZIGNIEW SZKLRSKI SZKL@GH.EDU.PL HTTP://LYER.UCI.GH.EDU.PL/Z.SZKLRSKI/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, ntężene prądu eletrcnego, nprężene, ntężene

Bardziej szczegółowo

PASMA ENERGETYCZNE W KRYSZTAŁACH

PASMA ENERGETYCZNE W KRYSZTAŁACH PASMA ENERGETYCZNE W KRYSZTAŁACH W tj częśc wykłdu przdmotm zntrsown będą nr, jk moą posdć lktrony znjdując sę w prodycznj strukturz krysztłu. W clu znlzn stnów stcjonrnych dostępnych nr dl cząstk tworzących

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA Z a m a w i a j» c y G D Y S K I O R O D E K S P O R T U I R E K R E A C J I J E D N O S T K A B U D E T O W A 8 1 5 3 8 G d y n i a, u l O l i m p i j s k a 5k 9 Z n a k s p r a w y G O S I R D Z P I

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 02 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A U s ł u g a d r u k o w a n i a d l a p o t r z e b G d y s k i e g o

Bardziej szczegółowo

S.A RAPORT ROCZNY Za 2013 rok

S.A RAPORT ROCZNY Za 2013 rok O P E R A T O R T E L E K O M U N I K A C Y J N Y R A P O R T R O C Z N Y Z A 2 0 1 3 R O K Y u r e c o S. A. z s i e d z i b t w O l e ~ n i c y O l e ~ n i c a, 6 m a j a 2 0 14 r. S p i s t r e ~ c

Bardziej szczegółowo

DZIAŁ 2. Figury geometryczne

DZIAŁ 2. Figury geometryczne 1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko

Bardziej szczegółowo

Całkowanie numeryczne funkcji. Kwadratury Gaussa.

Całkowanie numeryczne funkcji. Kwadratury Gaussa. Cłkon nuryczn unkc. Kdrtury Guss. Rozżyy:. -D -punkto kdrtur Guss tod prostokątó. -D tod trpzó. -D -punkto kdrtur Guss 4. Zn grnc cłkon unoron d t dt 5. -D n-punkto kdrtur Guss 6. -D -punkto kdrtur Guss

Bardziej szczegółowo

Scenariusz lekcji matematyki w klasie II LO

Scenariusz lekcji matematyki w klasie II LO Autor: Jerzy Wilk Sceriusz lekcji mtemtyki w klsie II LO oprcowy w oprciu o podręczik i zbiór zdń z mtemtyki utorów M. Bryński, N. Dróbk, K. Szymński Ksztłceie w zkresie rozszerzoym Czs trwi: jed godzi

Bardziej szczegółowo

ω a, ω - prędkości kątowe członów czynnego a i biernego b przy

ω a, ω - prędkości kątowe członów czynnego a i biernego b przy Prekłne Mechncne PRZEKŁADNIE MECHANICZNE Prekłne mechncne są wykle mechnmm kołowym prenconym o prenesen npęu o włu slnk wykonuącego ruch orotowy o cłonu npęowego msyny rooce, mechnmu wykonwcego lu wprost

Bardziej szczegółowo

KRYTERIA OCENIANIA TECHNOLOGIA NAPRAW ZESPOŁÓW I PODZESPOŁÓW MECHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS

KRYTERIA OCENIANIA TECHNOLOGIA NAPRAW ZESPOŁÓW I PODZESPOŁÓW MECHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS KRYTRIA OCNIANIA TCHNOLOGIA NAPRAW ZSPOŁÓW I PODZSPOŁÓW MCHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS Temt Klsyfikcj i identyfikcj pojzdów smochodowych Zgdnieni - Rodzje ukłdów, - Zdni i ogóln budow

Bardziej szczegółowo

Chemia teoretyczna 2010/2011

Chemia teoretyczna 2010/2011 Ch totcn / Zgdnn I. Podstw kspntln chnk kwntow. Rokłd wdow cł doskonl cngo. Zwsko fotolktcn 3. Efkt Copton 4. Wdo tou wodou II. Podstwow poęc chnk kwntow. Hpot d Bogl. Dul flowo-kopuskuln 3. Zsd nonconośc

Bardziej szczegółowo

JĘZYKI FORMALNE I AUTOMATY SKOŃCZONE

JĘZYKI FORMALNE I AUTOMATY SKOŃCZONE ZBIÓR ZADAŃ do WYKŁADU prof. Tdeusz Krsińskiego JĘZYKI FORMALNE I AUTOMATY SKOŃCZONE rozdził 2. Automty skończone i języki regulrne Wyrżeni i języki regulrne Zdnie 2.1. Wypisz wszystkie słow nleżące do

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

Szumy uszne i nadwrażliwość słuchowa u dzieci w materiale Kliniki Szumów Usznych Instytutu Fizjologii i Patologii Słuchu w Warszawie

Szumy uszne i nadwrażliwość słuchowa u dzieci w materiale Kliniki Szumów Usznych Instytutu Fizjologii i Patologii Słuchu w Warszawie Adofonolog Tom XXIII 2003 Bet Borwsk, Grży Brtnk, Dnt Rj-Kozk, An Fbjńsk, Henryk Skrżyńsk, Mcej Mrówk Instytt Fzjolog Ptolog Słch, Wrszw Szmy szne dwrżlwość słchow dzec w mterle Klnk Szmów Usznych Instytt

Bardziej szczegółowo

ą ą Ą ł ą Ą Ł ÓŁ Ą ę ą ż ę łą ą łą

ą ą Ą ł ą Ą Ł ÓŁ Ą ę ą ż ę łą ą łą Ą ł Ą Ł ÓŁ Ą ę ę ł ł ń ęść ł ł ę ęść źć ć ł ń ś ń ć ń ń ń Ż ł ć ść ń ń Ę ę ĘŚĆ Ó Ł Ł ę ł ś ł Ę ę ń ń ś ś ź ę ś Ę ś ć ś ę Ę ę ć ń ś ś ę ę ć ś Ę ń ź ć ś ś Ł ś Ł ź ł ę Ż ń Ę ń Ę ń ś ę ń ś ś ń ł ś ć ź ń ś

Bardziej szczegółowo

ale: Ewolucyjna teoria gier ambicją klasycznej TG było

ale: Ewolucyjna teoria gier ambicją klasycznej TG było Ewolujn teor ger mbją lsznej TG bło znlezene zsd rjonlnego zhown przez esperment mślowe dotząe fjnh grz, tórz znją teorę złdją, że h prtnerz ją stosują. Złdno też, że będze możn wzć przewgę rjonlnego zhown

Bardziej szczegółowo

3 KOLĘDY POLSKIE (wiązanka kolędowa)

3 KOLĘDY POLSKIE (wiązanka kolędowa) orno lto enor ss V riste 4 3 e trnqillo qè᪼ 4 3 4 3 4 3 3 KOLĘDY OLKIE (wiąznk kolędow) # e zs m l sie ńki, le ży # Kowlewski 9 # # # # n V # # ł cze z zim n, nie d # ł cze z zim n, # # nie d wśród st

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

CONNECT, STARTUP, PROMOTE YOUR IDEA

CONNECT, STARTUP, PROMOTE YOUR IDEA Dz ę u ę z r - T A ry. K z w ź ó ży u w USA www.. łą z sz s ł z ś F u T A ry! C yr t 2018 y Sy w Gór Wy rwsz S Fr s, 2018 Wszyst r w z strz ż. N ut ryz w r z wsz ł ś u r tu sz - w w st st z r. K w ą w

Bardziej szczegółowo

Półprzewodniki (ang. semiconductors).

Półprzewodniki (ang. semiconductors). Półprzwodn an. smondutors. Ja.Szzyto@fuw.du.pl ttp://www.fuw.du.pl/~szzyto/ Unwrsytt Warszaws ora pasmowa ał stały. pasmo pust RGIA LKROÓW pasmo pust pasmo płn pasmo pust pasmo płn pasmo płn mtal półprzwodn

Bardziej szczegółowo

Elektrony w kryształach funkcja Blocha, pasma. Elektrony w kryształach funkcja Blocha, pasma Rodzaje wiązań. Rodzaje wiązań Kowalencyjne

Elektrony w kryształach funkcja Blocha, pasma. Elektrony w kryształach funkcja Blocha, pasma Rodzaje wiązań. Rodzaje wiązań Kowalencyjne 00-05-05 toy w ysztłc c Boc ps. Jc.Szczyto@w.d.p ttp://www.w.d.p/~szczyto/nt toy w ysztłc c Boc ps. Jc.Szczyto@w.d.p ttp://www.w.d.p/~szczyto/nt S. Hs S. Hs Uwsytt Wszws 00 Uwsytt Wszws 00 odz wązń odz

Bardziej szczegółowo

16, zbudowano test jednostajnie najmocniejszy dla weryfikacji hipotezy H

16, zbudowano test jednostajnie najmocniejszy dla weryfikacji hipotezy H Zada Zakładając, ż zm losow,,, 6 są zalż mają rozkłady ormal ~ N( m, ),,, 6, zbudowao tst jdostaj ajmocjszy dla wryfkacj hpotzy H 0 : m 0 przy altratyw H : m 0 a pozom stotośc 0,05 W rzczywstośc okazało

Bardziej szczegółowo

SPIS TREŚCI Całkowanie numeryczne 89

SPIS TREŚCI Całkowanie numeryczne 89 GRZEGORZ KRZESIŃSKI. MES_. CZĘŚĆ. MATERIAŁY DO WYKŁADU. SPIS TREŚCI. Mtody przybżon w mchanc onstruc. Mtoda Różnc Sończonych 9. Mtoda Emntów Brzgowych 7. MEB da równana Possona 7. Zagadnna tor sprężystośc

Bardziej szczegółowo

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 2. r s. ( i. REGRESJA (jedna zmienna) e s = + Y b b X. x x x n x. cov( (kowariancja) = (współczynnik korelacji) = +

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 2. r s. ( i. REGRESJA (jedna zmienna) e s = + Y b b X. x x x n x. cov( (kowariancja) = (współczynnik korelacji) = + REGRESJA jda zma + prota rgrj zmj wzgldm. przlo wartoc paramtrów trukturalch cov r waga: a c cov kowaracja d r cov wpółczk korlacj Waracja rztowa. Nch gdz + wtd czl ozacza rd tadardow odchl od protj rgrj.

Bardziej szczegółowo

HABSBURGOWIE XV XIX W. HABSBURGOWIE. XV-XIX w.

HABSBURGOWIE XV XIX W. HABSBURGOWIE. XV-XIX w. HABSBURGOWIE XV XIX W. HABSBURGOWIE 358 XV-XIX w. Ż L B R E C H T I I F R Y D E R Y K I I I M Ż K S Y M I L IŻ N I K Ż R O L V H Ż B S B U R G O W I E W X VŁ X I XW. F E R D Y NŻ N D I M Ż K S Y M I L

Bardziej szczegółowo

Rady Powiatu Pruszkowskiego. z dnia...''''.'''''.''''''' r. do nowego ustroju szkolnego, wprowadzonego ustawą -- Prawo oświatowe oraz ustalenia

Rady Powiatu Pruszkowskiego. z dnia...''''.'''''.''''''' r. do nowego ustroju szkolnego, wprowadzonego ustawą -- Prawo oświatowe oraz ustalenia / IJchwł nr.../.../17 projkt W R Powtu Pruszkowsko z n...''''.'''''.'''''''. 17 r. n.. /.r 'łj ę 'ćłnj w sprw projktu ostosown sc szkół ponmnzjnch VsłŁt.łśrc\ RJjrżS. 'A o nowo ustroju szkono, wprowzono

Bardziej szczegółowo

REJESTR ZBIORÓW DANYCH OSOBOWYCH PRZETWARZANYCH W LOKALNEJ GRUPIE DZIAŁANIA Brynica to nie granica

REJESTR ZBIORÓW DANYCH OSOBOWYCH PRZETWARZANYCH W LOKALNEJ GRUPIE DZIAŁANIA Brynica to nie granica to ne grnc Pyrzowce ul. Centrln 5, 42-625 Ożrowce Tel/fx. 032 380 23 28, lgd@lgd-brync.pl www.lgd-brync.pl KRS 0000263450,, NIP 625-23-18-756 REJESTR ZBIORÓW DANYCH OSOBOWYCH PRZETWARZANYCH W LOKALNEJ

Bardziej szczegółowo

Biokominek Inside 800mm Typ L wer 2

Biokominek Inside 800mm Typ L wer 2 Ynn -u Utwrzn : 23 grudzń 2016 Włdy bmnów > Bmn Ind 800mm Typ L wr 2 Bmn Ind 800mm Typ L wr 2 Md : 0522 Bmn Ind 800mm Typ L wr 2 rdunt : - &nbp; zmy bmn przznzny d zbudwy. Szt bmn gtwy d zbudwy w śn. Bmn

Bardziej szczegółowo

Projekt 3 3. APROKSYMACJA FUNKCJI

Projekt 3 3. APROKSYMACJA FUNKCJI Projekt 3 3. APROKSYMACJA FUNKCJI 3. Krter proksmcj. Złóżm że () jest ukcją cągłą w przedzle [ b ]. Zlezee przblże (proksmcj) poleg wzczeu współczków pewego welomu P() któr będze dobrze przblżł w tm przedzle

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 8 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e ro b ó t b u d o w l a n y c h w b u d y n k u H

Bardziej szczegółowo