Wytyczne do projektów
|
|
- Mirosław Turek
- 9 lat temu
- Przeglądów:
Transkrypt
1 Wytyczne do projektów Prognozowanie i symulacje wszystkie rodzaje studiów Politechnika Śląska Wydział Organizacji i Zarządzania w Zabrzu rok akademicki 2012/13
2 Wytyczne do projektów Prognozowanie i symulacje INFORMACJE OGÓLNE Student ma możliwość przygotowania dwóch projektów. Uzyskanie pozytywnej oceny z projektu jest jednym z warunków koniecznych do otrzymania pozytywnej oceny z przedmiotu i jego zaliczenia. Termin: Projekt oddawany jest na przedostaniach zajęciach o ile prowadzący nie ustalił innego terminu, terminowe oddanie projektu wpływa na otrzymaną liczbę punktów z projektu. Dane do projektu: Dane potrzebne do projektu student pozyskuje samodzielnie wykorzystując ogólnodostępne bazy danych. Liczbę obserwacji określa się na podstawie dnia [dd] i miesiąca [mm] urodzenia osoby wykonującej projekt oraz sumy cyfr numeru albumu [sc]. Ostatnia obserwacja dla danych: miesięcznych - kończy się w miesiącu mm.2011, tygodniowych - kończy się w tygodniu z datą dd.mm.2011 tydzień zaczyna się poniedziałkiem, dziennych - jest z dnia dd.mm.2011 albo z dnia najbliższego mu - jeśli w tym daniu nie ma danych (np. giełda), Liczbę obserwacji określa wyrażenie 15+ sc. Prognozę należy postawić na następne 5 okresów - do oceny trafności należy znać wartości zmiennych z okresów na jaki stawiana jest prognoza. Prognozowanie i symulacje 2
3 Forma przekazania projektu Projekt przekazywany jest do oceny w formie: elektronicznej o nazwie Nazwisko_imię_NumerAlbumu_P_NumerProjektu: skoroszyt z arkuszami kalkulacyjnymi wraz z obliczeniami, dokument edytora tekstów, drukowanej - wydruk dokumentu z edytora teksu. Forma arkusza kalkulacyjnego: Skoroszyt musi zawierać następujące arkusze: dane - umieszczane są tu dane wykorzystywane w projekcie, analiza - w tym arkuszu znajduje się analiza danych, wykresy przebiegu w czasie, analiza zależności, model - procedura budowy modelu, weryfikacja - wszelkie procedury weryfikacji modelu, prognoza - wyznaczanie prognozy, dokładność - wyznaczone błędy służące do oceny dokładności prognozy, trafność - wyznaczone błędy służące ocenie trafności prognozy. Uwaga: Kolejność arkuszy nie może ulec zmianie, w przypadku weryfikacji może pojawić się kilka arkuszy, każdy na inny test. Do nazwy arkusza dodajemy nazwę lud skrót testu np. weryfikacja_dw, weryfikacja_istoność_paramertów. Forma edytora tekstu i zawartość Zamiast pierwszej strony na górze umieszczana jest tabela zgodna ze wzorem Prognozowanie i symulacje Projekt I Projekt II* Data oddania: Nazwisko i Imię numer albumu OCENA: * wpisać właściwe Dokument powinien zawierać następujące elementy odnośnie wybranego modelu: I. Cel prognozy oraz opis statystyczny zmiennych i zależności pomiędzy nimi - wykresy. II. Model prognostyczny: A. uzasadnienie wyboru modelu, B. model, C. istotne elementy weryfikacji modelu - testy wraz z hipotezami, wartościami statystyk, wartościami krytycznymi i wnioskami o ile są do wykonania Prognozowanie i symulacje 3
4 D. błędy ex-post - wraz z komentarzem, o ile są do policzenia, E. błędy ex-ante wraz z komentarzem, o ile są do policzenia, F. prognozę punktową i przedziałową, o ile jest do policzenia, G. ocena trafności prognozy. III. Podsumowanie. Informacje dodatkowe Region 1 Region Układ strony zgodny standardowy, czcionka 12 pkt. wykresy podpisane, Rys. 1. Kształtowanie się wielkości sprzedaży produktu X w mln sztuk. Źródło: data wejścia: Uwaga: w przypadku danych ze stron internetowych wklejamy link jako hiperłącze. Model zapisujemy używając edytora równań, podobnie jak potrzebne wzory. Należy dostarczyć wydrukowane i uzupełnione arkusze oceny projektu I i II. Bazy danych: Eurostat, OECD, giełda, GUS, Prognozowanie i symulacje 4
5 PROGNOZA NA PODSTAWIE MODELU EKONOMETRYCZNEGO LINIOWEGO Uzupełnia student: Prognozowanie i symulacje Arkusz - Projekt I Projekt oddaję Nazwisko i Imię numer albumu TAK NIE Ocena prowadzącego: Zawartość Punkty max Punkty Cel prognozy oraz opis statystyczny zmiennych i zależności pomiędzy nimi - wykresy Model prognostyczny - - uzasadnienie wyboru modelu 5 5 model i interpretacja parametrów 15 weryfikacji modelu - - istotność parametrów 5 losowość 5 normalność 5 stałość wariancji 5 autokorelacja rzędu 1 5 błędy ex-post - wraz z komentarzem max 3 5 błędy ex-ante 5 prognoza punktowa 5 prognoza przedziałowa 5 trafność współczynnik Janusowy 5 współczynnik Theila i jego dekompozycja 5 Podsumowanie 5 Terminowe oddanie projektu 20 Razem 100 Data Ocena Podpis Punkty Ocena Prognozowanie i symulacje dst plus dst db plus db bdb 5
6 PROGNOZA NA PODSTAWIE MODELU TRENDU Uzupełnia student: Prognozowanie i symulacje Arkusz - Projekt II Projekt oddaję Nazwisko i Imię numer albumu TAK NIE Ocena prowadzącego Zawartość Punkty max Punkty Cel prognozy oraz opis statystyczny zmiennych i zależności pomiędzy nimi - wykresy Model prognostyczny - - uzasadnienie wyboru modelu 5 5 model 15 weryfikacji modelu - - istotność parametrów 5 losowość 5 normalność 5 stałość wariancji 5 autokorelacja rzędu 1 5 błędy ex-post - wraz z komentarzem max 3 5 błędy ex-ante 5 prognoza punktowa 5 prognoza przedziałowa 5 trafność współczynnik Janusowy 5 współczynnik Theila i jego dekompozycja 5 Podsumowanie 5 Terminowe oddanie projektu 20 Razem 100 PROJEKT I PROJEKT II punkty Data Ocena Podpis Ocena Końcowa Punkty Prognozowanie Ocena i symulacje dst plus dst db plus db bdb 6
7 PROGNOZA NA PODSTAWIE MODELU EKONOMETRYCZNEGO NIELINIOWEGO Uzupełnia student: Prognozowanie i symulacje Arkusz - Projekt I Projekt oddaję Nazwisko i Imię numer albumu TAK NIE Ocena prowadzącego: Zawartość Punkty max Punkty Cel prognozy oraz opis statystyczny zmiennych i zależności pomiędzy nimi - wykresy Model prognostyczny - - uzasadnienie wyboru modelu 15 5 modele wyznaczyć 3 modele dla różnych kryteriów 30 weryfikacji modelu - - błędy ex-post - wraz z komentarzem max 3 5 błędy ex-ante 5 prognoza punktowa 5 trafność współczynnik Janusowy 5 współczynnik Theila i jego dekompozycja 5 Podsumowanie 5 Terminowe oddanie projektu 20 Razem 100 Data Ocena Podpis Punkty Ocena Prognozowanie i symulacje dst plus dst db plus db bdb 7
8 PROGNOZA NA PODSTAWIE MODELI ADAPTACYJNYCH Uzupełnia student: Prognozowanie i symulacje Arkusz - Projekt II Projekt oddaję Nazwisko i Imię numer albumu TAK NIE Ocena prowadzącego: Zawartość Punkty max Punkty Cel prognozy oraz opis statystyczny zmiennych i zależności pomiędzy nimi - wykresy Model prognostyczny - - INFORMACJE O WYBRANYCH METODACH MODEL metoda 1 10 MODEL metoda 2 10 MODEL metoda 3 10 Wybór najlepszego modelu 10 prognoza punktowa 5 błędy ex-post - wraz z komentarzem max 3 5 trafność współczynnik Janusowy 5 współczynnik Theila i jego dekompozycja 5 Podsumowanie 5 Terminowe oddanie projektu 20 Razem 100 PROJEKT I PROJEKT II punkty Data Ocena Podpis Ocena Końcowa Punkty Prognozowanie i symulacje 8 Ocena dst plus dst db plus db bdb
Prognozowanie na podstawie modelu ekonometrycznego
Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)
Bardziej szczegółowoAnaliza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
Bardziej szczegółowoUniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011
SYLLABUS na rok akademicki 00/0 Tryb studiów Stacjonarne Nazwa kierunku studiów EKONOMIA Poziom studiów Stopień pierwszy Rok studiów/ semestr III; semestr 5 Specjalność Bez specjalności Kod przedmiotu
Bardziej szczegółowoPrzykład 2. Stopa bezrobocia
Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w
Bardziej szczegółowoprzedmiotu Nazwa Pierwsza studia drugiego stopnia
Nazwa przedmiotu K A R T A P R Z E D M I O T U ( S Y L L A B U S ) O p i s p r z e d m i o t u Kod przedmiotu EKONOMETRIA UTH/I/O/MT/zmi/ /C 1/ST/2(m)/1Z/C1.1.5 Język wykładowy ECONOMETRICS JĘZYK POLSKI
Bardziej szczegółowoUczelnia Łazarskiego. Sylabus. 1. Nazwa przedmiotu EKONOMETRIA 2. Kod przedmiotu
Uczelnia Łazarskiego Sylabus 1. Nazwa przedmiotu EKONOMETRIA 2. Kod przedmiotu 3. Język wykładowy Język polski 4. Status przedmiotu podstawowy do wyboru Języki X kierunkowy specjalistyczny Inne 5. Cel
Bardziej szczegółowo3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
Bardziej szczegółowoAnkieta. Informacje o uczestniku. Imię i nazwisko: Stanowisko : Warsztat Innowacyjne metody dydaktyczne (np. learning by doing, design thinking)
Szanowni Państwo, w związku z uruchomieniem szkoleń w ramach projektu Rozwój kompetencji kadry akademickiej Wyższej Szkoły Menedżerskiej zwracamy się z prośbą o wypełnienie niniejszej ankiety. Ankieta
Bardziej szczegółowo5. Model sezonowości i autoregresji zmiennej prognozowanej
5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =
Bardziej szczegółowoSiecikomputerowe-laboratorium. Wstęp-zasady zaliczenia przedmiotu
Siecikomputerowe-laboratorium Wstęp-zasady zaliczenia przedmiotu Wydział Inżynierii Metali i Informatyki Przemysłowej Katedra Informatyki Stosowanej i Modelowania Prowadzący: mgr inż. Marynowski Przemysław
Bardziej szczegółowoImię, nazwisko i tytuł/stopień KOORDYNATORA przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, dr
Tryb studiów Stacjonarne Nazwa kierunku studiów EKONOMIA Poziom studiów Stopień pierwszy Rok studiów/ semestr III; semestr 5 Specjalność Bez specjalności Kod przedmiotu w systemie USOS 1000-ES1-3EC1 Liczba
Bardziej szczegółowoSYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne
SYLABUS 1.Nazwa przedmiotu Prognozowanie i symulacje 2.Nazwa jednostki prowadzącej Katedra Metod Ilościowych i Informatyki przedmiot Gospodarczej 3.Kod przedmiotu E/I/A.16 4.Studia Kierunek studiów/specjalność
Bardziej szczegółowoAnaliza trendów branżowych
Analiza trendów branżowych Handel Listopad 2014 Inwestujemy w rozwój województwa podkarpackiego Projekt współfinansowany ze środków Unii Europejskiej z Europejskiego Funduszu Rozwoju Regionalnego w ramach
Bardziej szczegółowoWIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność
Bardziej szczegółowoK wartość kapitału zaangażowanego w proces produkcji, w tys. jp.
Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.
Bardziej szczegółowoRozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Bardziej szczegółowo( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:
ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość
Bardziej szczegółowoNarzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski
Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:
Bardziej szczegółowoMetody Prognozowania
Wprowadzenie Ewa Bielińska 3 października 2007 Plan 1 Wprowadzenie Czym jest prognozowanie Historia 2 Ciągi czasowe Postępowanie prognostyczne i prognozowanie Predykcja długo- i krótko-terminowa Rodzaje
Bardziej szczegółowoĆwiczenia IV
Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowot y x y'y x'x y'x x-x śr (x-x śr)^2
Na podstawie:w.samuelson, S.Marks Ekonomia menedżerska Zadanie 1 W przedsiębiorstwie toczy się dyskusja na temat wpływu reklamy na wielkość. Dział marketingu uważa, że reklama daje wysoce pozytywne efekty,
Bardziej szczegółowoZadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
Bardziej szczegółowoProjekt okładki: Aleksandra Olszewska. Redakcja: Leszek Plak. Copyright: Wydawnictwo Placet Wydanie ebook. Wydawca
1 Projekt okładki: Aleksandra Olszewska Redakcja: Leszek Plak Copyright: Wydawnictwo Placet 2011 Wydanie ebook Wszelkie prawa zastrzeżone. Publikacja ani jej części nie mogą być w żadnej formie i za pomocą
Bardziej szczegółowoANALIZA, PROGNOZOWANIE I SYMULACJA WARUNKI ZALICZENIA. AUTOR: mgr inż. MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA WARUNKI ZALICZENIA
1 ANALIZA, PROGNOZOWANIE I SYMULACJA AUTOR: mgr inż. MARTYNA KUPCZYK DANE KONTAKTOWE 2 mgr inż. Martyna Kupczyk Katedra Systemów Logistycznych Pokój nr 115A (I piętro) e-mail: martyna.kupczyk@wsl.com.pl
Bardziej szczegółowoSieci komputerowe - laboratorium. Wstęp - zasady zaliczenia przedmiotu
Sieci komputerowe - laboratorium Wstęp - zasady zaliczenia przedmiotu Wydział Inżynierii Metali i Informatyki Przemysłowej Katedra Informatyki Stosowanej i Modelowania Prowadzący: mgr inż. Marynowski Przemysław
Bardziej szczegółowoSieci komputerowe - laboratorium. Wstęp - zasady zaliczenia przedmiotu
Sieci komputerowe - laboratorium Wstęp - zasady zaliczenia przedmiotu Wydział Inżynierii Metali i Informatyki Przemysłowej Katedra Informatyki Stosowanej i Modelowania Prowadzący: mgr inż. Marynowski Przemysław
Bardziej szczegółowoEkonometria. Zajęcia
Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)
Bardziej szczegółowo3. Analiza własności szeregu czasowego i wybór typu modelu
3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowoPaństwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015
Tryb studiów Niestacjonarne Nazwa kierunku studiów Finanse i Rachunkowość Poziom studiów Stopień pierwszy Rok studiów/ semestr II/4 Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki
Bardziej szczegółowoPodstawy ekonometrii. Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF
Podstawy ekonometrii Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF Cele przedmiotu: I. Ogólne informacje o przedmiocie. - Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod modelowania
Bardziej szczegółowoZapraszamy do współpracy FACULTY OF ENGINEERING MANAGEMENT www.fem.put.poznan.pl Agnieszka Stachowiak agnieszka.stachowiak@put.poznan.pl Pokój 312 (obok czytelni) Dyżury: strona wydziałowa Materiały dydaktyczne:
Bardziej szczegółowoProjekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu
Bardziej szczegółowoEkonometria i prognozowanie Econometrics and prediction
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Ekonometria i prognozowanie Econometrics and prediction A. USYTUOWANIE
Bardziej szczegółowoProjekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu
Bardziej szczegółowoMetody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
Bardziej szczegółowoStatystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, Spis treści
Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, 2018 Spis treści Przedmowa 13 O Autorach 15 Przedmowa od Tłumacza 17 1. Wprowadzenie i statystyka opisowa 19 1.1.
Bardziej szczegółowoArkadiusz Manikowski Zbigniew Tarapata. Prognozowanie i symulacja rozwoju przedsiębiorstw
Arkadiusz Manikowski Zbigniew Tarapata Prognozowanie i symulacja rozwoju przedsiębiorstw Warszawa 2002 Recenzenci doc. dr. inż. Ryszard Mizera skład i Łamanie mgr. inż Ignacy Nyka PROJEKT OKŁADKI GrafComp,
Bardziej szczegółowoDane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą w oddzielnej kolumnie.
STATISTICA INSTRUKCJA - 1 I. Wprowadzanie danych Podstawowe / Nowy / Arkusz Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą
Bardziej szczegółowoNiestacjonarne zmienne czasowe własności i testowanie
Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 3: Przykłady testowania niestacjonarności Nazwa przedmiotu: ekonometria finansowa I (22204), analiza
Bardziej szczegółowoElektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy
Elektrotechnika II [ Laboratorium Grupa ] 206/207 Zimowy Lp Numer indeksu Pkt Kol Suma Popr Ocena Data Uwagi 97574 6 7 Db + 2 9758 ++0,9 5 7,9 Db + 3 99555 0,9+0,9 2,8 Dst + 4 97595 0,8++ 0 2,8 Dst + 5
Bardziej szczegółowoKORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Bardziej szczegółowoEstymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania
Bardziej szczegółowoPrzykład 1 ceny mieszkań
Przykład ceny mieszkań Przykład ceny mieszkań Model ekonometryczny zaleŝności ceny mieszkań od metraŝu - naleŝy do klasy modeli nieliniowych. - weryfikację empiryczną modelu przeprowadzono na przykładzie
Bardziej szczegółowoPrognoza sprawozdania finansowego Bilans
Prognoza sprawozdania go Bilans 31.12.24 31.12.25 31.12.26 Wartości niematerialne i prawne Rzeczowe aktywa trwałe Długoterminowe Zapasy Należności Inwestycje 594 3474 3528 954 52119 54 12 759 693 2259
Bardziej szczegółowoAnaliza metod prognozowania kursów akcji
Analiza metod prognozowania kursów akcji Izabela Łabuś Wydział InŜynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V Specjalność informatyka ekonomiczna Politechnika Częstochowska izulka184@o2.pl
Bardziej szczegółowoRegulamin zajęć z przedmiotu Chemia analityczna dla II roku Farmacji w roku akademickim 2018/19
Regulamin zajęć z przedmiotu Chemia analityczna dla II roku Farmacji w roku akademickim 2018/19 1. Koordynatorem przedmiotu Chemia analityczna jest dr hab. Urszula Hubicka. Kontakt z koordynatorem przedmiotu:
Bardziej szczegółowoSylabus przedmiotu: Data wydruku: Dla rocznika: 2015/2016. Kierunek: Opis przedmiotu. prognoz. Dane podstawowe. Efekty i cele. Opis.
Sylabus przedmiotu: Specjalność: Prognozowanie i symulacja w przedsiębiorstwie Wszystkie specjalności Data wydruku: 23.01.2016 Dla rocznika: 2015/2016 Kierunek: Wydział: Zarządzanie i inżynieria produkcji
Bardziej szczegółowoTestowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;
LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny
Bardziej szczegółowoStatystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 9 Anna Skowrońska-Szmer lato 2016/2017 Ekonometria (Gładysz B., Mercik J., Modelowanie ekonometryczne. Studium przypadku, Wydawnictwo PWr., Wrocław 2004.) 2
Bardziej szczegółowoEkonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota
Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych
Bardziej szczegółowoBudowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego
Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne
Bardziej szczegółowoEkonometryczna analiza popytu na wodę
Jacek Batóg Uniwersytet Szczeciński Ekonometryczna analiza popytu na wodę Jednym z czynników niezbędnych dla funkcjonowania gospodarstw domowych oraz realizacji wielu procesów technologicznych jest woda.
Bardziej szczegółowo2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Bardziej szczegółowoAnaliza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres
Bardziej szczegółowoPrognozowanie gospodarcze - opis przedmiotu
Prognozowanie gospodarcze - opis przedmiotu Informacje ogólne Nazwa przedmiotu Prognozowanie gospodarcze Kod przedmiotu 11.9-WZ-EkoP-PrG-S16 Wydział Kierunek Wydział Ekonomii i Zarządzania Ekonomia Profil
Bardziej szczegółowoPROGNOZOWANIE CEN ENERGII NA RYNKU BILANSUJĄCYM
"DIALOG 0047/2016" PROGNOZOWANIE CEN ENERGII NA RYNKU BILANSUJĄCYM WYDZIAŁ ELEKT RYCZ N Y Prof. dr hab. inż. Tomasz Popławski Moc zamówiona 600 Rynek bilansujący Moc faktycznie pobrana Energia zakupiona
Bardziej szczegółowoEKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE
EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE ZADANIE 1 Oszacowano zależność między luką popytowa a stopą inflacji dla gospodarki niemieckiej. Wyniki estymacji są następujące: Estymacja KMNK,
Bardziej szczegółowoTestowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego
Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych
Bardziej szczegółowoInżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 STATYSTYKA
Bardziej szczegółowoWspółczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
Bardziej szczegółowoEkonometria dynamiczna i finansowa Kod przedmiotu
Ekonometria dynamiczna i finansowa - opis przedmiotu Informacje ogólne Nazwa przedmiotu Ekonometria dynamiczna i finansowa Kod przedmiotu 11.5-WK-IiED-EDF-W-S14_pNadGenMOT56 Wydział Kierunek Wydział Matematyki,
Bardziej szczegółowo4. Średnia i autoregresja zmiennej prognozowanej
4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)
Bardziej szczegółowoAnaliza trendów branżowych
Analiza trendów branżowych Przemysł i budownictwo Listopad 2014 Inwestujemy w rozwój województwa podkarpackiego Projekt współfinansowany ze środków Unii Europejskiej z Europejskiego Funduszu Rozwoju Regionalnego
Bardziej szczegółowoMatematyka - Statystyka matematyczna Mathematical statistics 2, 2, 0, 0, 0
Nazwa przedmiotu: Kierunek: Matematyka - Statystyka matematyczna Mathematical statistics Inżynieria materiałowa Materials Engineering Rodzaj przedmiotu: Poziom studiów: forma studiów: obowiązkowy studia
Bardziej szczegółowoZagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA
Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zadanie 1 (Plik danych: Transport w Polsce (1990-2015)) Na
Bardziej szczegółowoKARTA PRZEDMIOTU / SYLABUS
Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna za przedmiot: Osoba(y) prowadząca(e) Przedmioty wprowadzające wraz z wymaganiami wstępnymi
Bardziej szczegółowoPorównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych
dr Piotr Sulewski POMORSKA AKADEMIA PEDAGOGICZNA W SŁUPSKU KATEDRA INFORMATYKI I STATYSTYKI Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych Wprowadzenie Obecnie bardzo
Bardziej szczegółowoWprowadzenie do teorii prognozowania
Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe
Bardziej szczegółowo1.1.1 Statystyka matematyczna i badania operacyjne
1.1.1 Statystyka matematyczna i badania operacyjne I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE (MODULE) Kod przedmiotu: STATYSTYKA MATEMATYCZNA I BADANIA OPERACYJNE P5 Wydział Zamiejscowy w Ostrowie
Bardziej szczegółowoEkonometria_FIRJK Arkusz1
Rok akademicki: Grupa przedmiotów Numer katalogowy: Nazwa przedmiotu 1) : łumaczenie nazwy na jęz. angielski 3) : Kierunek studiów 4) : Ekonometria Econometrics Ekonomia ECS 2) Koordynator przedmiotu 5)
Bardziej szczegółowoWstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński
Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia
Bardziej szczegółowoZad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:
Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności
Bardziej szczegółowoKRÓTKOOKRESOWE PROGNOZOWANIE CENY EKSPORTOWEJ WĘGLA ROSYJSKIEGO W PORTACH BAŁTYCKICH. Sławomir Śmiech, Monika Papież
KRÓTKOOKRESOWE PROGNOZOWANIE CENY EKSPORTOWEJ WĘGLA ROSYJSKIEGO W PORTACH BAŁTYCKICH Sławomir Śmiech, Monika Papież email: smiechs@uek.krakow.pl papiezm@uek.krakow.pl Plan prezentacji Wprowadzenie Ceny
Bardziej szczegółowoESTYMACJA. Przedział ufności dla średniej
ESTYMACJA Przedział ufności dla średniej W grupie 900 losowo wybranych pracowników przedsiębiorstwa średnia liczba dni nieobecności w pracy wynosiła 30, a odchylenie standardowe 3 dni. a) Przyjmując współczynnik
Bardziej szczegółowoZadanie 1 Odp. Zadanie 2 Odp. Zadanie 3 Odp. Zadanie 4 Odp. Zadanie 5 Odp.
Zadanie 1 budżet na najbliższe święta. Podać 96% przedział ufności dla średniej przewidywanego budżetu świątecznego jeśli otrzymano średnią z próby równą 600 zł, odchylenie standardowe z próby równe 30
Bardziej szczegółowoGospodarka magazynowa - opis przedmiotu
Gospodarka magazynowa - opis przedmiotu Informacje ogólne Nazwa przedmiotu Gospodarka magazynowa Kod przedmiotu 06.9-WZ-LogP-GM-S16 Wydział Kierunek Wydział Ekonomii i Zarządzania Logistyka / Logistyka
Bardziej szczegółowoGospodarka magazynowa - opis przedmiotu
Gospodarka magazynowa - opis przedmiotu Informacje ogólne Nazwa przedmiotu Gospodarka magazynowa Kod przedmiotu 06.9-WZ-LogP-GM-S16 Wydział Kierunek Wydział Ekonomii i Zarządzania Logistyka / Zarządzanie
Bardziej szczegółowoTematyka seminariów z informatyki dla studentów I roku kierunku lekarsko-dentystycznego w roku akademickim 2017/2018.
Tematyka seminariów z informatyki dla studentów I roku kierunku lekarsko-dentystycznego w roku akademickim 2017/2018. 1. Sieci komputerowe rodzaje, budowa, model ISO/OSI. 2. Istota kompresji danych. Zastosowania.
Bardziej szczegółowoKrakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 0/03 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:
Bardziej szczegółowoNieliniowe. Liniowe. Nieliniowe. Liniowe. względem parametrów. Linearyzowane. sensu stricto
Ekonometria jak dorać funkcję? Przykłady użyte w materiałach opracowano w większości na azie danych ze skryptu B.Guzik, W.Jurek Podstawowe metody ekonometrii (wyd. AE Poznań 3) W doorze postaci funkcji
Bardziej szczegółowoTESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.
TESTY NIEPARAMETRYCZNE 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. Standardowe testy równości średnich wymagają aby badane zmienne losowe
Bardziej szczegółowoPrognozowanie i symulacje
Prognozowanie i symulacje - Wykład (15 godzin) -Ćwiczenia przy komputerze (30 godzin) - Zaliczenie jedna ocena - Zasady zaliczenia i literatura dr Tadeusz RóŜański Helena Gaspars Prognozowanie i symulacje
Bardziej szczegółowoTablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Bardziej szczegółowo7.4 Automatyczne stawianie prognoz
szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
Bardziej szczegółowoRegresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).
Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych
Bardziej szczegółowoSpis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
Bardziej szczegółowoStatystyka matematyczna SYLABUS
Statystyka matematyczna nazwa przedmiotu SYLABUS B. Informacje szczegółowe Elementy składowe sylabusu Nazwa przedmiotu Statystyka matematyczna Kod przedmiotu 0600-FS1-2SM Nazwa jednostki prowadzącej Wydział
Bardziej szczegółowoLiczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Tomasz Kuszewski Poziom studiów (I lub II stopnia): II stopnia
Bardziej szczegółowoparametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,
诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów
Bardziej szczegółowoprzedmiot podstawowy obowiązkowy polski drugi
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 07/08 IN--008 STATYSTYKA W INŻYNIERII ŚRODOWISKA Statistics in environmental engineering
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA, LISTA 3
STATYSTYKA MATEMATYCZNA, LISTA 3 1. Aby zweryfikować hipotezę o symetryczności monety; H: p = 0.5 przeciwko K: p 0.5 wykonano nią n = 100 rzutów. Wyznaczyć obszar krytyczny i zweryfikować hipotezę H gdy
Bardziej szczegółowoPaństwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015
Tryb studiów Stacjonarne Nazwa kierunku studiów Finanse i Rachunkowość Poziom studiów Stopień pierwszy Rok studiów/ semestr II/ Specjalność Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok
Bardziej szczegółowoSYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2019 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Statystyka w biologii
Bardziej szczegółowoUczelnia Łazarskiego Wydział Medyczny Kierunek Lekarski
Uczelnia Łazarskiego Wydział Medyczny Kierunek Lekarski Nazwa przedmiotu INFORMATYKA I BIOSTATYSTYKA Kod przedmiotu WL_ 10 Poziom studiów Jednolite studia magisterskie Status przedmiotu x podstawowy uzupełniający
Bardziej szczegółowoWSHiG Karta przedmiotu/sylabus. Podstawy statystyki. Studia niestacjonarne - 8. Podstawy statystyki
WSHiG Karta przedmiotu/sylabus KIERUNEK SPECJALNOŚĆ TRYB STUDIÓW SEMESTR Turystyka i Rekreacja wszystkie specjalności Stacjonarny / niestacjonarny IV / I stopnia Nazwa przedmiotu Podstawy statystyki Wymiar
Bardziej szczegółowoFORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS
FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Folia Univ. Agric. Stetin. 007, Oeconomica 54 (47), 73 80 Mateusz GOC PROGNOZOWANIE ROZKŁADÓW LICZBY BEZROBOTNYCH WEDŁUG MIAST I POWIATÓW FORECASTING THE DISTRIBUTION
Bardziej szczegółowoEkonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda
Bardziej szczegółowo