POWTÓRZENIE - GEODEZJA OGÓLNA dział 9 ELEMENTY RACHUNKU WYRÓWNAWCZEGO
|
|
- Adam Czajka
- 9 lat temu
- Przeglądów:
Transkrypt
1 POWTÓRZENIE - GEODEZJA OGÓLNA dział 9 ELEMENTY RACHUNKU WYRÓWNAWCZEGO SPOSTRZEŻENIA JEDNAKOWO DOKŁADNE. Spostrzeżenia jednakowo dokładne to takie, które wykonane są: tym samym przyrządem, tą samą metodą pomiaru, w identycznych warunkach środowiska, przez tego samego obserwatora.. Spostrzeżenia jednakowo dokładne mają charakter spostrzeżeń typowych, tzn. charakteryzują się jednakowymi błędami średnimi. 3. Spostrzeżenia nadliczbowe jest to liczba naturalna stanowiąca różnicę pomiędzy ilością n spostrzeżeń niezależnych od siebie uzyskanych z pomiaru a ilością u spostrzeżeń niezbędnych do rozwiązania danego zadania geodezyjnego. n n = n u Jeżeli n > u pojawia się problem wyrównania. 4. Spostrzeżenia L różnią od nieznanych wartości prawdziwych X o wartość błędu prawdziwego ε ε i = X - L i 5. W wyniku procesu wyrównania uzyskujemy poprawki v, które dodane do spostrzeżeń dają w efekcie spostrzeżenia wyrównane L i + v i 6. Problematykę rozwiązania sposobu obliczania poprawek v realizuje się w oparciu o teorię najmniejszych kwadratów. 7. Najbardziej prawdopodobne rozłożenie błędów obserwacji jednakowo dokładnych, zgodnie z rozkładem normalnym, następuje wtedy, gdy suma kwadratów poprawek osiąga wartość najmniejszą: [vv] = minimum 8. Spostrzeżenia bezpośrednie to obserwacje: L,L, L 3,,L n otrzymane w wyniku porównania wielkości mierzonej z podziałką przyrządu mierniczego podczas wielokrotnych pomiarów tej samej wielkości mierzonej, stanowiącej niewiadomą. 9. Najbardziej prawdopodobną wartości ą x dla spostrzeżeń bezpośrednich jest średnia arytmetyczna x po uwzględnieniu poprawek x = x 0 + [ L] W powyższym wzorze wielkości x 0 może mieć dowolną wartość, jednak n najprościej przyjąć najmniejsze spostrzeżenie ponieważ wtedy L 0. L stanowią różnice pomiędzy wartością przybliżoną x 0 a każdym ze spostrzeżeń: L = L i x 0 0. Średnia arytmetyczna obliczona dla spostrzeżeń jednakowo dokładnych jest równa sumie podzielonej przez liczbę pomiarów x = [L] n. Po wyznaczeniu średniej arytmetycznej oblicza się poprawki poszczególnych spostrzeżeń: v i = x L i. Średni błąd pojedynczego spostrzeżenia wynosi: m 0 = ± [vv] n 3. Średni błąd średniej arytmetycznej wynosi: m x = ± [vv] n(n ) lub m x = ± m 0 n
2 Przykładowe zadanie: Wyznaczyć najbardziej prawdopodobną wartość długości odcina AB pomierzonego czterokrotnie z jednakową dokładnością. Czyli wyznaczyć trzeba wartość x (na zielono) oraz dokładność m0 (na bordowo) i mx (na brązowo)
3 SPOSTRZEŻENIA NIEJEDNAKOWO DOKŁADNE. Spostrzeżeniami niejednakowo dokładnymi nazywamy takie wyniki pomiarów dla których nie jest spełnione przynajmniej z poniższych założeń: ten sam przyrząd, ta sama metoda pomiaru, identyczne warunki środowiskowe, ten sam obserwator.. Waga - pewna dodatnia i niemianowana liczba p, która określa nasz stopień zaufania do danej obserwacji. Spostrzeżenie dokładniejsze uzyskuje większą wagę niż spostrzeżenie uzyskane z pomiaru mniej dokładnego. 3. Wagi obserwacji niejednakowo dokładnych są odwrotnie proporcjonalne do kwadratów ich błędów średnich: p i = 4. Zamiast pojęcia wag korzysta się z pojęcia tzw. błędności, które są odwrotnościami wag. 5. Najprawdopodobniejszą wartością spełniającą warunek [pvv] = minimum dla zbioru spostrzeżeń bezpośrednich niejednakowo dokładnych L, którym przyporządkowano wagi p jest średnia arytmetyczna ogólna (ważona) obliczona na podstawie wzoru: m i 6. Średnia arytmetyczna ogólna (ważona) jest równa sumie iloczynów spostrzeżeń i odpowiadających im wag podzielonej przez sumę wag. 7. Średnią arytmetyczną ogólną można obliczyć również wykorzystując wartość przybliżoną x 0 : x x 0 x gdzie [ pl] x [ p] 8. Kontrolę obliczenia średniej stanowi zerowanie się sumy iloczynów wag i poprawek: [pvv] = 0 9. Średni błąd m 0 typowego spostrzeżenia (średni błąd jednostkowy) określa się na podstawie wzoru: m 0 = ± [pvv] n 0. Średni błąd średniej arytmetycznej ogólnej określa się na podstawie poniższego wzoru: m x = ± [vv] [p](n ) lub m x = ± m 0 [p]
4 Przykładowe zadanie: Wyznaczyć najbardziej prawdopodobną wartość kąta ABC, który pomierzono czterokrotnie teodolitami o różnej dokładności, uzyskując wyniki:. 44 o 5 0 z błędem ±0. 44 o 4 58 z błędem ± o 5 05 z błędem ± o 5 0 z błędem ±5 Tymczasowo przyjęto wartość średniego błędu jednostkowego m 0 = ±0 (na jasnozielono) Obliczyć więc należy wartość x (na zielono) oraz błąd mx (na bordowo) i m0 (na brązowo). WZORY NA WAGI W zależności od danych jakie mamy wagę spostrzeżenia obliczyć możemy z następujących wzorów: p i = m i p i = n i p i = n i m i p i = L i L i długość ciągu n i liczba pomiarów m i błąd średni spostrzeżenia
5 BŁĘDY SPOSTRZEŻEŃ, ICH RODZAJE I CHARAKTERYSTYKA W zależności od źródeł powstawania i charakteru skażenia przez błędy pomiarowe rezultatów pomiarów wyróżnić można trzy grupy błędów: ) Błędy grube (tzw. omyłki) - mają duże wartości liczbowe i są spowodowane niedyspozycją lub nieuwagą obserwatora, który z tych powodów może odczytać lub zapisać inny wynik niż wskazuje przyrząd. Zastąpienie ręcznego notowania obserwacji w dziennikach polowych przez elektroniczny zapis danych pomiarowych w nośnikach pamięci znacznie zmniejsza prawdopodobieństwo popełnienia błędów grubych. Błędy grube powinny być bezwzględnie wyeliminowane z materiału obserwacyjnego przed przystąpieniem do wyrównania spostrzeżeń ) Błędy systematyczne powstają wskutek działania ustalonych prawidłowości w określonych warunkach pomiaru. Ich źródła mogą wynikać z następujących przyczyn: instrumentalnych, spowodowanych wadami instrumentów (przymiarów, dalmierzy, teodolitów, niwelatorów), osobowych, związanych ze stałymi nawykami obserwatora, wykazującego skłonność do błędnego celowania lub tendencyjnego szacowania odczytów, zmierzającego do ich systematycznego zwiększania lub zmniejszania, środowiskowych, wynikających z działania znanych praw związanych z określonymi warunkami pomiaru (np. nieuwzględnienie rozszerzalności termicznej taśmy, wpływ na pomiar kątów refrakcji atmosferycznej lub bocznego oświetlenia celu). Błędy systematyczne są stałe co do znaku i wartości liczbowej, jednakowo obarczając powtarzające się obserwacje. Błędy systematyczne zmienne to np. sinusoidalny wpływ mimośrodu alidady. Błędy systematyczne usuwa się w miarę możliwości ich ujawnienia, co niestety nie zawsze jest wykonalne. 3) Błędy przypadkowe mają charakter losowy i w przeciwieństwie do wcześniej wymienionych błędów, są niemożliwe do wyznaczenia i wyeliminowania ze względu na ich losową zmienność co do wartości liczbowej oraz znaku. Prawdopodobieństwo popełnienia błędów przypadkowych ze znakami plus i minus jest jednakowe. Wynikają z przyczyn trudnych do ścisłego określenia, np.: niedoskonałości instrumentu i wzroku obserwatora, zmiennych warunków zewnętrznych, itp. Wartość osiąganych błędów można zmniejszyć poprzez: zwiększenie liczby pomiarów, stosowanie dokładniejszych przyrządów i bardziej racjonalnych metod pracy, skracanie czasu trwania obserwacji, wybór korzystnych pór dnia, roku oraz stanu pogody, zapewniających dogodne warunki prac polowych. Zmniejszenie wpływu błędów przypadkowych na wyniki obserwacji osiąga się poprzez tzw. wyrównanie, które doprowadza spostrzeżenie do wzajemnej matematycznej zgodności oraz umożliwia dokonanie oceny dokładności obserwacji po wyrównaniu. Pozostałe błędy: Błąd średni m, stosowany najczęściej do oceny dokładności. Prawdopodobieństwo jego nieprzekroczenia wynosi 0,68, co oznacza, że przeciętnie na trzy błędy przypadkowe obserwacji dwa są od błędu średniego mniejsze, zaś jeden większy. Na podstawie wartości błędów prawdziwych szeregu n spostrzeżeń jego błąd średni określa się na podstawie wzoru: Błąd graniczny g, przekroczenie jego jest mało prawdopodobne. Błąd ten wyznacza największą wartość błędu, dopuszczalną dla danego pomiaru i przyjmowany jest zwykle jako trzykrotna wartość błędu średniego, czyli: g = 3*m Prawdopodobieństwo popełnienia błędu większego od błędu granicznego jest niewielkie i wynosi :370. Niekiedy zamiast błędu 3m w roli błędu granicznego przyjmowany jest także błąd równy podwójnej wartości błędu średniego m, którego przekroczenie zdarza się na raz na obserwacje. Błąd względny jest równy średniemu błędowi bezwzględnemu (absolutnemu) m, przypadającemu na całą mierzoną wielkość d i podzielonemu przez wynik pomiaru tej wielkości. Utworzony w ten sposób iloraz doprowadza się do ułamka z licznikiem równym jedności. Błąd względny jest wykorzystywany szczególnie do oceny dokładności pomiarów długości i pola powierzchni. Np. Średni błąd pomiaru taśmą odcinka o długości 00m wynosi ±cm. Błąd względny tego pomiaru wynosi: m d = cm cm = : 5000 Błąd przeciętny jest równy średniej arytmetycznej sumy wartości bezwzględnych błędów przypadkowych.
6 PRAWO PRZENOSZENIA SIĘ BŁĘDÓW ŚREDNICH. Błąd średni funkcji obserwacji jest równy pierwiastkowi z sumy kwadratów pochodnych cząstkowych pomnożonych przez odpowiadające im średnie błędy zmiennych niezależnych. Krzywa prawdopodobieństwa popełnienia błędu przypadkowego, zwana też krzywą de Moivre a-gaussa. Wnioski z analizy krzywej: Najbardziej prawdopodobne jest pojawienie się błędu przypadkowego ε równego zero. Prawdopodobieństwo błędu mniejszego jest większe niż prawdopodobieństwo błędu większego. Prawdopodobieństwo błędów o tej samej wartości bezwzględnej, lecz z różnymi znakami jest jednakowe. Zwiększenie dokładności pomiaru wyrażone zwiększeniem wartości parametru h powoduje zmniejszenie prawdopodobieństwa pojawienia się błędów o dużych wartościach liczbowych. Przy zwiększaniu ilości spostrzeżeń n suma błędów przypadkowych [ε] dąży do zera.
7 WYRÓWNANIE PAR OBSERWACJI W pomiarach geodezyjnych wiele pomiarów wykonuje się dwukrotnie, np: boki w poligonie kąty w osnowie różnice wysokości w niwelacji. Wyniki tych pomiarów tworzą tak zwane pary spostrzeżeń. Ocena dokładności wielu par spostrzeżeń wykorzystuje się błąd średni jednostkowy: Dla jednakowo dokładnych m [ dd] r Dla niejednakowo dokładnych m 0 [ pdd] r r liczba par spostrzeżeń Wartość wyrównana Różnica między spostrzeżeniami Jednakowo dokładne x d L L Niejednakowo dokładne pl x p L L d L L pl p błąd średni różnicy średni pojedynczego pomiaru błąd średni średniej arytmetycznej dwóch pomiarów Przykład:
Teoria błędów pomiarów geodezyjnych
PodstawyGeodezji Teoria błędów pomiarów geodezyjnych mgr inŝ. Geodeta Tomasz Miszczak e-mail: tomasz@miszczak.waw.pl Wyniki pomiarów geodezyjnych będące obserwacjami (L1, L2,, Ln) nigdy nie są bezbłędne.
Niepewność pomiaru. Wynik pomiaru X jest znany z możliwa do określenia niepewnością. jest bledem bezwzględnym pomiaru
iepewność pomiaru dokładność pomiaru Wynik pomiaru X jest znany z możliwa do określenia niepewnością X p X X X X X jest bledem bezwzględnym pomiaru [ X, X X ] p Przedział p p nazywany jest przedziałem
Fizyka (Biotechnologia)
Fizyka (Biotechnologia) Wykład I Marek Kasprowicz dr Marek Jan Kasprowicz pokój 309 marek.kasprowicz@ur.krakow.pl www.ar.krakow.pl/~mkasprowicz Marek Jan Kasprowicz Fizyka 013 r. Literatura D. Halliday,
Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.
Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej
LABORATORIUM Z FIZYKI
LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)
Charakterystyka mierników do badania oświetlenia Obiektywne badania warunków oświetlenia opierają się na wynikach pomiarów parametrów świetlnych. Podobnie jak każdy pomiar, również te pomiary, obarczone
Temat: SZACOWANIE NIEPEWNOŚCI POMIAROWYCH
Temat: SZCOWNIE NIEPEWNOŚCI POMIROWYCH - Jak oszacować niepewność pomiarów bezpośrednich? - Jak oszacować niepewność pomiarów pośrednich? - Jak oszacować niepewność przeciętną i standardową? - Jak zapisywać
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE
JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE 1 Dokładność i poprawność Dr hab. inż. Piotr KONIECZKA Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska ul. G. Narutowicza 11/12 80-233 GDAŃSK e-mail:
ĆWICZENIE 13 TEORIA BŁĘDÓW POMIAROWYCH
ĆWICZENIE 13 TEORIA BŁĘDÓW POMIAROWYCH Pomiary (definicja, skale pomiarowe, pomiary proste, złożone, zliczenia). Błędy ( definicja, rodzaje błędów, błąd maksymalny i przypadkowy,). Rachunek błędów Sposoby
Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński
Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły
Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich
Podstawy Metrologii i Technik Eksperymentu Laboratorium Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Instrukcja do ćwiczenia nr 4 Zakład Miernictwa
Pomiar rezystancji metodą techniczną
Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja
Statystyka. Opisowa analiza zjawisk masowych
Statystyka Opisowa analiza zjawisk masowych Typy rozkładów empirycznych jednej zmiennej Rozkładem empirycznym zmiennej nazywamy przyporządkowanie kolejnym wartościom zmiennej (x i ) odpowiadających im
Wykład 4 Podstawowe wiadomości z teorii błędów
Wykład 4 Podstawowe wiadomości z teorii błędów Prof. dr hab. Adam Łyszkowicz Katedra Geodezji Szczegółowej UWM w Olsztynie adaml@uwm.edu.pl Heweliusza 1, pokój 04 Treść Wykładu Obserwacje geodezyjne Źródła
Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: obliczenia na liczbach przybliżonych dr inż. Paweł Zalewski Akademia Morska w Szczecinie Cyfry znaczące reguły Kryłowa-Bradisa: Przy korzystaniu z przyrządów z podziałką przyjęto zasadę, że
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych Dr inż. Marcin Zieliński I Pracownia Fizyczna dla Biotechnologii, wtorek 8:00-10:45 Konsultacje Zakład Fizyki Jądrowej
Średnie. Średnie. Kinga Kolczyńska - Przybycień
Czym jest średnia? W wielu zagadnieniach praktycznych, kiedy mamy do czynienia z jakimiś danymi, poszukujemy liczb, które w pewnym sensie charakteryzują te dane. Na przykład kiedy chcielibyśmy sklasyfikować,
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
WYKŁAD 8 ANALIZA REGRESJI
WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej
Wykład 4 Podstawowe wiadomości z teorii błędów
Wykład 4 Podstawowe wiadomości z teorii błędów Prof. dr hab. Adam Łyszkowicz Katedra Geodezji Szczegółowej UWM w Olsztynie adaml@uwm.edu.pl Heweliusza, pokój 04 Treść Wykładu Obserwacje geodezyjne Źródła
Pracownia Astronomiczna. Zapisywanie wyników pomiarów i niepewności Cyfry znaczące i zaokrąglanie Przenoszenie błędu
Pracownia Astronomiczna Zapisywanie wyników pomiarów i niepewności Cyfry znaczące i zaokrąglanie Przenoszenie błędu Każdy pomiar obarczony jest błędami Przyczyny ograniczeo w pomiarach: Ograniczenia instrumentalne
W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:
Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,
Wyrównanie ciągu poligonowego dwustronnie nawiązanego metodą przybliżoną.
Wyrównanie ciągu poligonowego dwustronnie nawiązanego metodą przybliżoną. Uwagi wstępne należy przeczytać przed przystąpieniem do obliczeń W pierwszej kolejności należy wpisać do dostarczonego formularza
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Chemii 2007 Paweł Korecki 2013 Andrzej Kapanowski Po co jest Pracownia Fizyczna? 1. Obserwacja zjawisk i
Określanie niepewności pomiaru
Określanie niepewności pomiaru (Materiały do ćwiczeń laboratoryjnych z przedmiotu Materiałoznawstwo na wydziale Górnictwa i Geoinżynierii) 1. Wprowadzenie Pomiar jest to zbiór czynności mających na celu
Wprowadzenie do rachunku niepewności pomiarowej. Jacek Pawlyta
Wprowadzenie do rachunku niepewności pomiarowej Jacek Pawlyta Fizyka Teorie Obserwacje Doświadczenia Fizyka Teorie Przykłady Obserwacje Przykłady Doświadczenia Przykłady Fizyka Potwierdzanie bądź obalanie
Statystyczne Metody Opracowania Wyników Pomiarów
Statystyczne Metody Opracowania Wyników Pomiarów dla studentów Ochrony Środowiska Teresa Jaworska-Gołąb 2017/18 Co czytać [1] H. Szydłowski, Pracownia fizyczna, PWN, Warszawa 1999. [2] A. Zięba, Analiza
Ćwiczenie 3 Temat: Oznaczenia mierników, sposób podłączania i obliczanie błędów Cel ćwiczenia
Ćwiczenie 3 Temat: Oznaczenia mierników, sposób podłączania i obliczanie błędów Cel ćwiczenia Zaznajomienie się z oznaczeniami umieszczonymi na przyrządach i obliczaniem błędów pomiarowych. Obsługa przyrządów
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Reprezentacja
GPSz2 WYKŁAD 15 SZCZEGÓŁOWA WYSOKOŚCIOWA OSNOWA GEODEZYJNA
GPSz2 WYKŁAD 15 SZCZEGÓŁOWA WYSOKOŚCIOWA OSNOWA GEODEZYJNA 1 STANDARD TECHNICZNY ZAŁACZNIK NR 1 DO ROZPORZĄDZENIA 2 3 4 5 TO TZW. POŚREDNIE WYMAGANIA DOKŁADNOŚCIOWE 6 Przy niwelacji w druku dziennika pomiaru
Rys Szkic sieci kątowo-liniowej. Nr X [m] Y [m]
5.14. Ścisłe wyrównanie sieci kątowo-liniowej z wykorzystaniem programu komputerowego B. Przykłady W prezentowanym przykładzie należy wyznaczyć współrzędne płaskie trzech punktów (1201, 1202 i 1203) sieci
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść
Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do rachunku błędów pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami:
Pomiar kątów poziomych
Pomiar kątów poziomych Pomiar kątów poziomych W ciągu ostatnich 100 lat, na świecie, nie zaobserwowano istotnego wzrostu dokładności pomiarów kątowych. Obecnie nic nie wskazuje na to, aby sytuacja ta uległa
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) 1 Podział ze względu na zakres danych użytych do wyznaczenia miary Miary opisujące
WYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi
Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska D syst D śr m 1 3 5 2 4 6 śr j D 1
Rozkład normalny, niepewność standardowa typu A
Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy
Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski
Literatura STATYSTYKA OPISOWA A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu
LISTA 1 ZADANIE 1 a) 41 x =5 podnosimy obustronnie do kwadratu i otrzymujemy: 41 x =5 x 5 x przechodzimy na system dziesiętny: 4x 1 1=25 4x =24
LISTA 1 ZADANIE 1 a) 41 x =5 podnosimy obustronnie do kwadratu i otrzymujemy: 41 x =5 x 5 x przechodzimy na system dziesiętny: 4x 1 1=25 4x =24 x=6 ODP: Podstawą (bazą), w której spełniona jest ta zależność
Statystyczne Metody Opracowania Wyników Pomiarów
Statystyczne Metody Opracowania Wyników Pomiarów dla studentów ZMIN Teresa Jaworska-Gołąb 2017/18 Co czytać [1] I Pracownia fizyczna, Andrzej Magiera red., Oficyna Wydawnicza IMPULS, Kraków 2006; http://www.1pf.if.uj.edu.pl/materialy/zalecana-literatura
Projektowanie systemów pomiarowych. 02 Dokładność pomiarów
Projektowanie systemów pomiarowych 02 Dokładność pomiarów 1 www.technidyneblog.com 2 Jak dokładnie wykonaliśmy pomiar? Czy duża / wysoka dokładność jest zawsze konieczna? www.sparkfun.com 3 Błąd pomiaru.
Zajęcia wprowadzające W-1 termin I temat: Sposób zapisu wyników pomiarów
wielkość mierzona wartość wielkości jednostka miary pomiar wzorce miary wynik pomiaru niedokładność pomiaru Zajęcia wprowadzające W-1 termin I temat: Sposób zapisu wyników pomiarów 1. Pojęcia podstawowe
Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych.
msg O 7 - - Temat: Badanie soczewek, wyznaczanie odległości ogniskowej. Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów
Zakres wiadomości i umiejętności z przedmiotu GEODEZJA OGÓLNA dla klasy 1ge Rok szkolny 2014/2015r.
Zakres wiadomości i umiejętności z przedmiotu GEODEZJA OGÓLNA dla klasy 1ge - Definicja geodezji, jej podział i zadania. - Miary stopniowe. - Miary długości. - Miary powierzchni pola. - Miary gradowe.
GEODEZJA WYKŁAD Pomiary kątów
GEODEZJA WYKŁAD Pomiary kątów Katedra Geodezji im. K. Weigla ul. Poznańska 2/34 Do rozwiązywania zadań z geodezji konieczna jest znajomość kątów w figurach i bryłach obiektów. W geodezji przyjęto mierzyć:
Zmierzyłem i co dalej? O opracowaniu pomiarów i analizie niepewności słów kilka
Zmierzyłem i co dalej? O opracowaniu pomiarów i analizie niepewności słów kilka Jakub S. Prauzner-Bechcicki Grupa: Chemia A Kraków, dn. 7 marca 2018 r. Plan wykładu Rozważania wstępne Prezentacja wyników
Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją
Wybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie
HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =
HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka Stankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i
Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:
Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności
Programowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
Wybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.
Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej
Wymagania dla klasy siódmej. Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: DZIAŁ 1. LICZBY
Wymagania dla klasy siódmej Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: DZIAŁ 1. LICZBY Rzymski sposób zapisu liczb Liczby pierwsze i złożone. Dzielenie z resztą Rozwinięcia dziesiętne
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Chemii (2018) Autor prezentacji :dr hab. Paweł Korecki dr Szymon Godlewski e-mail: szymon.godlewski@uj.edu.pl
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Indukcja matematyczna. Zasada minimum. Zastosowania.
Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór
Statystyczne Metody Opracowania Wyników Pomiarów
Statystyczne Metody Opracowania Wyników Pomiarów dla studentów ZMIN Teresa Jaworska-Gołąb 2018/19 Co czytać [1] I Pracownia fizyczna, Andrzej Magiera red., Oficyna Wydawnicza IMPULS, Kraków 2006; http://www.1pf.if.uj.edu.pl/materialy/zalecana-literatura
4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.
Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,
Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów.
Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów.. KEITHLEY. Practical Solutions for Accurate. Test & Measurement. Training materials, www.keithley.com;. Janusz Piotrowski: Procedury
Model odpowiedzi i schemat oceniania do arkusza I
Model odpowiedzi i schemat oceniania do arkusza I Zadanie 1 (4 pkt) n Odczytanie i zapisanie danych z wykresu: 100, 105, 100, 10, 101. n Obliczenie mediany: Mediana jest równa 101. n Obliczenie średniej
LISTA 5. C++ PETLE for, while, do while
WSTEP DO INFORMATYKI I PROGRAMOWANIA LISTA 5. C++ PETLE for, while, do while Zadanie. Przeanalizuj działanie poniższego programu. cout
Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji
Wykład 11. Metoda najmniejszych kwadratów Szukamy zależności Dane są wyniki pomiarów dwóch wielkości x i y: (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ). Przypuśćmy, że nanieśliśmy je na wykres w układzie
Metrologia: definicje i pojęcia podstawowe. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: definicje i pojęcia podstawowe dr inż. Paweł Zalewski Akademia Morska w Szczecinie Pojęcia podstawowe: Metrologia jest nauką zajmująca się sposobami dokonywania pomiarów oraz zasadami interpretacji
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych
Wymagania na poszczególne oceny szkolne Klasa 7
1 Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
WYKONANIE APLIKACJI WERYFIKUJĄCEJ PIONOWOŚĆ OBIEKTÓW WYSMUKŁYCH Z WYKORZYSTANIEM JĘZYKA C++ 1. Wstęp
Autor: inż. Izabela KACZMAREK Opiekun naukowy: dr inż. Ryszard SOŁODUCHA WYKONANIE APLIKACJI WERYFIKUJĄCEJ PIONOWOŚĆ OBIEKTÓW WYSMUKŁYCH Z WYKORZYSTANIEM JĘZYKA C++ 1. Wstęp Obecnie wykorzystywane przez
Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia
Doświadczenie: Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia Cele doświadczenia Celem doświadczenia jest zbadanie zależności drogi przebytej w ruchu przyspieszonym od czasu dla kuli bilardowej
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
KARTA INFORMACYJNA PRZEDMIOTU
Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU
Wykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
Analiza i monitoring środowiska
Analiza i monitoring środowiska CHC 017003L (opracował W. Zierkiewicz) Ćwiczenie 1: Analiza statystyczna wyników pomiarów. 1. WSTĘP Otrzymany w wyniku przeprowadzonej analizy ilościowej wynik pomiaru zawartości
Statystyka i Analiza Danych
Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania analizy wariancji w opracowywaniu wyników badań empirycznych Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki -
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH Dr Benedykt R. Jany I Pracownia Fizyczna Ochrona Środowiska grupa F1 Rodzaje Pomiarów Pomiar bezpośredni - bezpośrednio
Niepewności pomiarów
Niepewności pomiarów Międzynarodowa Organizacja Normalizacyjna (ISO) w roku 1995 opublikowała normy dotyczące terminologii i sposobu określania niepewności pomiarów [1]. W roku 1999 normy zostały opublikowane
Psychometria PLAN NAJBLIŻSZYCH WYKŁADÓW. Co wyniki testu mówią nam o samym teście? A. Rzetelność pomiaru testem. TEN SLAJD JUŻ ZNAMY
definicja rzetelności błąd pomiaru: systematyczny i losowy Psychometria Co wyniki testu mówią nam o samym teście? A. Rzetelność pomiaru testem. rozkład X + błąd losowy rozkład X rozkład X + błąd systematyczny
Mgr Kornelia Uczeń. WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa
Mgr Kornelia Uczeń WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej
Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.
Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka tankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i efektów
Testy nieparametryczne
Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
ROZKŁAD NORMALNY. 2. Opis układu pomiarowego
ROZKŁAD NORMALNY 1. Opis teoretyczny do ćwiczenia zamieszczony jest na stronie www.wtc.wat.edu.pl w dziale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE (Wstęp do teorii pomiarów). 2. Opis układu pomiarowego
Analiza wariancji. dr Janusz Górczyński
Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik
EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2013 CZĘŚĆ PISEMNA
Nazwa kwalifikacji: Wykonywanie pomiarów sytuacyjnych i wysokościowych oraz opracowywanie wyników pomiarów Oznaczenie kwalifikacji: B.34 Wersja arkusza: X Układ graficzny CKE 2013 Arkusz zawiera informacje
I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI Wymagania na ocenę dopuszczającą I semestr Dział programu: Liczby naturalne Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje
SMOP - wykład. Rozkład normalny zasady przenoszenia błędów. Ewa Pawelec
SMOP - wykład Rozkład normalny zasady przenoszenia błędów Ewa Pawelec 1 iepewność dla rozkładu norm. Zamiast dodawania całych zakresów uwzględniamy prawdopodobieństwo trafienia dwóch wartości: P x 1, x
KONSPEKT FUNKCJE cz. 1.
KONSPEKT FUNKCJE cz. 1. DEFINICJA FUNKCJI Funkcją nazywamy przyporządkowanie, w którym każdemu elementowi zbioru X odpowiada dokładnie jeden element zbioru Y Zbiór X nazywamy dziedziną, a jego elementy
Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.
Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru