Technika ultradźwiękowa w diagnostyce medycznej V Pomiar prędkości przepływu krwi
|
|
- Jarosław Urbaniak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Tehnika ultradźwiękowa w diagnostye medyznej SEMESTR V Człowiek- najlepsza inwestyja Projekt współfinansowany przez Unię Europejską w ramah Europejskiego Funduszu Społeznego Tehnika ultradźwiękowa w diagnostye medyznej V Pomiar prędkośi przepływu krwi 1
2 Ultradźwiękowe metody pomiaru prędkośi przepływu krwi - pomiar zasu przelotu Pomiar zasu przelotu v średnia prędkość przepływu ząstek prędkość propagaji fali D - średnia t1 D /( v)os t D /( v)os D 1 1 D t t1 os ( v) ( v) os ( t t1) os v D
3 Ultradźwiękowe metody pomiaru prędkośi przepływu krwi - metoda z emisją iągłą (Continuous Wave - CW) Wzmaniaz odbiornika wzmania sygnał we, z raji dużej dynamiki sygnałów i tzw. przeieku wzmonienie ogranizone (~10x). Dalsze wzmonienie za demodulatorami Generator główny dostarza (przez układ sterująy) sygnały odniesienia do demodulaji, ew. sygnały sterująe praą filtrów pasmowyh, jeśli są to filtry z przełązanymi pojemnośiami. Metoda ultradźwiękowa z emisją iągłą CW (Continuous Wave) Zjawisko Dopplera Fala emitowana: Fala propagująa: e( t) exp( jt) e( t) exp( j( t kz)) Fala emitowana w hwili odbiia od elu, z=z o +vt (przybliżaniu się elu odpowiada ujemna prędkość i dodatnia zmiana zęstotliwośi fali tzw. zęstotliwość dopplerowska): e( t) exp( j( t kz)) exp( j ( ft z / )) exp( jf ( t z / )) exp( jf ( t ( z0 vt) / )) Faza sygnału w hwili odbiia od elu: f / f k ( t) f ( t ( z0 vt) / ) 3
4 Metoda ultradźwiękowa z emisją iągłą CW (Continuous Wave) Zjawisko Dopplera Częstotliwość fali w hwili odbiia od elu pohodna fazy sygnału: f r 1 d / dt f (1 v / ) Fala odbita powraa do układu nadajnik/odbiornik, doznają takiej samej zmiany fazy, ale zęstotliwość emitowana przez el wynosi f r : 1 fo do / dt fr (1 v / ) f (1 v / ) Jeśli v<<: f f ( 1 o v / ) Zjawisko Dopplera Częstotliwość fali odebranej: 1 fo do / dt fr (1 v / ) f (1 v / ) Jeśli v<<: f f ( 1 v / ) o Różnia między zęstotliwośią emitowaną a zęstoliwośią fali odebranej: f vf / W pomiarah przepływu krwi zazwyzaj spełnione są następująe warunki: f~=10 6 Hz, v~=10-100m/s, Δf~= 10 3 Hz, Δf/f~=10-3. Oznaza to, różnia między zęstotliwośią emitowaną i odbieraną jest niewielka i koniezna jest spejalna tehniki pomiaru tej różniy i wydobywania informaji o prędkośi przepływu to tzw. demodulaja koherentna. 4
5 Ultradźwiękowe metody pomiaru prędkośi przepływu krwi - metoda z emisją iągłą (Continuous Wave - CW) Separaja kierunków wymaga tzw. demodulaji kwadraturowej tj. dwóh demodulatorów. Na jeden z nih podawany jest sygnał wyjśiowy wzmaniaza oraz sygnał odniesienia, na drugi zaś sygnał wyjśiowy wzmaniaza oraz sygnał odniesienia przesunięty w fazie o pi/. Informaja o kierunku przepływu zakodowana jest w relaji fazowej między składowymi sygnałów wyjśiowyh demodulatorów. Shemat blokowy przepływomierza dopplerowskiego z emisją iągłą (Continuous Wave) 5
6 Shemat blokowy i sygnały w przepływomierzu dopplerowskim CW Sygnał emitowany (A) odebrany (B) e( t) os( t) R( t) os( t) os[( ) t] os[( ) t] Shemat blokowy i sygnały w przepływomierzu dopplerowskim CW Sygnały po demodulaji kwadraturowej (C, D) D( t) R( t)os( t) 0.5[1 os(t ) os( ) t os( t) os( ) t os( t)] Q( t) R( t)sin( t) 0.5[sin(t) sin( ) t sin( t) sin( ) t sin( t)] Sygnały po filtraji pasmowej (E,F) D( t) 0.5[os( t) os( t)] Q( t) 0.5[ sin( t) sin( t)] 6
7 Shemat blokowy i sygnały w przepływomierzu dopplerowskim CW Sygnały po przesuwnikah fazy D Q t) 0.5[os( t / ) os( t / )] 0.5[ sin( t) sin( )] ( / t t) 0.5[sin( t / ) sin( t / )] 0.5[ os( t) os( )] ( / t Sygnały po sumatorah (H,G) D Q / ( t) os( t) Q D / t) sin( t) ( Widmowa gęstość moy sygnału dopplerowskiego prędkośi przepływu krwi (spektrogram) 7
8 Widmowa gęstość moy sygnału dopplerowskiego prędkośi przepływu krwi (spektrogram) Metoda ultradźwiękowa z emisją iągłą CW (Continuous Wave) Shemat blokowy przepływomierza dopplerowskiego CW i widmowa gęstość moy sdppk Składowe sygnału i ih widma. Implikaje dla toru sygnałowego. 8
9 Ultradźwiękowe metody pomiaru prędkośi przepływu krwi - metoda z emisją impulsową z pojedynzą bramką Metody pomiaru prędkośi przepływu krwi Metoda ultradźwiękowa z emisją iągłą CW (Continuous Wave) Widmo sygnału dopplerowskiego uzyskanego w okoliy bifurkaji tętniy szyjnej niejednoznazność potrzeba ogranizenia obszaru rozpraszania zęstotliwość Czas 9
10 Metody pomiaru prędkośi przepływu krwi Metoda ultradźwiękowa z emisją iągłą CW (Continuous Wave) Widmo sygnału dopplerowskiego uzyskanego w okoliy bifurkaji tętniy szyjnej niejednoznazność potrzeba ogranizenia obszaru rozpraszania Rozwiązanie ogranizenie zasu trwania emisji i odbioru sygnału metoda impulsowa Metody pomiaru prędkośi przepływu krwi Metoda ultradźwiękowa z emisją impulsową z pojedynzą bramką PW (Pulsed Wave) Zasada pomiaru prędkośi przepływu krwi metodą impulsową T E zas emisji (określa lizbę wyemitowanyh okresów fali) T D zas głębokośi (określa położenie obszaru pomiaru) T G zas otwaria bramki (wraz z TE określa rozmiar obszaru, w którym prowadzony jest pomiar) T zas powtarzania impulsu 10
11 Idea pomiaru prędkośi przepływu krwi metodą impulsową T e zas emisji (określa lizbę wyemitowanyh okresów fali US) T d zas głębokośi (określa położenie obszaru pomiaru) T g zas otwaria bramki (wraz z TE określa rozmiar obszaru, w którym prowadzony jest pomiar) T prf zas powtarzania impulsu Idea pomiaru prędkośi przepływu krwi metodą impulsową 11
12 Metody pomiaru prędkośi przepływu krwi Metoda ultradźwiękowa z emisją impulsową z pojedynzą bramką PW (Pulsed Wave) Shemat blokowy prostego przepływomierza impulsowego Przepływomierz z demodulatorem i filtrem dolnoprzepustowym i próbkowaniem tzw. baseband u T przetwornik N nadajnik A wzmaniaz M mieszaz (demodulator) FDP filtr dolnoprzepustowy US układ sterująy S&H układ próbkująy z pamięia Metoda ultradźwiękowa z emisją impulsową z pojedynzą bramką PW (Pulsed Wave) Sygnał po demodulaji eha po kolejnyh emisjah Obserwujemy przesunięie zasowe między kolejnymi ehami. Jest ono zerowe, jeśli stała jest prędkość elu, tj. położenie kolejnyh eh nie ulega zmianie, wartośi w momentah pomiaru (próbkowania) są takie same. eha w przypadku zerowej prędkośi elu 1
13 Metoda ultradźwiękowa z emisją impulsową z pojedynzą bramką PW Sygnał po demodulaji eha po kolejnyh emisjah Obserwujemy przesunięie zasowe między kolejnymi ehami. Jeśli el porusza się, położenie kolejnyh eh ulega zmianie - są przesunięte względem siebie w fazie!!!! Wartośi w momentah pomiaru (próbkowania) są różne. Jeśli el porusza sie ze stałą prędkośią, przesunięia fazowe między kolejnymi ehami są jednakowe. eha w przypadku prędkośi elu różnej od 0 Metoda ultradźwiękowa z emisją impulsową PW z pojedynzą bramką Obserwujemy przesunięie zasowe między kolejnymi ehami. Jeśli el porusza się, położenie kolejnyh eh ulega zmianie - są przesunięte względem siebie w fazie!!!! Wartośi w momentah pomiaru (próbkowania) są różne. Jeśli el porusza sie ze stałą prędkośią, przesunięia fazowe między kolejnymi ehami są jednakowe. eha w przypadku zerowej prędkośi elu eha w przypadku prędkośi elu różnej od 0 13
14 Metoda ultradźwiękowa z emisją impulsową PW z pojedynzą bramką Obserwujemy przesunięie zasowe między kolejnymi ehami. Jeśli el porusza się, położenie kolejnyh eh ulega zmianie - są przesunięte względem siebie w fazie!!!! Wartośi w momentah pomiaru (próbkowania) są różne. Jeśli el porusza sie ze stałą prędkośią, przesunięia fazowe (zasowe) między kolejnymi ehami są jednakowe. Przesunięie to jest równe: v t T s eha w przypadku prędkośi elu różnej od 0 Interakja fali impulsowej z elem Położenie elu Położenie fali (impulsu) p ( t) d vt s p ( t) ( t t ) p o e W hwili interakji el-fala: pp ( ti ) ps ( ti ) d vt ( t t ) o i i e do t v v t i e t t t i i e Dotarie fali do N/O po kolejnym Δt: t t t t ( t t ) t t r e e i e i e do t v v t t do v v v t r e e e v t v t do v v v t do e ( r ) r v 14
15 Interakja fali impulsowej z elem Dotarie fali do N/O po kolejnym Δt: t r do v v t t do v v v t e e v t v t do v v v t do e ( r ) r v Ae(t) sygnał emitowany, r(t) - sygnał powraająy do źródła r t Ae t t Ae t Ae v v t d0 ( r ) ( r ) ( e) ( r ) v e Oznaza to, że sygnał powraająy r(t) jest opóźnioną wersją sygnału e(t) ze skompresowaną/roziągniętą osią zasu (zależnie od zwrotu prędkośi v). v v t d0 d0 ( 1 / )( t ( 1 v / )) v (1/(1+x) ~=1-x) współzynnik zmiany skali osi zasu v ( 1 / ) v przesunięie (zas między emisją a odbiorem) d0 d0 t0 ( 1 v / ) v Interakja fali impulsowej z elem (d) Nieh sygnał emitowany ma postać przy zym g(t) = 1 dla t z (0,M/f) i 0 poza tym przedziałem. Sygnał odebrany ma postać r( t) Ae( ( t t )) Ag( ( t t )) sin( f( t t )) e( t) g( t) sin( ft) zyli zęstotliwość odbieranego sygnału wynosi fo=αf, a różnia między zęstotliwośią sygnału wyemitowanego i odebranego wynosi f f f vf D v f f os ( 1 / ) Ale jakie jest widmo sygnału emitowanego w porównaniu z CW!??? 15
16 Moduł widma sygnału emitowanego CW Demodulaja koherentna da prążek dla zęstotliwośi dopplerowskiej kilka kilkanaśie khz f f ( 1 / ) o F{os( 0t)} [ ( 0) ( 0)] Moduł widma sygnału emitowanego PW Moduł widma sygnału emitowanego w postai pazki fali osinusoidalnej szerokość widma odwrotnie proporjonalna do zasu trwania pazki (splot widma osinus i widma okna prostokątnego). T F( ) T sin ( ) Moduł widma sygnału emitowanego PW Moduł widma sygnału emitowanego w postai pazki fali osinusoidalnej szerokość widma odwrotnie proporjonalna do zasu trwania pazki (splot widma osinus i widma okna prostokątnego). Demodulaja koherentna da widmo okna prostokątnego z przesunięiem zęstotliwośiowym równym zęstotliwośi dopplerowskiej Szerokość widma pazki fali sin odwrotnie proporjonalna do lizby wyemitowanyh okresów dla np. 5 okresów fali nośnej 3MHz będzie to 600kHz przesunięie dopplerowskie znika w tej szerokośi pasma! T F( ) T sin ( ) 16
17 Sygnał w torze odbiorzym Analizujemy dwa kolejne sygnały powraająe po odbiiu od elu - w tym elu emitujemy dwa impulsy z przesunięiem zasowym Tprf r ( t) e( ( t t )) 1 0 v ( 1 / ) v r ( t) e( ( t t ) T T r1 ( t ) r1 [ t T 1 / 0 ) e( ( t t 0 T (1 / )] r ( t T / )) r ( t T 1 1 t ) s / ) r t) r ( t T t ) ( 1 s v t T s Ruh elu powoduje przesunięie o ts sygnału powraająego w stosunku do momentu emisji w porównaniu z przypadkiem, gdy prędkość elu jest zerowa. Oznaza to, że kolejne eha w momenie próbkowania mają różne fazy! Informaja o prędkośi zawarta jest w fazie (inazej - w opóźnieniu). Sygnał w torze odbiorzym - faza Sygnał emitowany g(t) okno prostokątne (bramkowanie emisji) e( t) g( t) sin( ft) Sygnał odebrany po 1-ej emisji: r( t) e( ( t t0 )) g( ( t t0 ))sin(f ( t t0 )) sygnał odebrany po i-tej emisji: r t g t i t t f t i t t g t f t i T d i ( ) ( ( 1) s o) sin[ o( ( 1) s o)] i ( ) sin[ o( ( 1) )] Faza tego sygnału: f o( t ( i 1) T d ) Kolejna operaja demodulaja (może być kwadraturowa, zyli stanowić mieszanie z sygnałami o zęstotliwośi emitowanej w kwadraturze), ale na razie ogranizymy się do pojedynzej demodulaji, sygnałem ewentualnie przesuniętym w fazie o πf o d/: d f o ( t ) 17
18 Sygnał w torze odbiorzym - faza Faza i-tego sygnału odebranego: f o( t ( i 1) T d ) po zmieszaniu z sygnałem o zęstotliwośi emitowanej uzyskamy składową sumayjną i różniową o fazah: 4d f o(( 1) t ( i 1) T ) f o(( 1) t ( i 1) T ) składowa sumayjna składowa różniowa d f o ( t ) Kolejny krok filtraja dolnoprzepustowa, eliminuje składową sumayjną, Krok następny próbkowanie w momentah ustalonyh w stosunku do momentów emisji. Próbkowanie odbywa się o Tprf, w ustalonyh odinkah zasowyh względem momentu emisji T D - (T D + T G ), będąyh wielokrotnośią okresu fali emitowanej t=k/fo Sygnał w torze odbiorzym v ( 1 / ) v Sygnał odebrany po demodulaji, filtraji dolnoprzepustowej i próbkowaniu w t=k/fo s( t) gi ( t)sin{f o[( 1) t ( i 1) T K gi ( t)sin{f o[( ) ( i 1) T f gi ( t)sin[ f o ( i 1) T 0 ] K ]} gi ( t)sin{f o[(1 1) ( i 1) T f K ]} gi ( t)sin[ f o ( i 1) T 0 ] ]} Składnik związany z zmianą opóźnienia dla kolejnyh emisji Informaja o prędkośi w zmianie fazy!!! f 1 i T o ( ) v t T s Stały zynnik fazowy (stały - ponieważ zas próbkowania (mierzony względem zasu emisji) jest wielokrotnośią (K) okresu f.emitowanej t=k/fo) f o K vk f o 18
19 Metody pomiaru prędkośi przepływu krwi Metoda ultradźwiękowa z emisją impulsową z pojedynzą bramką PW (Pulsed Wave) Shematy blokowe przepływomierzy impulsowyh Przepływomierz z demodulatorem i filtrem dolnoprzepustowym i próbkowaniem sygnału w pasmie podstawowym tzw. baseband u Przepływomierz z filtrem pasmowoprzepustowym i próbkowaniem sygnału wysokiej zęstotliwośi tzw. RF (Radio Frequeny). Przepływomierz z demodulatorem i filtrem dolnoprzepustowym i próbkowaniem sygnału w pasmie podstawowym tzw. baseband Rozwiązanie jednokanałowe (nie uzyskujemy sygnałów w kwadraturze) t s v T Rozwiązanie dwukanałowe (daje sygnały w kwadraturze) 19
20 Przepływomierze impulsowe Z demodulają do basebandu Uwaga: próbkowanie odbywa się z zęstotliwośią f prf (zyli kilkakilkanaśie khz)!! Z próbkowaniem RF Uwaga: próbkowanie odbywa się z również z zęstotliwośią f prf (zyli kilkakilkanaśie khz), mimo że próbkowany jest sygnał RF - o zęstotliwośi kilku MHz!! Próbkowanie sygnału RF - filtraja pasmowa pomiar prędkośi z próbkowaniem RF Spróbkowany sygnał RF: K s t g K f f t f i T g K f v f i T rf ( ) i ( / o)sin{ o( [( )] ( 1) prf ]) i ( / o) sin( 0 o( 1) prf rf } sin( v ( 1) ) f i T o prf rf 0 fazy sygnałów próbkowanego po demodulaji i bez demodulaji mają bardzo podobną postać: bez demodulaji rf v d K( 1 ) f o z demodulają sin( f ( 1) ) i T o f o K vk f Informaja o prędkośi w obu przypadkah w zmianie fazy dla kolejnyh próbkowań eh/ykli pray!! ( i) f o ( i 1) T f o T f ot s o 0
21 Metody pomiaru prędkośi przepływu krwi Metoda ultradźwiękowa z emisją impulsową z pojedynzą bramką PW (Pulsed Wave) Pomiar prędkośi z informają o kierunku przepływu Detekja kierunku ruhu poprzez analogię do demodulaji kwadraturowej jak w przypadku CW. Sygnał w kwadraturze uzyskać można przesuwają o π/ spróbkowany sygnał RF (ponieważ sygnał stanowiąy zęść urojoną sygnału analityznego jest przesuniętą o 1/4 okresu fali emitowanej repliką zęśi rzezywistej) sin(πf 0 t)= os(πf 0 t-π/)=os(πf 0 (t-δt)), πf 0 Δt= π/, Δt=1/(4f 0 ) operaja przesunięia równoważna jest zastosowaniu w stosunku do sygnału RF drugiego układu S&H próbkująego z opóźnieniem o 1/4 okresu fali emitowanej, Metody pomiaru prędkośi przepływu krwi Metoda ultradźwiękowa z emisją emisją impulsową z pojedynzą bramką PW (Pulsed Wave) Ogranizenia metody impulsowej Minimalny zas obserwaji (NT ) umożliwiająy wyznazenie pewnej minimalnej zęstotliwośi f min, związanej z minimalną prędkośią v min wynosi 1 okres f min, stąd minimalna mierzalna prędkość (f zęstotliwość emisji, f prf zęstotliwość powtarzania emisji): 1 1 f NT vmin f min min f Nf W metodzie impulsowej dokonujemy próbkowania z okresem T. Maksymalna mierzalna zęstotliwość f max powinna spełniać warunek Nyquista. Maksymalna prędkość jest ogranizona przez warunek: f max max f f 1
22 Metody pomiaru prędkośi przepływu krwi Metoda ultradźwiękowa z emisją emisją impulsową z pojedynzą bramką PW (Pulsed Wave) Ogranizenia metody impulsowej Maksymalna prędkość jest ogranizona przez warunek: f max max f f v max f f f zęstotliwość emitowana, v - prędkość przepływu, prędkość propagaji fali, f prf zęśtotliwość powtarzania emisji. T określa maksymalną głębokość (odległość od źródła fali), na której możliwy jest jednoznazny pomiar ( prędkość propagaji fali): d T max / Ilozyn maksymalnej ogranizony: prędkośi i głębokośi pomiaru jest wobe tego d v max max 8 f Parametry diagnostyzne uzyskiwane z sygnałów dopplerowskih prędkośi przepływu krwi
23 Podstawowe parametry sygnału dopplerowskiego prędkośi przepływu krwi Widmowa gęstość moy (widmo) s.d.p.p.k. Częstotliwość średnia Fśr wydatek (np. w aorie wstępująej, wymaga znajomośi wartośi średniy nazynia) Częstotliwość maksymalna Fmax oena zwężeń (np. tętniy szyjnej) Fmax i Fśr oena zwężeń, oena właśiwośi łoża nazyniowego poniżej punktu pomiaru (np. opór łożyska) Widmowa gęstość moy (widmo) sygnału dopplerowskiego prędkośi przepływu krwi, jej podstawowe parametry i ih wykorzystanie Spektrogram : Częstotliwość średnia widma: F sr fg( f ) df G( f ) df Częstotliwość maksymalna (obwiednia) widma (CDF dystrybuanta znormalizowanego rozkładu widmowej gęstośi moy): Fmax f ( CDF ) 3
24 Wyznazanie wydatku w aorie wstępująej (wymaga znajomośi średniy nazynia) Spektrogram sygnału dopplerowskiego poh. z aorty ^ Fsr ( D / ) Q F Fe f. emitowana prędkość propagaji fali ultradźwiękowej D średnia (pomiar USG) T - zas wyrzutu e ^ T 1 Fsr T 0 F dt śr F sr fg( f ) df G( f ) df Oena zwężeń tętni szyjnyh znajomość Fmax i Fśr Spektrogram sygnału pohodząego z tętniy normalnej. W przypadku zwężenia w widmie sygnału zarejestrowanego powyżej zwężenia pojawić się mogą nastepujae zmiany: wzrost Fmax, spadek Fśr, ew. przepływ wstezny. W przypadku rejestraji w zwężeniu i powyżej zwężenia pojawi się różnia Fmax i zmiana właśiwośi widma iągłość przepływu prawo Bernoulliego. 4
25 Oena oporów łożyska na podstawie analizy przebiegu prędkośi (zęstotliwośi) maksymalnej przepływu krwi w tętniy pępowinowej Spektrogram sygnału dopplerowskiego w tętniy pępowinowej Obwiednia widma (Fmax) sygnału dopplerowskiego w tętniy pępowinowej Przebieg Fmax w tętniy pępowinowej i wskaźniki oporowe Indeks Pourelota Indeks Goslinga Indeks Basketta F max RI 1 F max ps ld F max ps F max PI F max mean ld B F max F max ps ld 5
26 Ultradźwiękowe metody pomiaru prędkośi przepływu krwi d - metoda z emisją impulsową z wielokrotną bramką Metody pomiaru prędkośi przepływu krwi Metoda ultradźwiękowa z emisją impulsową z wielokrotną bramką CCA tętnia szyjna wspólna, ECA tętnia szyjna zewnętrzna, ICA tętnia szyjna wewnętrzna 6
27 Metody pomiaru prędkośi przepływu krwi Metoda ultradźwiękowa z emisją impulsową z wielokrotną bramką Przepływomierz z emisją impulsową z wielokrotną bramką shemat blokowy Master lok generator główny NAD nadajnik ODB wzmaniaz odbiornika, z regulają wzmonienia (położenia bramek bramek!) DEM kwadr. demodulator kwadraturowy S&H układ próbkująy z pamięią FPP filtr pasmowo-przepustowy D, Q sygnały akustyzne w kwadraturze WZM wzmaniaze, właśiwośi dostosowane do sygnału (RF, baseband, akustyzny) Przepływomierz z emisją impulsową z wielokrotną bramką pomiar wielobramkowy prędkośi przepływu w zatoe ICA CCA tętnia szyjna wspólna, ECA tętnia szyjna zewnętrzna, ICA tętnia szyjna wewnętrzna 7
28 Metody pomiaru prędkośi przepływu krwi Metoda ultradźwiękowa z emisją impulsową z wielokrotną bramką Wstęp do obrazowania rozkładu prędkośi (CFM Color Flow Mapping - kolorowa mapa przepływu) Obszar pomiaru z wielokrotną bramka pojedynza bramka mapa prędkośi wielokrotna bramka dla wielu emisji/linii Color Flow Mapping 8
29 Różne typy obrazowania D, kolorowa mapa prędkośi (CFM) i sonogram Kolorowa mapa prędkośi wynik pomiaru prędkośi przepływu krwi w w poszzególnyh punktah obszaru obejmująym ałe nazynie bądź komory sera, zakodowany przy pomoy skali barw. Długość obszaru dająego pojedynzy wynik jest rzędu 1mm, o odpowiada kilku okresom fali nadawanej. CFM (kolorowa mapa prędkośi) I Dwie metody analizy fazy sygnału oraz analizy opóźnienia między kolejno odbieranymi liniami Uwaga: sygnały pddawane przetwarzaniu są sygnałami po konwersji A/C dysponujemy iągami próbek sygnałów RF! Analiza opóźnienia między kolejno odbieranymi liniami wyznazana jest funkja korelaji wzajemnej dla kolejno odebranyh linii r ( t ) r (( t T ) t ) r ( t t ) m 1 m s 1 m1 s R 1 T r t r t d 1 T r t r t t d R t s s ( ) ( ) ( ) ( ) ( ) T T t s v T 9
30 CFM (kolorowa mapa prędkośi) I Proedura: - kolejne linie dzielone są na segmenty o lizbie próbek N -oblizane są estymaty funkji korelaji wzajemnej dla tyh samyh segmentów w kolejnyh liniah -poszukiwane są położenia maksimów funkji korelaji wzajemnej -dokonuje się uśrednienia kolejnyh funkji korelaji wzajemnej (prędkość jest w przybliżeniu stała dla kilku kolejnyh linii) Estymator funkji korelaji wzajemnej dla dwóh segmentów z kolejnej pary linii (N s lizba próbek w segmenie, m opóźnienie dla którego oblizana jest CCF): 1 Ns m 1 1 ( m) r1 ( k) r ( k m) N s m k0 R CFM (kolorowa mapa prędkośi) II Analizy fazy sygnału prędkość jest proporjonalna do pohodnej fazy sygnału odebranego, będąego sygnałem analityznym (x+jy). Faza może być oblizona jako artg stosunku zęśi urojonej i rzezywistej sygnału odebranego (dotyzy to każdego sygnału analityznego). x( t) r( t) y( t) jx( t) ( t) artg( ) y( t) Dla przebiegu spróbkowanego faza ma postać: różnia skońzona (pohodna) ma postać f ( i 1) f T T rf Pohodna fazy może być oblizona zgodnie z definiją lub jako różnia skońzona między dwiema kolejnymi wartośiami fazy 30
31 Eliminaja eh stałyh Zasada eliminaji eh stałyh lub wolnozmiennyh, któryh amplitudy są od 10x do 100x większe niż amplitudy eh od krwi np. eha od śian nazynia, od tkanek otazająyh odejmowanie sygnałów odebranyh po dwóh kolejnyh emisjah (implementaja po konwersji A/C). Organizaja działania skanera CFM Colour Flow Mapping (Colour Doppler) prezentaja rozkładu prędkośi w obszarze skanowania w postai kolorowej mapy 31
Elektroniczna aparatura medyczna III
Elektronizna aparatura medyzna SEMESTR V Człowiek- najlepsza inwestyja Projekt współfinansowany przez Unię Europejską w ramah Europejskiego Funduszu Społeznego Elektronizna aparatura medyzna III Pomiary
Elektroniczna aparatura medyczna III
Elektroniczna aparatura medyczna SEMESTR V Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Elektroniczna aparatura medyczna III
MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania)
MATERIAŁY PMCICZE WYKŁAU Z PSTAW ZASTSWAŃ ULTRAŹWIĘKÓW W MEYCYIE (wyłąznie do elów dydaktyznyh zakaz rozpowszehniania). iagnostyka ultradźwiękowa oparta na zjawisku opplera. ****************************************************************
ANEMOMETRIA LASEROWA
1 Wstęp ANEMOMETRIA LASEROWA Anemometria laserowa pozwala na bezdotykowy pomiar prędkośi zastezek (elementów) rozpraszajayh światło Źródłem światła jest laser, którego wiazka jest dzielona się nadwiewiazki
Rys 3-1.Szkic usytuowania sondy i obiektu przy prezentacji A. Rys 3-2.Typowy dla prezentacji A sygnał.
3. Rodzaje prezentaji w badaniah USG. W zależnośi od rodzaju badania stosuje się różne rodzaje prezentaji danyh ultradźwiękowyh. Najprostszym sposobem prezentaji, i historyznie najpierwszym, jest prezentaja
w diagnostyce medycznej III
Technika ultradźwiękowa w diagnostyce medycznej SEMESTR VI Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Technika ultradźwiękowa
Laboratorium Techniki ultradźwiękowej w diagnostyce medycznej
TUD - laboratorium Laboratorium Techniki ultradźwiękowej w diagnostyce medycznej Ćwiczenie 1 Analiza sygnałów występujących w diagnostycznej aparaturze ultradźwiękowej (rev.2) Opracowali: prof. nzw. dr
Laboratorium Techniki ultradźwiękowej w diagnostyce medycznej
TUD - laboratorium Laboratorium Techniki ultradźwiękowej w diagnostyce medycznej Ćwiczenie 1 Analiza sygnałów występujących w diagnostycznej aparaturze ultradźwiękowej (rev.1) Opracowali: dr hab inż. Krzysztof
Laboratorium Elektroniczna aparatura medyczna
EAM - laboratorium Laboratorium Elektroniczna aparatura medyczna Ćwiczenie Przepływomierz dopplerowski - detektor ruchów płodu Opracował: dr hab inż. Krzysztof Kałużyński, prof. nzw. PW Zakład Inżynierii
Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.
Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu
Metoda dopplerowska impulsowa (Pulsed Wave)
Spis treści 1 Metoda dopplerowska impulsowa (Pulsed Wave) 1.1 Demodulacja sygnału RF 1.1.1 1.2 Estymator autokorelacyjny 1.2.1 Rys teoretyczny 1.2.1.1 Estymator Millera-Rochwargera 1.2.2 1.3 Prezentacja
Laboratorium Techniki ultradźwiękowej w diagnostyce medycznej
TUD - laboratorium Laboratorium Techniki ultradźwiękowej w diagnostyce medycznej Ćwiczenie 2 Przepływomierz dopplerowski, pomiary prędkości przepływu w naczyniach oraz wyznaczanie parametrów diagnostycznych
1. Modulacja analogowa, 2. Modulacja cyfrowa
MODULACJA W16 SMK 2005-05-30 Jest operacja mnożenia. Jest procesem nakładania informacji w postaci sygnału informacyjnego m.(t) na inny przebieg o wyższej częstotliwości, nazywany falą nośną. Przyczyna
Elementy optyki. Odbicie i załamanie fal Zasada Huygensa Zasada Fermata Interferencja Dyfrakcja Siatka dyfrakcyjna
Elementy optyki Odbiie i załamanie fal Zasada Huygensa Zasada Fermata Interferenja Dyfrakja Siatka dyfrakyjna 1 Odbiie i załamanie fal elektromagnetyznyh na graniah dwóh ośrodków Normalna do powierzhni
Mechanika relatywistyczna
Mehanika relatywistyzna Konepja eteru Eter kosmizny miał być speyfiznym ośrodkiem, wypełniająym ałą przestrzeń, który miał być nośnikiem fal świetlnyh (później w ogóle pola elektromagnetyznego). W XIX
f = 2 śr MODULACJE
5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania
Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych
XXXVIII MIĘDZYUCZELNIANIA KONFERENCJA METROLOGÓW MKM 06 Warszawa Białobrzegi, 4-6 września 2006 r. Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych Eligiusz PAWŁOWSKI Politechnika
Przebieg sygnału w czasie Y(fL
12.3. y y to układy elektroniczne, które przetwarzają energię źródła przebiegu stałego na energię przebiegu zmiennego wyjściowego (impulsowego lub okresowego). W zależności od kształtu wytwarzanego przebiegu
Demodulator FM. o~ ~ I I I I I~ V
Zadaniem demodulatora FM jest wytworzenie sygnału wyjściowego, który będzie proporcjonalny do chwilowej wartości częstotliwości sygnału zmodulowanego częstotliwościowo. Na rysunku 12.13b przedstawiono
Pytanie 2 Belkę przedstawioną na rysunku, obciążono momentem skupionym M = 3 [knm] w punkcie C. Odległości wynoszą a=2 [m], b=1 [m].
Pytanie 1 Belkę przedstawioną na rysunku, obiążono siłą P = 3 [kn]. Odległośi wynoszą a= [m], b=1 [m]. A a Reakje podpór dla belki wynoszą: A) R A = [kn], R B =1 [kn] B) R A =1 [kn], R B = [kn] C) RA=
FUNKCJA KWADRATOWA. Poziom podstawowy
FUNKCJA KWADRATOWA Poziom podstawowy Zadanie ( pkt) Wykres funkji y = ax + bx+ przehodzi przez punkty: A = (, ), B= (, ), C = (,) a) Wyznaz współzynniki a, b, (6 pkt) b) Zapisz wzór funkji w postai kanoniznej
PRZETWARZANIE SYGNAŁÓW
PRZEWARZANIE SYGNAŁÓW SEMESR V Człowiek- nalepsza inwestyca Proekt współfinansowany przez Unię Europeską w ramach Europeskiego Funduszu Społecznego Wykład II Wprowadzenie Podstawy teoretyczne przetwarzania
Systemy i Sieci Radiowe
Systemy i Sieci Radiowe Wykład 2 Wprowadzenie część 2 Treść wykładu modulacje cyfrowe kodowanie głosu i video sieci - wiadomości ogólne podstawowe techniki komutacyjne 1 Schemat blokowy Źródło informacji
NOŚNOŚĆ FUNDAMENTU BEZPOŚREDNIEGO WEDŁUG EUROKODU 7
Geotehnizne zagadnienia realizaji budowli drogowyh projekt, dr inż. Ireneusz Dyka Kierunek studiów: Budownitwo, studia I stopnia Rok IV, sem.vii 19 NOŚNOŚĆ FUNDAMENTU BEZPOŚREDNIEGO WEDŁUG EUROKODU 7 Według
9.6. Promieniowanie rentgenowskie. Dyfrakcja promieniowania rentgenowskiego (prawo Bragga).
9. Optyka 9.6. Promieniowanie rentgenowskie. yfrakja promieniowania rentgenowskiego (prawo Bragga). Shemat budowy lampy rentgenowskiej. Przyspieszone do dużej prędkośi elektrony uderzają w antykatodę zmniejszają
POLITECHNIKA POZNAŃSKA
POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 4 Temat: Modulacje analogowe
Charakterystyka amplitudowa i fazowa filtru aktywnego
1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji
MATERIAŁY POMOCNICZE DO WYKŁADU Z BIO-
1 MATERIAŁY POMOCNICZE DO WYKŁADU Z BIO- i HYDROAKUSTYKI 11. Metody zobrazowań w diagnostyce medycznej S. Typy ultrasonograficznych prezentacji obrazu W zależności od sposobu rejestracji ech rozróżniamy
PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 02/12
PL 219314 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 219314 (13) B1 (21) Numer zgłoszenia: 391709 (51) Int.Cl. H04B 1/00 (2006.01) H04B 1/10 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej
Dyskretna transformata falkowa z wykorzystaniem falek Haara. Alfréd Haar
Dyskretna transformata falkowa z wykorzystaniem falek Haara Alfréd Haar 88-9 Przypomnijmy, że istotą DWT jest podział pierwotnego sygnału za pomoą pary filtrów (górnoprzepustowego i dolnoprzepustowego)
(1.1) gdzie: - f = f 2 f 1 - bezwzględna szerokość pasma, f śr = (f 2 + f 1 )/2 częstotliwość środkowa.
MODULACJE ANALOGOWE 1. Wstęp Do przesyłania sygnału drogą radiową stosuje się modulację. Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej.
A3 : Wzmacniacze operacyjne w układach liniowych
A3 : Wzmacniacze operacyjne w układach liniowych Jacek Grela, Radosław Strzałka 2 kwietnia 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1.
Definicja szybkości reakcji
Definija szybkośi reakji Szybkość reakji definiuje się jako stosunek zmiany stężenia substratów lub produktów reakji do zasu potrzebnego do zajśia tej zmiany. v zas zmiana stężenia potrzebny do zajśia
Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych
Wydział Elektryzny, Katedra Maszyn, Napędów i Pomiarów Elektryznyh Laboratorium Przetwarzania i Analizy Sygnałów Elektryznyh (bud A5, sala 310) Wydział/Kierunek Nazwa zajęć laboratoryjnyh Nr zajęć Elektryzny/
Przetwarzanie sygnałów biomedycznych
Przetwarzanie sygnałów biomedycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
MAGNETYCZNY REZONANS JĄDROWY (MRJ) NUCLEAR MAGNETIC RESONANCE (NMR)
MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... Program: 1. Podstawy ogólne (zjawisko fizyczne, wykonanie pomiaru, aparatura) 2. Spektroskopia
Elementy mechaniki relatywistycznej
Podstawy Proesów i Konstrukji Inżynierskih Elementy mehaniki relatywistyznej 1 Czym zajmuje się teoria względnośi? Teoria względnośi to pomiary zdarzeń ustalenia, gdzie i kiedy one zahodzą, a także jaka
Metody Optyczne w Technice. Wykład 5 Interferometria laserowa
Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa
Filtry aktywne filtr górnoprzepustowy
. el ćwiczenia. Filtry aktywne filtr górnoprzepustowy elem ćwiczenia jest praktyczne poznanie właściwości filtrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów filtru.. Budowa
MODULACJE ANALOGOWE. Funkcja modulująca zależna od sygnału modulującego: m(t) = m(t) e
Nośna: MODULACJE ANALOGOWE c(t) = Y 0 cos(ωt + ϕ 0 ) Sygnał analityczny sygnału zmodulowanego y(t): z y (t) = m(t)z c (t), z c (t) = Y 0 e jωt Funkcja modulująca zależna od sygnału modulującego: j arg
EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ
Studia Podyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ w ramach projektu Śląsko-Małopolskie Centrum Kompetencji Zarządzania Energią Pomiar parametrów sygnałów sieci elektroenergetycznej dr inż.
Generowanie sygnałów na DSP
Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Generowanie sygnałów na DSP Wstęp Dziś w programie: generowanie sygnałów za pomocą
SYMULACJA KOMPUTEROWA SYSTEMÓW
SYMULACJA KOMPUTEROWA SYSTEMÓW ZASADY ZALICZENIA I TEMATY PROJEKTÓW Rok akademicki 2015 / 2016 Spośród zaproponowanych poniżej tematów projektowych należy wybrać jeden i zrealizować go korzystając albo
Analiza właściwości filtra selektywnego
Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..
12. Demodulatory synchroniczne z fazową pętlą sprzężenia zwrotnego
94 12. Demodulatory synchroniczne z fazową pętlą sprzężenia zwrotnego Cele ćwiczenia Badanie właściwości pętli fazowej. Badanie układu Costasa do odtwarzania nośnej sygnału AM-SC. Badanie układu Costasa
Systemy i Sieci Radiowe
Systemy i Sieci Radiowe Wykład 4 Media transmisyjne część Program wykładu Widmo sygnałów w. cz. Modele i tryby propagacji Anteny Charakterystyka kanału radiowego zjawiska propagacyjne 1 Transmisja radiowa
2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).
SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy
Efekt Dopplera. dr inż. Romuald Kędzierski
Efekt Dopplera dr inż. Romuald Kędzierski Christian Andreas Doppler W 1843 roku opublikował swoją najważniejszą pracę O kolorowym świetle gwiazd podwójnych i niektórych innych ciałach niebieskich. Opisał
4. WYZNACZANIE PARAMETRÓW HYDRAULICZNYCH STUDNI
4. WYZNACZANIE PARAMETRÓW HYDRAULICZNYCH STUDNI Na wielkość depresji zwieriadła wody w pompowanej studni wpływ mają zjawiska hydraulizne wywołane przepływem laminarnym, występująym w ujętej warstwie wodonośnej
OPBOX ver USB 2.0 Miniaturowy Ultradźwiękowy system akwizycji danych ze
OPBOX ver 2.0 - USB 2.0 Miniaturowy Ultradźwiękowy system akwizycji danych ze OPBOX ver 2.0 - USB 2.0 Miniaturowy Ultradźwiękowy system akwizycji danych Charakterystyka OPBOX 2.0 wraz z dostarczanym oprogramowaniem
SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI
1 ĆWICZENIE VI SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI (00) Celem pracy jest poznanie sposobu fizycznej realizacji filtrów cyfrowych na procesorze sygnałowym firmy Texas Instruments TMS320C6711
MODULACJE IMPULSOWE. TSIM W10: Modulacje impulsowe 1/22
MODULACJE IMPULSOWE TSIM W10: Modulacje impulsowe 1/22 Fala nośna: Modulacja PAM Pulse Amplitude Modulation Sygnał PAM i jego widmo: y PAM (t) = n= x(nt s ) Y PAM (ω) = τ T s Sa(ωτ/2)e j(ωτ/2) ( ) t τ/2
Skrypt 18. Trygonometria
Projekt Innowayjny program nauzania matematyki dla lieów ogólnokształąyh współfinansowany ze środków Unii Europejskiej w ramah Europejskiego Funduszu Społeznego Skrypt 18 Trygonometria 1. Definije i wartośi
Własności światła laserowego
Własności światła laserowego Cechy światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy oraz spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność kątową awkącie
Pomiary i przyrządy cyfrowe
Pomiary i przyrządy cyfrowe Przyrządy analogowe trochę historii Ustrój magnetoelektryczny z I z I N d S B r ~ Ω I r r zaciski pomiarowe U U = r I amperomierz woltomierz współczynnik poszerzenia zakresu
Analiza właściwości filtrów dolnoprzepustowych
Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.
Instrukcja do laboratorium z Fizyki Budowli. Temat laboratorium: CZĘSTOTLIWOŚĆ
Instrukcja do laboratorium z Fizyki Budowli Temat laboratorium: CZĘSTOTLIWOŚĆ 1 1. Wprowadzenie 1.1.Widmo hałasu Płaską falę sinusoidalną można opisać następującym wyrażeniem: p = p 0 sin (2πft + φ) (1)
Przykładowe pytania 1/11
Parametry sygnałów Przykładowe pytania /. Dla okresowego przebiegu sinusoidalnego sterowanego fazowo (jak na rys) o kącie przewodzenia θ wyprowadzić zależność wartości skutecznej od kąta przewodzenia θ.
Rozwinięcie funkcji modulującej m(t) w szereg potęgowy: B PM 2f m
Wąskopasmowa modulacja fazy (przypadek k p x(t) max 1) Rozwinięcie funkcji modulującej m(t) w szereg potęgowy: m(t) = e jk px(t) = 1 + jk p x(t) +... Sygnały zmodulowane: z PM (t) Y 0 [1 + jk p x(t)]e
Zaawansowane algorytmy DSP
Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Zaawansowane algorytmy DSP Wstęp Cztery algorytmy wybrane spośród bardziej zaawansowanych
Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
ELEMENTY SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI. I. Zasada względności: Wszystkie prawa przyrody są takie same we wszystkich
ELEMENTY SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI Postulaty Einsteina (95 r) I Zasada względnośi: Wszystkie prawa przyrody są takie same we wszystkih inerjalnyh układah odniesienia lub : Równania wyrażająe prawa
10. Demodulatory synchroniczne z fazową pętlą sprzężenia zwrotnego
102 10. Demodulatory synchroniczne z fazową pętlą sprzężenia zwrotnego Cele ćwiczenia Badanie właściwości pętli fazowej. Badanie układu Costasa do odtwarzania nośnej sygnału AM-SC. Badanie układu Costasa
Naziemne systemy nawigacyjne. Wykorzystywane w nawigacji
Naziemne systemy nawigacyjne Wykorzystywane w nawigacji Systemy wykorzystujące radionamiary (CONSOL) Stacja systemu Consol składała się z trzech masztów antenowych umieszczonych w jednej linii w odległości
ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1)
h S = I(I+) gdzie: I kwantowa liczba spinowa jądra I = 0, ½,, /,, 5/,... itd gdzie: = γ S γ współczynnik żyromagnetyczny moment magnetyczny brak spinu I = 0 spin sferyczny I = _ spin elipsoidalny I =,,,...
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia
Inżynieria bioreaktorów - Rozkład czasu przybywania w reaktorach (2018/2019)
Inżynieria bioreaktorów - Rozkład zasu przybywania w reaktorah (218/219) CEL Wyznazenie rzezywistego rozkładu zasu przebywania w reaktorze mieszalnikowym metodą skokową i w dwóh reaktorah rurowyh metodą
Teoria przetwarzania A/C i C/A.
Teoria przetwarzania A/C i C/A. Autor: Bartłomiej Gorczyński Cyfrowe metody przetwarzania sygnałów polegają na przetworzeniu badanego sygnału analogowego w sygnał cyfrowy reprezentowany ciągiem słów binarnych
2. STRUKTURA RADIOFONICZNYCH SYGNAŁÓW CYFROWYCH
1. WSTĘP Radiofonię cyfrową cechują strumienie danych o dużych przepływnościach danych. Do przesyłania strumienia danych o dużych przepływnościach stosuje się transmisję z wykorzystaniem wielu sygnałów
Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe
Politechnika Warszawska
Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.02. Woltomierz RMS oraz Analizator Widma 1. Woltomierz RMS oraz Analizator Widma Ćwiczenie to ma na celu poznanie
12.8. Zasada transmisji telewizyjnej
12.8. Zasada transmisji telewizyjnej Transmisja obrazu wraz z towarzyszącym mu dźwiękiem jest realizowana przez zespół urządzeń stanowiących tor nadawczy i odbiorczy, przedstawiony w sposób schematyczny
Ruch falowy. Parametry: Długość Częstotliwość Prędkość. Częstotliwość i częstość kołowa MICHAŁ MARZANTOWICZ
Ruch falowy Parametry: Długość Częstotliwość Prędkość Częstotliwość i częstość kołowa Opis ruchu falowego Równanie fali biegnącej (w dodatnim kierunku osi x) v x t f 2 2 2 2 2 x v t Równanie różniczkowe
Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy
Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Grupa: wtorek 18:3 Tomasz Niedziela I. CZĘŚĆ ĆWICZENIA 1. Cel i przebieg ćwiczenia. Celem ćwiczenia
Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.
W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu
PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE
PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu są podstawowe transformacje fazowe
Właściwości sygnałów i splot. Krzysztof Patan
Właściwości sygnałów i splot Krzysztof Patan Właściwości sygnałów Dla sygnału ciągłego x(t) można zdefiniować wielkości liczbowe charakteryzujące ten sygnał wartość średnia energia sygnału x sr = lim τ
LABORATORIUM Sygnałów, Modulacji i Systemów ĆWICZENIE 2: Modulacje analogowe
Protokół ćwiczenia 2 LABORATORIUM Sygnałów, Modulacji i Systemów Zespół data: ĆWICZENIE 2: Modulacje analogowe Imię i Nazwisko: 1.... 2.... ocena: Modulacja AM 1. Zestawić układ pomiarowy do badań modulacji
Cyfrowe przetwarzanie sygnałów w urządzeniach EAZ firmy Computers & Control
Cyfrowe przetwarzanie sygnałów w urządzeniach EAZ firmy Computers & Control 1. Wstęp 2.Próbkowanie i odtwarzanie sygnałów 3. Charakterystyka sygnałów analogowych 4. Aliasing 5. Filtry antyaliasingowe 6.
MODULACJA. Definicje podstawowe, cel i przyczyny stosowania modulacji, rodzaje modulacji. dr inż. Janusz Dudczyk
Wyższa Szkoła Informatyki Stosowanej i Zarządzania MODULACJA Definicje podstawowe, cel i przyczyny stosowania modulacji, rodzaje modulacji dr inż. Janusz Dudczyk Cel wykładu Przedstawienie podstawowych
I.2 Promieniowanie Ciała Doskonale Czarnego
I. Promieniowanie Ciała Doskonale Czarnego Jan Królikowski Fizyka IVBC 1 CIAŁO DOSKONALE CZARNE (CDCz) CDCz jest to takie iało, którego zdolność absorpyjna a(, T) nie zależy od długośi fali i wynosi 100%.
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................
Technika ultradźwiękowa w diagnostyce medycznej IV
Technika ultradźwiękowa w diagnostyce medycznej IV Podstawowe rodzaje obrazowań Organizacja skanera Sondy Podstawowe rodzaje obrazowań Organizacja skanera 1 Przykłady obrazowań 2D + CFM + widmo sygnału
Politechnika Warszawska
Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.08 Zasady wytwarzania sygnałów zmodulowanych za pomocą modulacji AM 1. Zasady wytwarzania sygnałów zmodulowanych
Lekcja 20. Temat: Detektory.
Lekcja 20 Temat: Detektory. Modulacja amplitudy. (AM z ang. Amplitude Modulation) jeden z trzech podstawowych rodzajów modulacji, polegający na kodowaniu sygnału informacyjnego (szerokopasmowego o małej
RADIOMETR MIKROFALOWY. RADIOMETR MIKROFALOWY (wybrane zagadnienia) Opracowanie : dr inż. Waldemar Susek dr inż. Adam Konrad Rutkowski
RADIOMETR MIKROFALOWY RADIOMETR MIKROFALOWY (wybrane zagadnienia) Opracowanie : dr inż. Waldemar Susek dr inż. Adam Konrad Rutkowski 1 RADIOMETR MIKROFALOWY Wprowadzenie Wszystkie ciała o temperaturze
Laboratorium Inżynierii bioreaktorów Ćwiczenie 2: Rozkład czasu przybywania w reaktorach przepływowych
EL Laboratorium Inżynierii bioreaktorów Ćwizenie 2: Rozkład zasu przybywania w reaktorah przepływowyh Wyznazenie rzezywistego rozkładu zasu przebywania w reaktorze mieszalnikowym metodą skokową oraz w
KOMPUTEROWE SYSTEMY POMIAROWE
KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST - ITwE Semestr zimowy Wykład nr 12 Prawo autorskie Niniejsze
Dźwięk. Cechy dźwięku, natura światła
Dźwięk. Cechy dźwięku, natura światła Fale dźwiękowe (akustyczne) - podłużne fale mechaniczne rozchodzące się w ciałach stałych, cieczach i gazach. Zakres słyszalnej częstotliwości f: 20 Hz < f < 20 000
XXXV OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXXV OLIMPIADA FIZYCZNA ETAP III Zadanie doświadzalne ZADANIE D1 Nazwa zadania: Wyznazanie iepła pierwiastków (azot, ołów) Wyznaz iepło rowania iekłego azotu oraz iepło właśiwe ołowiu (wartość średnią
Zastosowanie ultradźwięków w technikach multimedialnych
Zastosowanie ultradźwięków w technikach multimedialnych Janusz Cichowski, p. 68 jay@sound.eti.pg.gda.pl Katedra Systemów Multimedialnych, Wydział Elektroniki Telekomunikacji i Informatyki, Politechnika
ĆWICZENIE 5 EMC FILTRY AKTYWNE RC. 1. Wprowadzenie. f bez zakłóceń. Zasilanie FILTR Odbiornik. f zakłóceń
ĆWICZENIE 5 EMC FILTRY AKTYWNE RC. Wprowadzenie Filtr aktywny jest zespołem elementów pasywnych RC i elementów aktywnych (wzmacniających), najczęściej wzmacniaczy operacyjnych. Właściwości wzmacniaczy,
Przetwarzanie sygnałów
Przetwarzanie sygnałów Ćwiczenie 3 Filtry o skończonej odpowiedzi impulsowej (SOI) Spis treści 1 Filtracja cyfrowa podstawowe wiadomości 1 1.1 Właściwości filtru w dziedzinie czasu............... 1 1.2
OPIS PATENTOWY Zgłoszenie ogłoszono: Opis patentowy opublikowano: Problemów Techniki, Warszawa (Polska)
RZECZPOSPOLITA POLSKA OPIS PATENTOWY 154 711 X * B i Patent dodatkowy do patentu n r --------- Int. Cl.5 G01N 29/18 G01H 5/00 Zgłoszono: 86 09 05 (P. 261299) Pierwszeństwo URZĄD PATENTOWY Zgłoszenie ogłoszono:
Szereg i transformata Fouriera
Analiza danych środowiskowych III rok OŚ Wykład 3 Andrzej Leśniak KGIS, GGiOŚ AGH Szereg i transformata Fouriera Cel wykładu: Wykrywanie i analiza okresowości w szeregach czasowych Przepływ wody w rzece
Laboratorium EAM. Instrukcja obsługi programu Dopp Meter ver. 1.0
Laboratorium EAM Instrukcja obsługi programu Dopp Meter ver. 1.0 Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii
Analiza szeregów czasowych: 3. Filtr Wienera
Analiza szeregów czasowych: 3. Filtr Wienera P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Filtr Wienera ( filtr optymalny ) Przypuśćmy, że pewien układ (fizyczny, biologiczny,
Wytwarzanie sygnałów SSB metodę filtracyjną
Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.13 Wytwarzanie sygnałów SSB metodę filtracyjną 1. Wytwarzanie sygnałów SSB metodę filtracyjną Ćwiczenie to ma
Ćwiczenie 4: Próbkowanie sygnałów
Politechnika Warszawska Instytut Radioelektroniki Zakład Radiokomunikacji STUDIA MAGISTERSKIE DZIENNE LABORATORIUM SYGNAŁÓW MODULACJI I SYSTEMÓW Ćwiczenie 4: Próbkowanie sygnałów Opracował dr inż. Andrzej
Ćwiczenie 3. Właściwości przekształcenia Fouriera
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia