MODULACJA. Definicje podstawowe, cel i przyczyny stosowania modulacji, rodzaje modulacji. dr inż. Janusz Dudczyk

Wielkość: px
Rozpocząć pokaz od strony:

Download "MODULACJA. Definicje podstawowe, cel i przyczyny stosowania modulacji, rodzaje modulacji. dr inż. Janusz Dudczyk"

Transkrypt

1 Wyższa Szkoła Informatyki Stosowanej i Zarządzania MODULACJA Definicje podstawowe, cel i przyczyny stosowania modulacji, rodzaje modulacji dr inż. Janusz Dudczyk

2 Cel wykładu Przedstawienie podstawowych pojęć stosowanych w dziedzinie modulacji sygnałów.

3 Program wykładu Pojęcie modulacji sygnału radioelektronicznego Klasyfikacja rodzajów modulacji Cel i przyczyny stosowania modulacji Modulacje analogowe Modulacje cyfrowe Widmo sygnałów zmodulowanych Przekształcanie A/C Modulacja PCM Kodowanie transmisyjne

4 Wiadomości wstępne MODULACJA - polega na uzależnieniu jednego lub więcej parametrów fali nośnej od pierwotnego sygnału modulującego zawierającego wiadomość. Powstający w tym procesie sygnał to sygnał zmodulowany. Proces ten, realizowany jest w modulatorze, /zasadniczym elemencie nadajnika telekomunikacyjnego/.

5 Wiadomości wstępne DEMODULACJA - proces polegający na odtworzeniu pierwotnego sygnału modulującego z sygnału odebranego, którego podstawowym składnikiem jest nadany sygnał zmodulowany.

6 Ogólny schemat systemu telekomunikacyjnego ŹRÓDŁO WIADOMOŚCI Przetwornik b(t) NADAJNIK modulator wzmacniacz pasmowy b(t) - sygnał pierwotny wiadomość nadana s(t) - sygnał zmodulowany n(t) - sygnał zakłóceń y(t) - sygnał odebrany b * (t) - wiadomość odebrana źródło zakłóceń addytywnych i multiplikatywnych o charakterze losowym n(t) s(t) KANAŁ KOMUNIKACYJNY y(t) ODBIORCA WIADOMOŚCI Przetwornik b * (t) ODBIORNIK TELEKOMUNIKACYJNY demodulator wzmacniacz pasmowy Różnica między sygnałem pierwotnym b(t) i sygnałem odtworzonym b*(t) nazywa się błędem (szumem) modulacji.

7 Cel i przyczyny stosowania modulacji Przekształcenie pierwotnego sygnału modulującego do postaci, która jest dogodna do przesłania w kanale telekomunikacyjnym, umożliwienie wypromieniowania energii sygnału; Radiofonia, tory radiowe wypromieniowanie fal radiowych jest możliwe powyżej 15 khz (rozmiary anten); Telewizja pasmo sygnału naturalnego trzeba przesunąć w zakres wyższych częstotliwości. Umożliwienie efektywnego wypromieniowania sygnału do ośrodka rozchodzenia się fal radiowych /przeniesienie widma sygnału do wyższego zakresu częstotliwości/;

8 Cel i przyczyny stosowania modulacji Zmniejszenie względnej szerokości pasma częstotliwości sygnału: B f ( f max f min ) 1 ( f 2 max + f f = min ) B f f max, f min - bezwzględne pasmo częstotliwości sygnału - częstotliwość środkowa sygnału, - maksymalna i minimalna częstotliwość składowa w widmie sygnału.

9 Cel i przyczyny stosowania modulacji Stworzenie warunków do dogodniejszego przesyłania sygnałów; Dobór rodzaju modulacji; Zwiększenie odporności na zakłócenia; Umożliwienie detekcji i korekcji błędów; Przesunięcie w pasmo wolne od zakłóceń. Stworzenie warunków do poufnego przesyłania sygnałów; Utajnianie wiadomości (kodowanie, szyfrowanie). Umożliwienie zwielokrotnienia kanału telekomunikacyjnego /poprzez odpowiedni rodzaj modulacji możliwe jest jednoczesne przesyłanie przez kanał wielu informacji z niezależnych źródeł/.

10 Rodzaje modulacji - klasyfikacja

11 Klasyfikacja rodzajów modulacji Ze względu na rodzaj modulowanego parametru fali nośnej rozróżnia się modulację: amplitudy; kąta fazowego /częstotliwości lub fazy/; Ze względu na charakter funkcji modulującej rozróżnia się modulacje: liniowe /gdy funkcja modulująca jest liniową funkcją sygnału modulującego np. modulacja amplitudy/; nieliniowe /gdy funkcja modulująca jest ekspotencjalną funkcją sygnału modulującego np. modulacje kątowe/;

12 Klasyfikacja rodzajów modulacji Ze względu na liczbę modulowanych parametrów: jedno-parametrowe; wielo-parametrowe; Ze względu na postać sygnału nośnego: z harmoniczną fala nośną; z impulsową falą nośną /modulacje impulsowe/; Ze względu na postać sygnału modulującego rozróżnia się: typu ciągłego /analogowe/, sygnał modulujący jest ciągłą funkcją czasu, typu nieciągłego, sygnał modulujący jest dyskretną funkcją czasu.

13 Modulacja amplitudy AM A3 Dwuwstęgowa modulacja amplitudy z pełną falą nośną Harmoniczna fala nośna następującej postaci: c ( t) = cosω t zostaje pomnożona przez funkcję modulującą (sygnał pierwotny) następującej postaci: m ( t ) = A + k b ( t ) gdzie: k - współczynnik proporcjonalności. Rzeczywisty sygnał zmodulowany (AM) przyjmuje następującą postać: [ A + k b( t) ] t s( t) = cosω

14 Modulacja amplitudy AM A3 Dla liniowej modulacji AM pojedynczym sygnałem amplituda chwilowa przyjmie następującą postać: ( ) A( t) = A + k B cosωt = A 1+ mcosωt gdzie: m = kb A - współczynnik głębokości modulacji. Po przekształceniach sygnał zmodulowany (AM A3) przyjmie następującą postać: [ A + k b( t) ] cosω t = A ( 1+ mcosωt) t s( t) AM = cosω

15 Modulacja amplitudy AM A3 Widmo sygnału zmodulowanego amplitudowo s( t) cos AM ( 1+ mcosωt) cos( ω t + ϕ ) = A cos( ω t + ϕ ) ( ω t + ϕ ) = A cos( ω t + ϕ ) + A mcos[ ( ω + Ω) t + ϕ ] = A 1 + A mcos ( ω Ω) t + ϕ 2 [ ] nosna A mcos( Ωt) zdefiniowane dla częstotliwości dodatnich. + A A A S=2Ω A Ω 1 1 A A 2 2 ω ω Ω ω ω + Ω ω

16 Modulacja amplitudy AM A3 Widmo sygnału zmodulowanego amplitudowo /wzór Eulera/ s( t) AM = A 2 [ j[ ( ω ] [ ]] Ω) t + ϕ j ( ω Ω) t+ ϕ A m e + e 1 4 [ j( ω ) ( )] t+ ϕ j ω t+ ϕ j[ ( ω +Ω) t+ ϕ ] j[ ( ω +Ω) t+ ϕ ] e + e + A m e + e A [ ] + 1 A 1 A 4 1 A A 1 A 4 1 A 2 4 ω Ω ω + Ω ω ω Ω ω ω + Ω ω

17 Modulacja amplitudy AM

18 Widmo modulacji AM

19 Rodzaje modulacji amplitudowych

20 Modulacje amplitudy

21 Detekcja sygnału zmodulowanego amplitudowo

22 Modulacje kątowe /kąta fazowego/ Harmoniczna fala nośna w postaci zespolonej, zostaje pomnożona przez funkcję modulującą: jω c ( t ) = A e m ( t ) = e jϕ ( t ) t gdzie faza funkcji modulującej jest uzależniona od sygnału modulującego: ( t) S a ( t) = A ( t ) ϕ [ b ( t ) ] ϕ = e j [ ω t + ϕ( t )] jφ ( t) = A e φ ( t) ω t + ϕ - kąt fazowy sygnału zmodulowanego. = S( t) = Re φ( t) cos ( [ ]) [ S ] a ( t) = A cosφ ( t) = A ω t + ϕ b( t)

23 Modulacje kątowe /kąta fazowego/ S( t) = Re φ( t) cos [ S ( )] cos ( ) ( ) a t = A φ t = A ω t + ϕ b t ( [ ]) MODULACJA KĄTA FAZOWEGO PM FM

24 Modulacje kątowe

25 Modulacja fazy Sygnał modulujący powoduje bezpośrednio zmianę fazy chwilowej fali nośnej o wielkość ϕ [ b ( t) ] = kb( t) k - współczynnik proporcjonalności Kąt fazowy sygnału modulowanego zmienia się proporcjonalnie do sygnału modulującego. φpm ( t) = ω t + k b( t) Pulsacja jest proporcjonalna do pochodnej sygnału modulującego. ω PM Sygnał zmodulowany przyjmuje postać: S PM φpm ( t) b( t) ( t) = = ω + k t t b( t) ( t) = A cos ( t) = A cos ωt + k t φ (PM, G3)

26 Modulacja fazy Sygnał modulowany jest pojedynczym sygnałem harmonicznym: b( t) = U Ω sin Ωt ω PM sin Ωt ( t) = ω + k UΩ = ω + mpmω cosωt = ω + ωpm cosωt t m PM = ku Ω - wskaźnik (indeks modulacji) ω PM = m PM Ω = kuω Ω - dewiacja częstotliwości S PM { ω t + ω Ωt} ( t) = A cosφ( t) = A cos PM cos

27 Modulacja częstotliwości Sygnał modulujący powoduje bezpośrednio proporcjonalną zmianę pulsacji chwilowej fali nośnej, (proporcjonalne zmiany częstotliwości chwilowej). ω ( t) = ω + k b( t) Kąt fazowy można wyznaczyć z następującej zależności. φ FM ( t) t t = ω( t) dt = + ( ω + k b( t) ) dt = ω t k t b( t) dt Sygnał zmodulowany częstotliwościowo przyjmuje następującą postać. S FM { ω t + k b( t dt} ( t) = A cos ( t) = A cos ) φ (FM, F3)

28 Modulacja częstotliwości Sygnał modulowany jest pojedynczym sygnałem harmonicznym: ω ( t) = ω + k UΩ cos Ωt = ω + ωfm cos Ωt b( t) = U Ω cosωt φ FM t ( kuω t) = ω t + k UΩ cosωt dt = ω t + Ω sin Ωt S FM m FM ω FM ku Ω = ku Ω ω = Ω = Ω FM - dewiacja częstotliwości - indeks (wskaźnik) modulacji kuω ( t) = A cosφ( t) = A cos ω t + sin Ωt = A cos FM sin Ω { ω t + m Ωt}

29 Widmo modulacji częstotliwości

30 Wskaźniki modulacji kątowych m FM ω PM ω FM mpm Ω Ω m PM = ku Ω ω FM = ku Ω ω PM = m PM Ω = kuω Ω m FM ku Ω ω = Ω = Ω FM

31 Modulacje cyfrowe Modulacja cyfrowa proces zamiany ciągu binarnego na analogowy sygnał elektryczny dogodny do wysłania w kanał transmisyjny, np. radiowy. W odbiorniku realizowana jest operacja odwrotna demodulacja na postać binarną.

32 Modulacje cyfrowe- kluczowanie

33 Modulacja ASK

34 Modulacja FSK

35 Modulacja PSK

36 Modulacja QPSK

37 Modulacja QAM

38 Modulacja impulsowa

39 Etapy przekształcania A/C

40 Modulacja PCM Modulację impulsowo-kodową PCM (ang. Pulse-Code Modulation) stworzono z myślą o konwersji analogowych sygnałów ciągłych na postać cyfrową. PCM jest powszechnie stosowana w telekomunikacji, a także z pewnymi zmianami, w fonografii. Proces kodowania przebiega następująco: 1. przebieg analogowy poddaje się próbkowaniu. Przyjmuje się częstotliwość próbkowania co najmniej trzykrotnie większą od maksymalnej częstotliwości sygnału. 2. Wartości kolejnych próbek zamienia się na postać dwójkową przy pomocy konwertera A/C. 3. Przy odtwarzaniu konwerter C/A odtwarza sygnał w postaci skwantowanej. Do wygładzenia obwiedni służy filtr całkujący. dr inż. Janusz Dudczyk

41 Sygnały PCM 1. Sygnał binarny PCM podlega zniekształceniom w znacznie mniejszym stopniu niż analogowy. Łatwiej zminimalizować skutki zakłóceń (przeplot próbek, czyli cykliczna zamiana ich kolejności według wzorca, co zabezpiecza przed utratą kilku próbek pod rząd). 2. Przy dużej częstotliwości próbkowania stosunkowo proste jest zapobieganie zbyt gwałtownym zmianom sygnału przy odtwarzaniu. Jeżeli sąsiednie próbki mają zbyt różną wartość, można pominąć. 3. Kodowanie DPCM (ang. Differential PCM) wykorzystuje fakt że z reguły kilka kolejnych próbek sygnału mowy niewiele się od siebie różni. Zatem mając pewną ilość próbek można ze znacznym prawdopodobieństwem przewidzieć następne (predykcja). 4. W nowoczesnych sieciach łączności stosuje się ulepszoną postać DPCM - ADPCM (ang. Adaptive Differential PCM) jako standard G.721 (lub nowszy G.726). 5. W przypadku przesyłu danych cyfrowych (np.. z modemu) sygnał należy zidentyfikować i wyłączyć kompresję. Ponadto trzeba transmisję zsynchronizować z częstotliwością próbkowania.

42 Systemy wielokrotne PCM

43 Systemy wielokrotne PCM

44 System PCM

45 Struktura ramki systemu PCM-3/32

46 Właściwości systemu PCM-24 i PCM-3/32

47 Zwielokrotnienie synchroniczne

48 Kodowanie sygnałów w sieci

49 Dziękuję za uwagę

f = 2 śr MODULACJE

f = 2 śr MODULACJE 5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania

Bardziej szczegółowo

(1.1) gdzie: - f = f 2 f 1 - bezwzględna szerokość pasma, f śr = (f 2 + f 1 )/2 częstotliwość środkowa.

(1.1) gdzie: - f = f 2 f 1 - bezwzględna szerokość pasma, f śr = (f 2 + f 1 )/2 częstotliwość środkowa. MODULACJE ANALOGOWE 1. Wstęp Do przesyłania sygnału drogą radiową stosuje się modulację. Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej.

Bardziej szczegółowo

1. Modulacja analogowa, 2. Modulacja cyfrowa

1. Modulacja analogowa, 2. Modulacja cyfrowa MODULACJA W16 SMK 2005-05-30 Jest operacja mnożenia. Jest procesem nakładania informacji w postaci sygnału informacyjnego m.(t) na inny przebieg o wyższej częstotliwości, nazywany falą nośną. Przyczyna

Bardziej szczegółowo

MODULACJE IMPULSOWE. TSIM W10: Modulacje impulsowe 1/22

MODULACJE IMPULSOWE. TSIM W10: Modulacje impulsowe 1/22 MODULACJE IMPULSOWE TSIM W10: Modulacje impulsowe 1/22 Fala nośna: Modulacja PAM Pulse Amplitude Modulation Sygnał PAM i jego widmo: y PAM (t) = n= x(nt s ) Y PAM (ω) = τ T s Sa(ωτ/2)e j(ωτ/2) ( ) t τ/2

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.03 Podstawowe zasady modulacji amlitudy na przykładzie modulacji DSB 1. Podstawowe zasady modulacji amplitudy

Bardziej szczegółowo

Rozwinięcie funkcji modulującej m(t) w szereg potęgowy: B PM 2f m

Rozwinięcie funkcji modulującej m(t) w szereg potęgowy: B PM 2f m Wąskopasmowa modulacja fazy (przypadek k p x(t) max 1) Rozwinięcie funkcji modulującej m(t) w szereg potęgowy: m(t) = e jk px(t) = 1 + jk p x(t) +... Sygnały zmodulowane: z PM (t) Y 0 [1 + jk p x(t)]e

Bardziej szczegółowo

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM D. B. Tefelski Zakład VI Badań Wysokociśnieniowych Wydział Fizyki Politechnika Warszawska, Koszykowa 75, 00-662 Warszawa, PL 28 marzec 2011 Modulacja i detekcja, rozwiązania

Bardziej szczegółowo

Lekcja 20. Temat: Detektory.

Lekcja 20. Temat: Detektory. Lekcja 20 Temat: Detektory. Modulacja amplitudy. (AM z ang. Amplitude Modulation) jeden z trzech podstawowych rodzajów modulacji, polegający na kodowaniu sygnału informacyjnego (szerokopasmowego o małej

Bardziej szczegółowo

MODULACJE ANALOGOWE. Funkcja modulująca zależna od sygnału modulującego: m(t) = m(t) e

MODULACJE ANALOGOWE. Funkcja modulująca zależna od sygnału modulującego: m(t) = m(t) e Nośna: MODULACJE ANALOGOWE c(t) = Y 0 cos(ωt + ϕ 0 ) Sygnał analityczny sygnału zmodulowanego y(t): z y (t) = m(t)z c (t), z c (t) = Y 0 e jωt Funkcja modulująca zależna od sygnału modulującego: j arg

Bardziej szczegółowo

Układy elektroniczne II. Modulatory i detektory

Układy elektroniczne II. Modulatory i detektory Układy elektroniczne II Modulatory i detektory Jerzy Witkowski Modulacja Przekształcenie sygnału informacyjnego do postaci dogodnej do transmisji w kanale telekomunikacyjnym Polega na zmianie, któregoś

Bardziej szczegółowo

Przebieg sygnału w czasie Y(fL

Przebieg sygnału w czasie Y(fL 12.3. y y to układy elektroniczne, które przetwarzają energię źródła przebiegu stałego na energię przebiegu zmiennego wyjściowego (impulsowego lub okresowego). W zależności od kształtu wytwarzanego przebiegu

Bardziej szczegółowo

SYMULACJA KOMPUTEROWA SYSTEMÓW

SYMULACJA KOMPUTEROWA SYSTEMÓW SYMULACJA KOMPUTEROWA SYSTEMÓW ZASADY ZALICZENIA I TEMATY PROJEKTÓW Rok akademicki 2015 / 2016 Spośród zaproponowanych poniżej tematów projektowych należy wybrać jeden i zrealizować go korzystając albo

Bardziej szczegółowo

2. STRUKTURA RADIOFONICZNYCH SYGNAŁÓW CYFROWYCH

2. STRUKTURA RADIOFONICZNYCH SYGNAŁÓW CYFROWYCH 1. WSTĘP Radiofonię cyfrową cechują strumienie danych o dużych przepływnościach danych. Do przesyłania strumienia danych o dużych przepływnościach stosuje się transmisję z wykorzystaniem wielu sygnałów

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA

POLITECHNIKA POZNAŃSKA POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 4 Temat: Modulacje analogowe

Bardziej szczegółowo

Rozkład materiału z przedmiotu: Przetwarzanie i obróbka sygnałów

Rozkład materiału z przedmiotu: Przetwarzanie i obróbka sygnałów Rozkład materiału z przedmiotu: Przetwarzanie i obróbka sygnałów Dla klasy 3 i 4 technikum 1. Klasa 3 34 tyg. x 3 godz. = 102 godz. Szczegółowy rozkład materiału: I. Definicje sygnału: 1. Interpretacja

Bardziej szczegółowo

Systemy i Sieci Radiowe

Systemy i Sieci Radiowe Systemy i Sieci Radiowe Wykład 2 Wprowadzenie część 2 Treść wykładu modulacje cyfrowe kodowanie głosu i video sieci - wiadomości ogólne podstawowe techniki komutacyjne 1 Schemat blokowy Źródło informacji

Bardziej szczegółowo

Kanał telekomunikacyjny

Kanał telekomunikacyjny TELEKOMUNIKACJA Dr inż. Małgorzata Langer Pokój 310 budynek B9 (Lodex) Malgorzata.langer@p.lodz.pl Informacje na stronie internetowej www.tele.p.lodz.pl Kanał telekomunikacyjny Kanał to szeregowe połączenie

Bardziej szczegółowo

Modulacja i kodowanie - labolatorium. Modulacje cyfrowe. Kluczowane częstotliwości (FSK)

Modulacja i kodowanie - labolatorium. Modulacje cyfrowe. Kluczowane częstotliwości (FSK) Modulacja i kodowanie - labolatorium Modulacje cyfrowe Kluczowane częstotliwości (FSK) Celem ćwiczenia jest zbudowanie systemu modulacji: modulacji polegającej na kluczowaniu częstotliwości (FSK Frequency

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.08 Zasady wytwarzania sygnałów zmodulowanych za pomocą modulacji AM 1. Zasady wytwarzania sygnałów zmodulowanych

Bardziej szczegółowo

Przetwarzanie sygnałów w telekomunikacji

Przetwarzanie sygnałów w telekomunikacji Przetwarzanie sygnałów w telekomunikacji Prowadzący: Przemysław Dymarski, Inst. Telekomunikacji PW, gm. Elektroniki, pok. 461 dymarski@tele.pw.edu.pl Wykład: Wstęp: transmisja analogowa i cyfrowa, modulacja

Bardziej szczegółowo

MODULACJE ANALOGOWE AM i FM

MODULACJE ANALOGOWE AM i FM dr inż. Karol Radecki MODULACJE ANALOGOWE AM i FM materiały do wykładu Teoria Sygnałów i Modulacji PODSTAWOWE POJĘCIA I ZALEŻNOŚCI Analogowy system telekomunikacyjny sygnał oryginalny sygnał zmodulowany

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I APARATURY ELEKTRONICZNEJ. Instrukcja do zajęć laboratoryjnych. Numer ćwiczenia: 7

WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I APARATURY ELEKTRONICZNEJ. Instrukcja do zajęć laboratoryjnych. Numer ćwiczenia: 7 Politechnika Białostocka WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I APARATURY ELEKTRONICZNEJ Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Modulacja amplitudy. Numer ćwiczenia: 7 Laboratorium

Bardziej szczegółowo

Wykaz emisji przeznaczonych dla Służby Amatorskiej (poniedziaå ek, 14 sierpieå 2006) - - Ostatnia aktualizacja ()

Wykaz emisji przeznaczonych dla Służby Amatorskiej (poniedziaå ek, 14 sierpieå 2006) - - Ostatnia aktualizacja () Wykaz emisji przeznaczonych dla Służby Amatorskiej (poniedziaå ek, 14 sierpieå 2006) Ostatnia aktualizacja () Telegrafia i telefonia Do przekazywania wiadomości drogą radiową potrzebne są następujące elementy:

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 01/015 Kierunek studiów: Transport Forma sudiów:

Bardziej szczegółowo

Demodulator FM. o~ ~ I I I I I~ V

Demodulator FM. o~ ~ I I I I I~ V Zadaniem demodulatora FM jest wytworzenie sygnału wyjściowego, który będzie proporcjonalny do chwilowej wartości częstotliwości sygnału zmodulowanego częstotliwościowo. Na rysunku 12.13b przedstawiono

Bardziej szczegółowo

Transmisja danych binarnych w kanale o wąskim paśmie. Łączność radiowa (telemetria, zdalne sterowanie)

Transmisja danych binarnych w kanale o wąskim paśmie. Łączność radiowa (telemetria, zdalne sterowanie) Modulacje cyfrowe - zastosowania Transmisja danych binarnych w kanale o wąskim paśmie Łączność modemowa, telefaksowa Łączność radiowa (telemetria, zdalne sterowanie) Systemy bezprzewodowe (ang. Wireless)

Bardziej szczegółowo

PREZENTACJA MODULACJI AM W PROGRAMIE MATHCAD

PREZENTACJA MODULACJI AM W PROGRAMIE MATHCAD POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Jakub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* PREZENTACJA MODULACJI W PROGRIE MATHCAD W artykule przedstawiono dydaktyczną

Bardziej szczegółowo

Systemy i Sieci Telekomunikacyjne laboratorium. Modulacja amplitudy

Systemy i Sieci Telekomunikacyjne laboratorium. Modulacja amplitudy Systemy i Sieci Telekomunikacyjne laboratorium Modulacja amplitudy 1. Cel ćwiczenia: Celem części podstawowej ćwiczenia jest zbudowanie w środowisku GnuRadio kompletnego, funkcjonalnego odbiornika AM.

Bardziej szczegółowo

LABORATORIUM Sygnałów, Modulacji i Systemów ĆWICZENIE 2: Modulacje analogowe

LABORATORIUM Sygnałów, Modulacji i Systemów ĆWICZENIE 2: Modulacje analogowe Protokół ćwiczenia 2 LABORATORIUM Sygnałów, Modulacji i Systemów Zespół data: ĆWICZENIE 2: Modulacje analogowe Imię i Nazwisko: 1.... 2.... ocena: Modulacja AM 1. Zestawić układ pomiarowy do badań modulacji

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA

POLITECHNIKA POZNAŃSKA POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 4 Temat: Modulacje analogowe

Bardziej szczegółowo

TEMAT: SYSTEMY CYFROWE: MODULACJA DEMODULACJA FSK, PSK, ASK

TEMAT: SYSTEMY CYFROWE: MODULACJA DEMODULACJA FSK, PSK, ASK SYSTEMY TELEINFORMATYCZNE INSTRUKCJA DO ĆWICZENIA NR 7 LAB 7 TEMAT: SYSTEMY CYFROWE: MODULACJA DEMODULACJA FSK, PSK, ASK SYSTEMY TELEINFORMATYCZNE I. CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się

Bardziej szczegółowo

10. Demodulatory synchroniczne z fazową pętlą sprzężenia zwrotnego

10. Demodulatory synchroniczne z fazową pętlą sprzężenia zwrotnego 102 10. Demodulatory synchroniczne z fazową pętlą sprzężenia zwrotnego Cele ćwiczenia Badanie właściwości pętli fazowej. Badanie układu Costasa do odtwarzania nośnej sygnału AM-SC. Badanie układu Costasa

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I APARATURY ELEKTRONICZNEJ. Instrukcja do zajęć laboratoryjnych. Numer ćwiczenia: 5

WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I APARATURY ELEKTRONICZNEJ. Instrukcja do zajęć laboratoryjnych. Numer ćwiczenia: 5 Politechnika Białostocka WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I APARATURY ELEKTRONICZNEJ Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Cyfrowa transmisja pasmowa. Numer ćwiczenia: 5 Laboratorium

Bardziej szczegółowo

Wykaz emisji przeznaczonych dla Służby Amatorskiej (poniedziaå ek, 14 sierpieå 2006) - - Ostatnia aktualizacja ()

Wykaz emisji przeznaczonych dla Służby Amatorskiej (poniedziaå ek, 14 sierpieå 2006) - - Ostatnia aktualizacja () Wykaz emisji przeznaczonych dla Służby Amatorskiej (poniedziaå ek, 14 sierpieå 2006) Ostatnia aktualizacja () Telegrafia i telefonia Do przekazywania wiadomości drogą radiową potrzebne są następujące elementy:

Bardziej szczegółowo

Niezawodność i diagnostyka systemów cyfrowych projekt 2015

Niezawodność i diagnostyka systemów cyfrowych projekt 2015 Niezawodność i diagnostyka systemów cyfrowych projekt 2015 Jacek Jarnicki jacek.jarnicki@pwr.edu.pl Zajęcia wprowadzające 1. Cel zajęć projektowych 2. Etapy realizacji projektu 3. Tematy zadań do rozwiązania

Bardziej szczegółowo

Detekcja synchroniczna i PLL

Detekcja synchroniczna i PLL Detekcja synchroniczna i PLL kład mnożący -detektor azy! VCC VCC wy, średnie Detekcja synchroniczna Gdy na wejścia podamy przebiegi o różnych częstotliwościach cos(ω i cos(ω t+) oraz ma dużą amplitudę

Bardziej szczegółowo

06 Tor pośredniej częstotliwości, demodulatory AM i FM Pytania sprawdzające Wiadomości podstawowe Budowa wzmacniaczy pośredniej częstotliwości

06 Tor pośredniej częstotliwości, demodulatory AM i FM Pytania sprawdzające Wiadomości podstawowe Budowa wzmacniaczy pośredniej częstotliwości 06 Tor pośredniej częstotliwości, demodulatory AM i FM Pytania sprawdzające 1. Jakie są wymagania stawiane wzmacniaczom p.cz.? 2. Jaka jest szerokość pasma sygnału AM i FM? 3. Ile wynosi częstotliwość

Bardziej szczegółowo

PODSTAWY I ALGORYTMY PRZETWARZANIA SYGNAŁÓW PROGRAM WYKŁADÓW PROGRAM WYKŁADÓW PROGRAM WYKŁADÓW

PODSTAWY I ALGORYTMY PRZETWARZANIA SYGNAŁÓW PROGRAM WYKŁADÓW PROGRAM WYKŁADÓW PROGRAM WYKŁADÓW PODSTAWY I ALGORYTMY PRZETWARZANIA SYGNAŁÓW Kierunek: Elektronika i Telekomunikacja sem. IV Prowadzący: dr inż. ARKADIUSZ ŁUKJANIUK PROGRAM WYKŁADÓW Pojęcie sygnału, sygnał a informacja, klasyfikacja sygnałów,

Bardziej szczegółowo

Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych

Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych XXXVIII MIĘDZYUCZELNIANIA KONFERENCJA METROLOGÓW MKM 06 Warszawa Białobrzegi, 4-6 września 2006 r. Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych Eligiusz PAWŁOWSKI Politechnika

Bardziej szczegółowo

Podstawowe modulacje analogowe Modulacja amplitudy AM Modulacja częstotliwości FM

Podstawowe modulacje analogowe Modulacja amplitudy AM Modulacja częstotliwości FM ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM Systemy łączności w transporcie INSTRUKCJA DO ĆWICZENIA NR 1 Podstawowe

Bardziej szczegółowo

12.8. Zasada transmisji telewizyjnej

12.8. Zasada transmisji telewizyjnej 12.8. Zasada transmisji telewizyjnej Transmisja obrazu wraz z towarzyszącym mu dźwiękiem jest realizowana przez zespół urządzeń stanowiących tor nadawczy i odbiorczy, przedstawiony w sposób schematyczny

Bardziej szczegółowo

SYSTEMY TELEINFORMATYCZNE

SYSTEMY TELEINFORMATYCZNE SYSTEMY TELEINFORMATYCZNE AiR 5r. Wykład 2 Telekomunikacja zajmuje się: - sygnałami (przetwarzanie informacji na sygnał i odwrotnie) - komutacją (technika łączenia) - transmisją (przesył sygnałów na odległość)

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport orski Seestr II Ćw. 5 Modulacja AM i Wersja opracowania Marzec 5 Opracowanie: gr inż.

Bardziej szczegółowo

Systemy plezjochroniczne (PDH) synchroniczne (SDH), Transmisja w sieci elektroenergetycznej (PLC Power Line Communication)

Systemy plezjochroniczne (PDH) synchroniczne (SDH), Transmisja w sieci elektroenergetycznej (PLC Power Line Communication) Politechnika Śląska Katedra Elektryfikacji i Automatyzacji Górnictwa Systemy plezjochroniczne (PDH) synchroniczne (SDH), Transmisja w sieci elektroenergetycznej (PLC Power Line Communication) Opracował:

Bardziej szczegółowo

TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych

TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych TERAZ O SYGNAŁACH Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Sygnał sinusoidalny Sygnał sinusoidalny (także cosinusoidalny) należy do podstawowych

Bardziej szczegółowo

Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki

Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.09 Określenie procentu modulacji sygnału zmodulowanego AM 1. Określenie procentu modulacji sygnału zmodulowanego

Bardziej szczegółowo

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Opracowanie na postawie: Islam S. K., Haider M. R.: Sensor and low power signal processing, Springer 2010 http://en.wikipedia.org/wiki/modulation

Bardziej szczegółowo

Demodulowanie sygnału AM demodulator obwiedni

Demodulowanie sygnału AM demodulator obwiedni Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.12 Demodulowanie sygnału AM demodulator obwiedni 1. Demodulowanie sygnału AM demodulator obwiedni Ćwiczenie to

Bardziej szczegółowo

ARKUSZ EGZAMINACYJNY ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJ CEGO KWALIFIKACJE ZAWODOWE STYCZEŃ 2014

ARKUSZ EGZAMINACYJNY ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJ CEGO KWALIFIKACJE ZAWODOWE STYCZEŃ 2014 Zawód: technik elektronik Symbol cyfrowy zawodu: 311[07] Numer zadania: 1 Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu 311[07]-01-141 Czas trwania egzaminu: 240 minut ARKUSZ

Bardziej szczegółowo

Wpływ szumu na kluczowanie fazy (BPSK)

Wpływ szumu na kluczowanie fazy (BPSK) Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.9 Wpływ szumu na kluczowanie fazy () . Wpływ szumu na kluczowanie fazy () Ćwiczenie ma na celu wyjaśnienie wpływu

Bardziej szczegółowo

Temat ćwiczenia. Analiza częstotliwościowa

Temat ćwiczenia. Analiza częstotliwościowa POLIECHNIKA ŚLĄSKA W YDZIAŁ RANSPORU emat ćwiczenia Analiza częstotliwościowa Analiza częstotliwościowa sygnałów. Wprowadzenie Analizę częstotliwościową stosuje się powszechnie w wielu dziedzinach techniki.

Bardziej szczegółowo

Kwantowanie sygnałów analogowych na przykładzie sygnału mowy

Kwantowanie sygnałów analogowych na przykładzie sygnału mowy Kwantowanie sygnałów analogowych na przykładzie sygnału mowy Treść wykładu: Sygnał mowy i jego właściwości Kwantowanie skalarne: kwantyzator równomierny, nierównomierny, adaptacyjny Zastosowanie w koderze

Bardziej szczegółowo

Modulatory i detektory. Modulacja. Modulacja i detekcja

Modulatory i detektory. Modulacja. Modulacja i detekcja Modulator i detektor Modulacja Przekształcenie sgnału informacjnego do postaci dogodnej do transmisji w kanale telekomunikacjnm Polega na zmianie, któregoś z parametrów fali nośnej (amplitud, częstotliwości,

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w

Bardziej szczegółowo

Przykładowe pytania 1/11

Przykładowe pytania 1/11 Parametry sygnałów Przykładowe pytania /. Dla okresowego przebiegu sinusoidalnego sterowanego fazowo (jak na rys) o kącie przewodzenia θ wyprowadzić zależność wartości skutecznej od kąta przewodzenia θ.

Bardziej szczegółowo

Modulacja i kodowanie laboratorium. Modulacje Cyfrowe: Kluczowanie Amplitudy (ASK) i kluczowanie Fazy (PSK)

Modulacja i kodowanie laboratorium. Modulacje Cyfrowe: Kluczowanie Amplitudy (ASK) i kluczowanie Fazy (PSK) Modulacja i kodowanie laboratorium Modulacje Cyfrowe: Kluczowanie Amplitudy (ASK) i kluczowanie Fazy (PSK) Celem ćwiczenia jest opracowanie algorytmów modulacji i dekodowania dla dwóch rodzajów modulacji

Bardziej szczegółowo

Sygnały cyfrowe naturalne i zmodulowane

Sygnały cyfrowe naturalne i zmodulowane Sygnały cyfrowe naturalne i zmodulowane Krzysztof Włostowski e-mail: chrisk@tele.pw.edu.pl pok. 467 tel. 234 7896 1 Sygnały cyfrowe Sygnały naturalne (baseband) Sygnały zmodulowane 1 0 0 1 0 0 1 1 przepływność

Bardziej szczegółowo

Transmisja cyfrowa. (wprowadzenie do tematu)

Transmisja cyfrowa. (wprowadzenie do tematu) Transmisja cyfrowa (wprowadzenie do tematu) Jacek Jarnicki - Politechnika Wrocławska 1 Plan wykładu 1. Systemy transmisji danych ogólna charakterystyka 2. Zakłócenia jako źródło błędów w transmisji 3.

Bardziej szczegółowo

1. Rozchodzenie się i podział fal radiowych

1. Rozchodzenie się i podział fal radiowych 1. Rozchodzenie się i podział fal radiowych Cechą każdego systemu radiowego jest przekazywanie informacji (dźwięku) przez środowisko propagacji fal radiowych. Przetwarzanie wiadomości, nadawanie i odbiór

Bardziej szczegółowo

Filtry cyfrowe procesory sygnałowe

Filtry cyfrowe procesory sygnałowe Filtry cyfrowe procesory sygnałowe Rozwój wirtualnych przyrządów pomiarowych Algorytmy CPS działające na platformie TMX 320C5515e ZDSP USB STICK realizowane w laboratorium FCiPS Rozszerzenie ćwiczeń o

Bardziej szczegółowo

Specjalność - Wydział Elektroniki i Technik Informacyjnych PW

Specjalność - Wydział Elektroniki i Technik Informacyjnych PW Kod przedmiotu SRDM Nazwa przedmiotu Systemy radiodyfuzyjne Wersja przedmiotu 2 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne

Bardziej szczegółowo

Sieci Bezprzewodowe. Charakterystyka fal radiowych i optycznych WSHE PŁ wshe.lodz.pl.

Sieci Bezprzewodowe. Charakterystyka fal radiowych i optycznych WSHE PŁ wshe.lodz.pl. dr inż. Krzysztof Hodyr 42 6315989 WSHE 42 6313166 PŁ khodyr @ wshe.lodz.pl Materiały z wykładów są umieszczane na: http:// sieci.wshe.lodz.pl hasło: ws123he Tematyka wykładu Charakterystyka fal radiowych

Bardziej szczegółowo

Filtracja. Krzysztof Patan

Filtracja. Krzysztof Patan Filtracja Krzysztof Patan Wprowadzenie Działanie systemu polega na przetwarzaniu sygnału wejściowego x(t) na sygnał wyjściowy y(t) Równoważnie, system przetwarza widmo sygnału wejściowego X(jω) na widmo

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Przetwarzanie sygnałów Jerzy Szabatin x[ n] 2 4 8 6 n 23 września 23 Spis treści Rozdział. Elementy ogólnej teorii sygnałów Lekcja. Sygnały deterministyczne 2.. Wprowadzenie............................

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Przetwarzanie sygnałów Jerzy Szabatin x[ n] 2 4 8 6 n 23 września 23 ii ii Spis treści Rozdział. Elementy ogólnej teorii sygnałów Lekcja. Sygnały deterministyczne 3.. Wprowadzenie............................

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.14 Kluczowanie częstotliwości () 1. Kluczowanie częstotliwości () Ćwiczenie to ma na celu ułatwienie zrozumienia

Bardziej szczegółowo

(12) OPIS PATENTOWY (19) PL (11)

(12) OPIS PATENTOWY (19) PL (11) RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS PATENTOWY (19) PL (11) 181873 (21) Numer zgłoszenia: 320737 (13) B 1 (22) Data zgłoszenia 07.10.1996 (5 1) IntCl7 (86) Data i numer

Bardziej szczegółowo

Ćwiczenie 3. Właściwości przekształcenia Fouriera

Ćwiczenie 3. Właściwości przekształcenia Fouriera Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.10 Odbiór sygnałów AM odpowiedź częstotliwościowa stopnia 1. Odbiór sygnałów AM odpowiedź częstotliwościowa stopnia

Bardziej szczegółowo

Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.18 Binarne kluczowanie fazy (BPSK) 1 1. Binarne kluczowanie fazy (BPSK) Ćwiczenie to ma na celu ułatwienie zrozumienia

Bardziej szczegółowo

12. Demodulatory synchroniczne z fazową pętlą sprzężenia zwrotnego

12. Demodulatory synchroniczne z fazową pętlą sprzężenia zwrotnego 94 12. Demodulatory synchroniczne z fazową pętlą sprzężenia zwrotnego Cele ćwiczenia Badanie właściwości pętli fazowej. Badanie układu Costasa do odtwarzania nośnej sygnału AM-SC. Badanie układu Costasa

Bardziej szczegółowo

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 4. Wybrane telekomunikacyjne zastosowania algorytmów adaptacyjnych

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 4. Wybrane telekomunikacyjne zastosowania algorytmów adaptacyjnych ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 4 Wybrane telekomunikacyjne zastosowania algorytmów adaptacyjnych 1. CEL ĆWICZENIA Celem niniejszego ćwiczenia jest zapoznanie studentów z dwoma

Bardziej szczegółowo

10 Międzynarodowa Organizacja Radia i Telewizji.

10 Międzynarodowa Organizacja Radia i Telewizji. 10 Międzynarodowa Organizacja Radia i Telewizji. Odbiór sygnału telewizyjnego. Pytania sprawdzające 1. Jaką modulację stosuje się dla sygnałów telewizyjnych? 2. Jaka jest szerokość kanału telewizyjnego?

Bardziej szczegółowo

Specjalność - Wydział Elektroniki i Technik Informacyjnych PW

Specjalność - Wydział Elektroniki i Technik Informacyjnych PW Kod przedmiotu TEM Nazwa przedmiotu Technika emisji i odbioru Wersja przedmiotu 2 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne

Bardziej szczegółowo

Koło zainteresowań Teleinformatyk XXI wieku PROJEKT 1

Koło zainteresowań Teleinformatyk XXI wieku PROJEKT 1 Koło zainteresowań Teleinformatyk XXI wieku PROJEKT 1 Temat: Modulacja FM Imię i nazwisko ucznia: Adam Szulc Klasa: III Ti a Numer z dziennika: 25 Suwałki, grudzień 2012 1 Spis treści 1.Modulacja częstotliwości

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I APARATURY ELEKTRONICZNEJ. Instrukcja do zajęć laboratoryjnych. Numer ćwiczenia: 11

WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I APARATURY ELEKTRONICZNEJ. Instrukcja do zajęć laboratoryjnych. Numer ćwiczenia: 11 Politechnika Białostocka WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I APARATURY ELEKTRONICZNEJ Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Cyfrowa transmisja pasmowa kluczowanie amplitudy. Numer

Bardziej szczegółowo

Cyfrowy system łączności dla bezzałogowych statków powietrznych średniego zasięgu. 20 maja, 2016 R. Krenz 1

Cyfrowy system łączności dla bezzałogowych statków powietrznych średniego zasięgu. 20 maja, 2016 R. Krenz 1 Cyfrowy system łączności dla bezzałogowych statków powietrznych średniego zasięgu R. Krenz 1 Wstęp Celem projektu było opracowanie cyfrowego system łączności dla bezzałogowych statków latających średniego

Bardziej szczegółowo

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.

Bardziej szczegółowo

Spis treści. 1. Cyfrowy zapis i synteza dźwięku Schemat blokowy i zadania karty dźwiękowej UTK. Karty dźwiękowe. 1

Spis treści. 1. Cyfrowy zapis i synteza dźwięku Schemat blokowy i zadania karty dźwiękowej UTK. Karty dźwiękowe. 1 Spis treści 1. Cyfrowy zapis i synteza dźwięku... 2 2. Schemat blokowy i zadania karty dźwiękowej... 4 UTK. Karty dźwiękowe. 1 1. Cyfrowy zapis i synteza dźwięku Proces kodowania informacji analogowej,

Bardziej szczegółowo

Podstawy telekomunikacji. Kolokwium nr 2. Zagadnienia.

Podstawy telekomunikacji. Kolokwium nr 2. Zagadnienia. Podstawy telekomunikacji. Kolokwium nr 2. Zagadnienia. TDM (Time Division Multiplexing) dzielenie przesyłanych sygnałów na części, którym później przypisuje się czasy transmisji (tzw. szczeliny czasowe).

Bardziej szczegółowo

CZĘŚĆ I Podstawy komunikacji bezprzewodowej

CZĘŚĆ I Podstawy komunikacji bezprzewodowej O autorach......................................................... 9 Wprowadzenie..................................................... 11 CZĘŚĆ I Podstawy komunikacji bezprzewodowej 1. Komunikacja bezprzewodowa.....................................

Bardziej szczegółowo

Zaawansowane algorytmy DSP

Zaawansowane algorytmy DSP Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Zaawansowane algorytmy DSP Wstęp Cztery algorytmy wybrane spośród bardziej zaawansowanych

Bardziej szczegółowo

KOMPUTEROWE SYSTEMY POMIAROWE

KOMPUTEROWE SYSTEMY POMIAROWE KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST - ITwE Semestr zimowy Wykład nr 12 Prawo autorskie Niniejsze

Bardziej szczegółowo

BER = f(e b. /N o. Transmisja satelitarna. Wskaźniki jakości. Transmisja cyfrowa

BER = f(e b. /N o. Transmisja satelitarna. Wskaźniki jakości. Transmisja cyfrowa Transmisja satelitarna Wskaźniki jakości Transmisja cyfrowa Elementowa stopa błędów (Bit Error Rate) BER = f(e b /N o ) Dostępność łącza Dla żądanej wartości BER. % czasu w roku, w którym założona jakość

Bardziej szczegółowo

Wytwarzanie sygnałów SSB metodę filtracyjną

Wytwarzanie sygnałów SSB metodę filtracyjną Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.13 Wytwarzanie sygnałów SSB metodę filtracyjną 1. Wytwarzanie sygnałów SSB metodę filtracyjną Ćwiczenie to ma

Bardziej szczegółowo

LABORATORIUM TRANSMISJI DANYCH

LABORATORIUM TRANSMISJI DANYCH ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM TRANSMISJI DANYCH INSTRUKCJA DO ĆWICZENIA NR 1 Modulacja amplitudy

Bardziej szczegółowo

PODSTAWY TELEKOMUNIKACJI Egzamin I - 2.02.2011 (za każde polecenie - 6 punktów)

PODSTAWY TELEKOMUNIKACJI Egzamin I - 2.02.2011 (za każde polecenie - 6 punktów) PODSTAWY TELEKOMUNIKACJI Egzamin I - 2.02.2011 (za każde polecenie - 6 punktów) 1. Dla ciągu danych: 1 1 0 1 0 narysuj przebiegi na wyjściu koderów kodów transmisyjnych: bipolarnego NRZ, unipolarnego RZ,

Bardziej szczegółowo

1. Kodowanie PCM 1.1 Informacje podstawowe

1. Kodowanie PCM 1.1 Informacje podstawowe 1. Kodowanie PCM 1.1 Informacje podstawowe Zdefiniowanie pojęcia sygnału należy poprzedzić określeniem samej informacji, która jest pojęciem pierwotnym, a więc nie wymagającym definiowania. Encyklopedia

Bardziej szczegółowo

BADANIE MODULATORÓW I DEMODULATORÓW AMPLITUDY (AM)

BADANIE MODULATORÓW I DEMODULATORÓW AMPLITUDY (AM) Zespół Szkół Technicznych w Suwałkach Pracownia Sieci Teleinformatycznych Ćwiczenie Nr 1 BADANIE MODULATORÓW I DEMODULATORÓW AMPLITUDY (AM) Opracował Sławomir Zieliński Suwałki 2010 Cel ćwiczenia Pomiar

Bardziej szczegółowo

MODULACJA I DEMODULACJA FAZY

MODULACJA I DEMODULACJA FAZY SYSTEMY TELEINFORMATYCZNE INSTRUKCJA DO ĆWICZENIA NR 6 6 LAB TEMAT: MODULACJA I DEMODULACJA FAZY SYSTEMY TELEINFORMATYCZNE I. CEL ĆWICZENIA: Celem ćwiczenia jest wprowadzenie do zagadnienia modulacji i

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

14 Modulatory FM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE Podstawy modulacji częstotliwości Dioda pojemnościowa (waraktor)

14 Modulatory FM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE Podstawy modulacji częstotliwości Dioda pojemnościowa (waraktor) 14 Modulatory FM CELE ĆWICZEŃ Poznanie zasady działania i charakterystyk diody waraktorowej. Zrozumienie zasady działania oscylatora sterowanego napięciem. Poznanie budowy modulatora częstotliwości z oscylatorem

Bardziej szczegółowo

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe. Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu

Bardziej szczegółowo

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20). SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy

Bardziej szczegółowo

Sieci komputerowe II. Uniwersytet Warszawski Podanie notatek

Sieci komputerowe II. Uniwersytet Warszawski Podanie notatek Sieci komputerowe II Notatki Uniwersytet Warszawski Podanie notatek 03-01-2005 Wykład nr 1: 03-01-2005 Temat: Transmisja danych łączami 1 Podstawowe pojęcia Dla uporządkowania przypomnijmy podstawowe używane

Bardziej szczegółowo

Podstawy Transmisji Cyfrowej

Podstawy Transmisji Cyfrowej Politechnika Warszawska Wydział Elektroniki I Technik Informacyjnych Instytut Telekomunikacji Podstawy Transmisji Cyfrowej laboratorium Ćwiczenie 4 Modulacje Cyfrowe semestr zimowy 2006/7 W ramach ćwiczenia

Bardziej szczegółowo

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Opracowanie na postawie: Frank Karlsen, Nordic VLSI, Zalecenia projektowe dla tanich systemów, bezprzewodowej transmisji danych cyfrowych, EP

Bardziej szczegółowo

ZAKŁAD SYSTEMÓW ELEKTRONICZNYCH I TELEKOMUNIKACYJNYCH Laboratorium Podstaw Telekomunikacji WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ

ZAKŁAD SYSTEMÓW ELEKTRONICZNYCH I TELEKOMUNIKACYJNYCH Laboratorium Podstaw Telekomunikacji WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ Laboratorium Podstaw Telekomunikacji Ćw. 4 WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ 1. Zapoznać się z zestawem do demonstracji wpływu zakłóceń na transmisję sygnałów cyfrowych. 2. Przy użyciu oscyloskopu cyfrowego

Bardziej szczegółowo

PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 02/12

PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 02/12 PL 219314 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 219314 (13) B1 (21) Numer zgłoszenia: 391709 (51) Int.Cl. H04B 1/00 (2006.01) H04B 1/10 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej

Bardziej szczegółowo