Podstawy bioinformatyki sekwencjonowanie nowej generacji. Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawy bioinformatyki sekwencjonowanie nowej generacji. Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu"

Transkrypt

1 Podstawy bioinformatyki sekwencjonowanie nowej generacji Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu

2 Rozwój technologii i przyrost danych Wzrost olbrzymiej ilości i objętości surowych danych potrzeba gromadzenia danych potrzeba stworzenia skomplikowanych procedur komputerowych do zarządzania danymi 1 osobnik Dane NGS w Katedrze Genetyki: 200 buhajów 32 krowy Magda Mielczarek NGS 2

3 DANE NGS The second-generation machines are characterized by highly parallel operation, higher yield, simpler operation, much lower cost per read, and (unfortunately) shorter reads. Today s machines are commonly referred to as short-read sequencers or next-generation sequencers (NGS) though their successors may be on the horizon (Miller 2010). Sekwenatory pierwszej generacji : bp Sekwenatory drugiej generacji: 454 Roche bp Illumina 100 bp ( bp ) SOLiD 100 bp Krótsze odczyty: mniej informacji ich składanie wymaga większego pokrycia genomu Magda Mielczarek NGS 3

4 Pokrycie genomu wysokie pokrycie niskie pokrycie Krótkie Sekwencje Genom referencyjny Magda Mielczarek NGS 4

5 Baza danych NCBI - Sequence Read Archive Magda Mielczarek NGS 5

6 Dane - format fastq SRR988073_1.fastq SRR988073_2.fastq Magda Mielczarek NGS 6

7 Dane - format fastq 1. Nazwa sekwencji 2. Sekwencja 3. Separator 4. Jakość sekwencji (uwaga na kodowanie!) 1 odczyt (read) Magda Mielczarek NGS 7

8 Kodowanie jakości Magda Mielczarek NGS 8

9 SRR988073_1.fastq Dane pary odczytów (paired-end) SRR988073_2.fastq Magda Mielczarek NGS 9

10 Dane pary odczytów (paired-end) Single end Read 1 Read 1 Read 1 Reference Paired end Read 1 Read 2 Read 1 Reference Read 2 Magda Mielczarek NGS 10

11 Dane pary odczytów (paired-end) Single end Read 1 Read 1 Read 1 Reference Paired end Read 1 Read 2 Read 1 Reference Read 2 Magda Mielczarek NGS 11

12 FastQC Kontrola jakości danych Graficzne przedstawienie sekwencji Tworzenie raportu Brak możliwości filtracji danych Magda Mielczarek NGS 12

13 Basic statistics Magda Mielczarek NGS 13

14 Per base sequence quality Jakość dla każdej pozycji Mediana Wykres pudełkowy Max/min Średnia Length 35bp to 150bp, typically 100bp today Attributes High quality at 5' start, lowers toward 3' end Ostrzeżenie niższy kwartyl dla jakiejkolwiek pozycji <10 lub mediana <25 Awaria niższy kwartyl dla jakiejkolwiek pozycji <5 lub mediana <20 Magda Mielczarek NGS 14

15 Per sequence quality scores Średnia jakość sekwencji Ostrzeżenie najczęściej obserwowane średnia jakość <27 Awaria najczęściej obserwowane średnia jakość< 20 Magda Mielczarek NGS 15

16 Per base N content Ostrzeżenie dowolna pozycja pokazuje zawartość N> 5%. Awaria dowolna pozycja pokazuje zawartość N> 20%. Magda Mielczarek NGS 16

17 Sequence Length Distribution Ostrzeżenie sekwencje nie są tej samej długości Awaria którakolwiek sekwencja ma długość 0 Magda Mielczarek NGS 17

18 EDYCJA DANYCH Magda Mielczarek NGS 18

19 Torsten Seemann - Cleaning Illumina reads Magda Mielczarek NGS 19

20 PRINSEQ Magda Mielczarek NGS 20

21 PRINSEQ Jakoś satysfakcjonująca - 20 Dopuszczalna długość sekwencji - 60 pz Magda Mielczarek NGS 21

22 PRZYRÓWNANIE DO GENOMU REFERENCYJNEGO Magda Mielczarek NGS 22

23 Przyrównanie do sekwencji referencyjnej złożenie krótkich fragmentów read ACTGGGGGGGA GGGAAAAATTTC GGGAACCTTTCT CCTTTCTTTGGA ACTGGGGGGGAAAAATTTCAAAGGGAACCTTTCTTTGGAGGGTT reference Magda Mielczarek NGS 23

24 Genom referencyjny - NCBI Magda Mielczarek NGS 24

25 Genom referencyjny - format fasta A Adenozyna C Cytozyna G Guanina T Tymina U Uracyl R G A (puryna) Y T C (pirymidyna) S G C (Strong) W A T (Weak) B G T C (not A) D G A T (not C) H A C T (not G) V G C A (not T) N A G C T (any) Magda Mielczarek NGS 25

26 Przyrównanie do genomu referencyjnego - software Bfast BioScope Bowtie BWA CLC bio CloudBurst Eland/Eland2 GenomeMapper GnuMap Karma MAQ MOM Mosaik MrFAST/MrsFAST NovoAlign PASS PerM RazerS RMAP SSAHA2 Segemehl SeqMap SHRiMP Slider/SliderII SOAP/SOAP2 Stampy ZOOM i wiele wiele innych Magda Mielczarek NGS 26

27 Przyrównanie do genomu referencyjnego - algorytmy Oprogramowanie = formatowanie genomu referencyjnego + przyrównanie do genomu referencyjnego 1. Hash table: Hash table on the set of input reads Hash table on the reference genome 2. Transformata Burrowsa-Wheelera (BWT) Magda Mielczarek NGS 27

28 BWA Magda Mielczarek NGS 28

29 Przykłady programów Name OS Input Output Supported platforms Indexing method Gapped alignment BarraCUDA Lin FASTQ SAM Illumina FM index (BWT) yes BFAST Lin FASTQ SAM Illumina, ABI SOLiD, 454 Multiple (hash, tree, ) Bowtie Lin, Mac, Win FASTQ, FASTA SAM Illumina, ABI SOLiD FM index (BWT) no Bowtie2 Lin, Mac, Win FASTQ, FASTA, QSEQ BWA Lin (CS)FASTQ, FASTA SAM Illumina, ABI SOLiD(1) SAM Illumina, 454 FM index (BWT) yes FM index (BWT) BWA-SW Lin FASTQ, FASTA SAM 454 FM index (BWT) yes ELAND Lin FASTQ, FASTA SAM Illumina - no MAQ Lin FASTQ, FASTA Maq Illumina Hash based yes yes yes Mosaik Lin, Mac, Win FASTQ, FASTA SAM, BED, several others Illumina, ABI SOLiD, yes mrfast Lin FASTQ, FASTA SAM, DIVET Illumina Hash based yes mrsfast Lin FASTQ, FASTA SAM, DIVET Illumina Hash based no Novoalign Lin, Mac FASTQ, (CS)FASTA SAM, TXT Illumina, ABI SOLiD - yes SOAP2 Lin FASTQ, FASTA SOAP (2) Illumina FM index (BWT) yes SOAP3 Lin FASTQ, FASTA SAM Illumina FM index (BWT) no SSAHA2 Lin, Mac FASTA SAM, GFF Illumina, ABI SOLiD, 454 Tree index Stampy Lin, Mac FASTQ, FASTA SAM Illumina, 454 FM index (BWT) - YOABS Lin - - Illumina FM & Tree index yes Tabela2. Programy służące do przyrównania do genomu referencyjnego (Pabinger et.al. 2013) Magda Mielczarek NGS 29 yes

30 Format SAM Sequence Alignment/Map Format: popularny, uniwersalny zawiera informacje na temat przyrównania header section alignment section Magda Mielczarek NGS 30

31 Format BAM Binary Alignment/Map Format: binarny odpowiednik formatu SAM skompresowany przez BGZF zajmuje mniej pamięci dysku (stanowi ok. 27% oryginalnego pliku w formacie SAM) Magda Mielczarek NGS 31

32 POSZUKIWANIE POLIMORFIZMÓW DNA Magda Mielczarek NGS 32

33 Poszukiwanie polimorfizmów SNP Polimorfizm pojedynczego nukleotydu ACTGACTGACTGCCCGTTCCA ACTGACTCACTGCCCGTTCCG INDEL: insercja delecja ACTGACTGACTGCCCGTTCCA ACTGACTGACTGGCTCCCGTTCCA ACTGACTGACTGCCCGTTCC ACTGA CTGCCCGTTCC Magda Mielczarek NGS 33

34 Poszukiwanie polimorfizmów pakiet Samtools Magda Mielczarek NGS 34

35 SNP Venn diagrams showing the number of identified variants for tested tools (Pabinger et al. 2013) Magda Mielczarek NGS 35

36 IGV Magda Mielczarek NGS 36

37 IGV Magda Mielczarek NGS 37

38 Automatyzacja pracy Automatyzacja działania programów pozwala na: skrócenie czasu analiz równoległe działanie programów oszczędność czasu - uniwersalność skryptów, wykorzystanie dla różnych danych unikanie błędów pracę z ogromnymi zbiorami danych Magda Mielczarek NGS 38

Analiza danych pochodzących z sekwencjonowania nowej generacji - przyrównanie do genomu referencyjnego. - część I -

Analiza danych pochodzących z sekwencjonowania nowej generacji - przyrównanie do genomu referencyjnego. - część I - pochodzących z sekwencjonowania nowej generacji - przyrównanie do genomu referencyjnego - część I - Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Plan wykładów --------------------------------------------------------

Bardziej szczegółowo

ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI

ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI JOANNA SZYDA MAGDALENA FRĄSZCZAK MAGDA MIELCZAREK WSTĘP 1. Katedra Genetyki 2. Pracownia biostatystyki 3. Projekty NGS 4. Charakterystyka

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI WYKŁAD 4 ANALIZA DANYCH NGS

PODSTAWY BIOINFORMATYKI WYKŁAD 4 ANALIZA DANYCH NGS PODSTAWY BIOINFORMATYKI WYKŁAD 4 ANALIZA DANYCH NGS SEKWENCJONOWANIE GENOMÓW NEXT GENERATION METODA NOWEJ GENERACJI Sekwencjonowanie bardzo krótkich fragmentów 50-700 bp DNA unieruchomione na płytce Szybkie

Bardziej szczegółowo

ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI

ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI Joanna Szyda Magdalena Frąszczak Magda Mielczarek WSTĘP 1. Katedra Genetyki 2. Pracownia biostatystyki 3. Projekty NGS 4. Charakterystyka

Bardziej szczegółowo

Sekwencjonowanie Nowej Generacji ang. Next Generation Sequencing. Wykład 6 Część 1 NGS - wstęp Dr Wioleta Drobik-Czwarno

Sekwencjonowanie Nowej Generacji ang. Next Generation Sequencing. Wykład 6 Część 1 NGS - wstęp Dr Wioleta Drobik-Czwarno Sekwencjonowanie Nowej Generacji ang. Next Generation Sequencing Wykład 6 Część 1 NGS - wstęp Dr Wioleta Drobik-Czwarno Macierze tkankowe TMA ang. Tissue microarray Technika opisana w 1987 roku (Wan i

Bardziej szczegółowo

Sekwencjonowanie Nowej Generacji ang. Next Generation Sequencing

Sekwencjonowanie Nowej Generacji ang. Next Generation Sequencing Sekwencjonowanie Nowej Generacji ang. Next Generation Sequencing Wykład 7 Etapy analizy NGS Dr Wioleta Drobik-Czwarno Etapy analizy NGS Kontrola jakości surowych danych (format fastq) Jakość odczytów,

Bardziej szczegółowo

BIOINFORMATYKA BIOLOGICZNE BAZY DANYCH

BIOINFORMATYKA BIOLOGICZNE BAZY DANYCH http://theta.edu.pl/ Podstawy Bioinformatyki II BIOINFORMATYKA BIOLOGICZNE BAZY DANYCH 1 Czym jest bioinformatyka? 2 Bioinformatyka Bioinformatyka jest interdyscyplinarną dziedziną nauki obejmującą wykorzystanie

Bardziej szczegółowo

ZAJĘCIA ORGANIZACYJNE WSTĘP DO BIOINFORMATYKI

ZAJĘCIA ORGANIZACYJNE WSTĘP DO BIOINFORMATYKI ZAJĘCIA ORGANIZACYJNE WSTĘP DO BIOINFORMATYKI Podstawy Bioinformatyki lab 1 PODSTAWY BIOINFORMATYKI 2017/2018 MAGDA MIELCZAREK 1 BIOINFORMATYKA Dr Magda Mielczarek Katedra Genetyki, pokój nr 14 ul. Kożuchowska

Bardziej szczegółowo

Podstawy bioinformatyki - biologiczne bazy danych

Podstawy bioinformatyki - biologiczne bazy danych Podstawy bioinformatyki - biologiczne bazy danych Czym jest bioinformatyka? Bioinformatyka Bioinformatyka jest interdyscyplinarną dziedziną nauki obejmującą wykorzystanie metod obliczeniowych do badania

Bardziej szczegółowo

Sekwencjonowanie Nowej Generacji ang. Next Generation Sequencing

Sekwencjonowanie Nowej Generacji ang. Next Generation Sequencing Sekwencjonowanie Nowej Generacji ang. Next Generation Sequencing Wykład 7 Etapy analizy NGS Dr Wioleta Drobik-Czwarno Etapy analizy NGS Kontrola jakości surowych danych (format fastq) Jakość odczytów,

Bardziej szczegółowo

Przydatność technologii Sekwencjonowania Nowej Generacji (NGS) w kolekcjach Banków Genów Joanna Noceń Kinga Smolińska Marta Puchta Kierownik tematu:

Przydatność technologii Sekwencjonowania Nowej Generacji (NGS) w kolekcjach Banków Genów Joanna Noceń Kinga Smolińska Marta Puchta Kierownik tematu: Przydatność technologii Sekwencjonowania Nowej Generacji (NGS) w kolekcjach Banków Genów Joanna Noceń Kinga Smolińska Marta Puchta Kierownik tematu: prof. dr hab. Jerzy H. Czembor SEKWENCJONOWANIE I generacji

Bardziej szczegółowo

CHARAKTERYSTYKA PRZEDMIOTU Pracownia Informatyczna 1 PRACOWNIA INFORMATYCZNA 2018/2019 MAGDA MIELCZAREK 1

CHARAKTERYSTYKA PRZEDMIOTU Pracownia Informatyczna 1 PRACOWNIA INFORMATYCZNA 2018/2019 MAGDA MIELCZAREK 1 CHARAKTERYSTYKA PRZEDMIOTU Pracownia Informatyczna 1 PRACOWNIA INFORMATYCZNA 2018/2019 MAGDA MIELCZAREK 1 PRACOWNIA INFORMATYCZNA PROWADZĄCY: Dr Magda Mielczarek (biolog) Katedra Genetyki, pokój nr 21

Bardziej szczegółowo

POPULARNE POLECENIA SKRYPTY. Pracownia Informatyczna 2

POPULARNE POLECENIA SKRYPTY. Pracownia Informatyczna 2 SKRYPTY Pracownia Informatyczna 2 PRACOWNIA INFORMATYCZNA 2017/2018 MAGDA MIELCZAREK PRACOWNIA INFORMATYCZNA 2017/2018 MAGDA MIELCZAREK 2 cal wyświetlenie kalendarza Składnia: cal 2017, cal Polecenie cal

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI WYKŁAD 3 BIOLOGICZNE BAZY DANYCH (1)

PODSTAWY BIOINFORMATYKI WYKŁAD 3 BIOLOGICZNE BAZY DANYCH (1) PODSTAWY BIOINFORMATYKI WYKŁAD 3 BIOLOGICZNE BAZY DANYCH (1) BIOINFORMATYKA HISTORIA 1. 1982 utworzenie bazy danych GenBank (NIH) dane ogólnodostępne sekwencje nukleotydów 2. Wprowadzenie sekwencji z projektu

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI WYKŁAD 3 BIOLOGICZNE BAZY DANYCH (2)

PODSTAWY BIOINFORMATYKI WYKŁAD 3 BIOLOGICZNE BAZY DANYCH (2) PODSTAWY BIOINFORMATYKI WYKŁAD 3 BIOLOGICZNE BAZY DANYCH (2) BIOINFORMATYKA HISTORIA 1. 1982 utworzenie bazy danych GenBank (NIH) dane ogólnodostępne sekwencje nukleotydów 2. Wprowadzenie sekwencji z projektu

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI ORGANIZACJA ZAJĘĆ BIOINFORMATYKA PRZETWARZANIE I ANALIZA DANYCH

PODSTAWY BIOINFORMATYKI ORGANIZACJA ZAJĘĆ BIOINFORMATYKA PRZETWARZANIE I ANALIZA DANYCH PODSTAWY BIOINFORMATYKI ORGANIZACJA ZAJĘĆ BIOINFORMATYKA PRZETWARZANIE I ANALIZA DANYCH Magda Mielczarek Podstawy Bioinformatyki 1 Organizacja zajęć mgr Magda Mielczarek Katedra Genetyki, pokój nr 14 magda.mielczarek@up.wroc.pl

Bardziej szczegółowo

BIOLOGICZNE BAZY DANYCH (2) GENOMY I ICH ADNOTACJE. Podstawy Bioinformatyki wykład 4

BIOLOGICZNE BAZY DANYCH (2) GENOMY I ICH ADNOTACJE. Podstawy Bioinformatyki wykład 4 BIOLOGICZNE BAZY DANYCH (2) GENOMY I ICH ADNOTACJE Podstawy Bioinformatyki wykład 4 GENOMY I ICH ADNOTACJE NCBI Ensembl UCSC PODSTAWY BIOINFORMATYKI 2017/2018 MAGDA MIELCZAREK 2 GENOMY I ICH ADNOTACJE

Bardziej szczegółowo

BASH - WPROWADZENIE Bioinformatyka 4

BASH - WPROWADZENIE Bioinformatyka 4 BASH - WPROWADZENIE Bioinformatyka 4 DLACZEGO BASH? Praca na klastrach obliczeniowych Brak GUI Środowisko programistyczne Szybkie przetwarzanie danych Pisanie własnych skryptów W praktyce przetwarzanie

Bardziej szczegółowo

Przyrównanie sekwencji. Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu

Przyrównanie sekwencji. Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Przyrównanie sekwencji Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Sequence alignment - przyrównanie sekwencji Poszukiwanie ciągów znaków (zasad nukleotydowych lub reszt aminokwasowych),

Bardziej szczegółowo

Ćwiczenie 12. Diagnostyka molekularna. Poszukiwanie SNPs Odczytywanie danych z sekwencjonowania. Prof. dr hab. Roman Zieliński

Ćwiczenie 12. Diagnostyka molekularna. Poszukiwanie SNPs Odczytywanie danych z sekwencjonowania. Prof. dr hab. Roman Zieliński Ćwiczenie 12 Diagnostyka molekularna. Poszukiwanie SNPs Odczytywanie danych z sekwencjonowania Prof. dr hab. Roman Zieliński 1. Diagnostyka molekularna 1.1. Pytania i zagadnienia 1.1.1. Jak definiujemy

Bardziej szczegółowo

BIOLOGICZNE BAZY DANYCH (1) GENOMY I ICH ADNOTACJE

BIOLOGICZNE BAZY DANYCH (1) GENOMY I ICH ADNOTACJE BIOLOGICZNE BAZY DANYCH (1) GENOMY I ICH ADNOTACJE Podstawy Bioinformatyki wykład 2 PODSTAWY BIOINFORMATYKI 2018/2019 MAGDA MIELCZAREK 1 GENOMY I ICH ADNOTACJE NCBI Ensembl UCSC PODSTAWY BIOINFORMATYKI

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI 3 SEKWENCJONOWANIE GENOMÓW I

PODSTAWY BIOINFORMATYKI 3 SEKWENCJONOWANIE GENOMÓW I PODSTAWY BIOINFORMATYKI 3 SEKWENCJONOWANIE GENOMÓW I PROJEKTY POZNANIA INNYCH GENOMÓW 1 400 2009 2010 1 200 2011 2012 1 000 800 600 400 200 986 1153 1285 914 954 717 759 757 251 254 889 0 23 ukończone

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI WYKŁAD 2 SEKWENCJONOWANIE GENOMÓW

PODSTAWY BIOINFORMATYKI WYKŁAD 2 SEKWENCJONOWANIE GENOMÓW PODSTAWY BIOINFORMATYKI WYKŁAD 2 SEKWENCJONOWANIE GENOMÓW SEKWENCJONOWANIE GENOMÓW 1. Sekwencjonowanie genomów 2. Automatyzacja sekwencjonowania 3. 1 000 (human) Genomes project 4. 1 000 Bull Genomes project

Bardziej szczegółowo

Na czym skończyliśmy BLACK BOX. Sekwencjonowanie polega na odczytaniu sekwencji liter DNA/RNA badanego fragmentu genomu

Na czym skończyliśmy BLACK BOX. Sekwencjonowanie polega na odczytaniu sekwencji liter DNA/RNA badanego fragmentu genomu ALEKSANDRA ŚWIERCZ Na czym skończyliśmy BLACK BOX AAATGCCTGCCCTGAAGGCCTGCGTA GTTTTGGGAGAAGACCCACGGATA AAGGTGTAGCCCCGTAGC GGGGGGTATTATTTATTTTATACCCAC.. ACAGGAUCGUUGGAUGGTGGGA. Sekwencjonowanie polega na

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI 11 BAZA DANYCH HAPMAP

PODSTAWY BIOINFORMATYKI 11 BAZA DANYCH HAPMAP PODSTAWY BIOINFORMATYKI 11 BAZA DANYCH HAPMAP WSTĘP 1. SNP 2. haplotyp 3. równowaga sprzężeń 4. zawartość bazy HapMap 5. przykłady zastosowań Copyright 2013, Joanna Szyda HAPMAP BAZA DANYCH HAPMAP - haplotypy

Bardziej szczegółowo

Sekwencjonowanie, przewidywanie genów

Sekwencjonowanie, przewidywanie genów Instytut Informatyki i Matematyki Komputerowej UJ, opracowanie: mgr Ewa Matczyńska, dr Jacek Śmietański Sekwencjonowanie, przewidywanie genów 1. Technologie sekwencjonowania Genomem nazywamy sekwencję

Bardziej szczegółowo

Przeglądarki genomowe

Przeglądarki genomowe Przeglądarki genomowe Popularne typy danych w nowoczesnych naukach biologicznych obejmują: sekwencje genomu sekwencje transkryptomu sekwencje proteomu epigenom adnotacje: geny, eksony, introny, izoformy,

Bardziej szczegółowo

Różnorodność osobników gatunku

Różnorodność osobników gatunku ALEKSANDRA ŚWIERCZ Różnorodność osobników gatunku Single Nucleotide Polymorphism (SNP) Różnica na jednej pozycji, małe delecje, insercje (INDELs) SNP pojawia się ~1/1000 pozycji Można je znaleźć porównując

Bardziej szczegółowo

1. System analizy danych NGS z paneli genów

1. System analizy danych NGS z paneli genów 1. System analizy danych NGS z paneli genów (programistyczny) Sekwenator to instrument odczytujący sekwencję DNA w kilku-kilkudziesieciu probkach na raz. Instrument zapisuje na dysku dane w skompresowanych

Bardziej szczegółowo

PRACOWNIA INFORMATYCZNA CHARAKTERYSTYKA PRZEDMIOTU BASH - PODSTAWOWE INFORMACJE

PRACOWNIA INFORMATYCZNA CHARAKTERYSTYKA PRZEDMIOTU BASH - PODSTAWOWE INFORMACJE PRACOWNIA INFORMATYCZNA CHARAKTERYSTYKA PRZEDMIOTU BASH - PODSTAWOWE INFORMACJE M.Mielczarek Pracownia Informatyczna 2017/2018 1 PRACOWNIA INFORMATYCZNA PROWADZĄCY: Dr Magda Mielczarek (biolog) Katedra

Bardziej szczegółowo

Konstruowanie drzew filogenetycznych. Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu

Konstruowanie drzew filogenetycznych. Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Konstruowanie drzew filogenetycznych Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Drzewa filogenetyczne ukorzenione i nieukorzenione binarność konstrukcji topologia (sposób rozgałęziana

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI 12 MIKROMACIERZE

PODSTAWY BIOINFORMATYKI 12 MIKROMACIERZE PODSTAWY BIOINFORMATYKI 12 MIKROMACIERZE WSTĘP 1. Mikromacierze ekspresyjne tworzenie macierzy przykłady zastosowań 2. Mikromacierze SNP tworzenie macierzy przykłady zastosowań MIKROMACIERZE EKSPRESYJNE

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI

PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI DOPASOWANIE SEKWENCJI 1. Dopasowanie sekwencji - definicja 2. Wizualizacja dopasowania sekwencji 3. Miary podobieństwa sekwencji 4. Przykłady programów

Bardziej szczegółowo

Wprowadzenie do Pakietu R dla kierunku Zootechnika. Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu

Wprowadzenie do Pakietu R dla kierunku Zootechnika. Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Wprowadzenie do Pakietu R dla kierunku Zootechnika Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Instalacja Pakietu R www.r-project.org wybór źródła wybór systemu operacyjnego:

Bardziej szczegółowo

ADNOTACJE WARIANTÓW GENETYCZNYCH

ADNOTACJE WARIANTÓW GENETYCZNYCH ADNOTACJE WARIANTÓW GENETYCZNYCH WSTĘP 1. Adnotacja? 2. Klasyfikacja wariantów 3. Sequence Ontology terms 4. Variant Effect Predictor online skrypt 5. Inne źródła adnotacji ADNOTACJA WARIANTÓW 1. Edycja

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI 6 BAZA DANYCH NCBI - II

PODSTAWY BIOINFORMATYKI 6 BAZA DANYCH NCBI - II PODSTAWY BIOINFORMATYKI 6 BAZA DANYCH NCBI - II BAZA DANYCH NCBI 1. NCBI 2. Dane gromadzone przez NCBI 3. Przegląd baz danych NCBI: Publikacje naukowe Projekty analizy genomów OMIM: fenotypy człowieka

Bardziej szczegółowo

Analizy wielkoskalowe w badaniach chromatyny

Analizy wielkoskalowe w badaniach chromatyny Analizy wielkoskalowe w badaniach chromatyny Analizy wielkoskalowe wykorzystujące mikromacierze DNA Genotypowanie: zróżnicowane wewnątrz genów RNA Komórka eukariotyczna Ekspresja genów: Które geny? Poziom

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI

PODSTAWY BIOINFORMATYKI PODSTAWY BIOINFORMATYKI Prowadzący: JOANNA SZYDA ADRIAN DROśDś WSTĘP 1. Katedra Genetyki badania bioinformatyczne 2. Tematyka przedmiotu 3. Charakterystyka wykładów 4. Charakterystyka ćwiczeń 5. Informacje

Bardziej szczegółowo

WSTĘP DO BIOINFORMATYKI Konspekt wykładu - wiosna 2018/19

WSTĘP DO BIOINFORMATYKI Konspekt wykładu - wiosna 2018/19 WSTĘP DO BIOINFORMATYKI Konspekt wykładu - wiosna 2018/19 Witold Dyrka 14 marca 2019 1 Wprowadzenie 1.1 Definicje bioinformatyki Według polskiej Wikipedii [1], Bioinformatyka interdyscyplinarna dziedzina

Bardziej szczegółowo

SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ MAGDALENA FRĄSZCZAK

SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ MAGDALENA FRĄSZCZAK SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ Prowadzący: JOANNA SZYDA MAGDALENA FRĄSZCZAK WSTĘP 1. Systemy informatyczne w hodowli -??? 2. Katedra Genetyki 3. Pracownia biostatystyki - wykorzystanie narzędzi

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI

PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI DOPASOWANIE SEKWENCJI 1. Dopasowanie sekwencji - definicja 2. Wizualizacja dopasowania sekwencji 3. Miary podobieństwa sekwencji 4. Przykłady programów

Bardziej szczegółowo

PRZYRÓWNANIE SEKWENCJI

PRZYRÓWNANIE SEKWENCJI http://theta.edu.pl/ Podstawy Bioinformatyki III PRZYRÓWNANIE SEKWENCJI 1 Sequence alignment - przyrównanie sekwencji Poszukiwanie ciągów znaków (zasad nukleotydowych lub reszt aminokwasowych), które posiadają

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 1

STATYSTYKA MATEMATYCZNA WYKŁAD 1 STATYSTYKA MATEMATYCZNA WYKŁAD 1 Wykład wstępny Teoria prawdopodobieństwa Magda Mielczarek wykłady, ćwiczenia Copyright 2017, J. Szyda & M. Mielczarek STATYSTYKA MATEMATYCZNA? ASHG 2011 Writing Workshop;

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI 2 SEKWENCJONOWANIE GENOMÓW

PODSTAWY BIOINFORMATYKI 2 SEKWENCJONOWANIE GENOMÓW PODSTAWY BIOINFORMATYKI 2 SEKWENCJONOWANIE GENOMÓW PROJEKTY POZNANIA INNYCH GENOMÓW 300 250 Seria 1 251 254 200 150 100 50 0 23 ukończone w trakcie scalania w trakcie realizacji SEKWENCJONOWANIE GENOMÓW

Bardziej szczegółowo

Porównywanie i dopasowywanie sekwencji

Porównywanie i dopasowywanie sekwencji Porównywanie i dopasowywanie sekwencji Związek bioinformatyki z ewolucją Wraz ze wzrostem dostępności sekwencji DNA i białek pojawiła się nowa możliwość śledzenia ewolucji na poziomie molekularnym Ewolucja

Bardziej szczegółowo

Przetarg nieograniczony na zakup specjalistycznej aparatury laboratoryjnej Znak sprawy: DZ-2501/6/17

Przetarg nieograniczony na zakup specjalistycznej aparatury laboratoryjnej Znak sprawy: DZ-2501/6/17 Część nr 2: SEKWENATOR NASTĘPNEJ GENERACJI Z ZESTAWEM DEDYKOWANYCH ODCZYNNIKÓW Określenie przedmiotu zamówienia zgodnie ze Wspólnym Słownikiem Zamówień (CPV): 38500000-0 aparatura kontrolna i badawcza

Bardziej szczegółowo

Searching for SNPs with cloud computing

Searching for SNPs with cloud computing Ben Langmead, Michael C Schatz, Jimmy Lin, Mihai Pop and Steven L Salzberg Genome Biology November 20, 2009 April 7, 2010 Problem Cel Problem Bardzo dużo krótkich odczytów mapujemy na genom referencyjny

Bardziej szczegółowo

Mapowanie sekwencji na genom (Ultrafast and memory-efficient alignment of short DNA sequences to the human gemone)

Mapowanie sekwencji na genom (Ultrafast and memory-efficient alignment of short DNA sequences to the human gemone) Mapowanie sekwencji na genom (Ultrafast and memory-efficient alignment of short DNA sequences to the human gemone) Uniwersytet Warszawski 1 kwietnia 2010 Referowana praca Problem Problem Wstęp Referowana

Bardziej szczegółowo

"Zapisane w genach, czyli Python a tajemnice naszego genomu."

Zapisane w genach, czyli Python a tajemnice naszego genomu. "Zapisane w genach, czyli Python a tajemnice naszego genomu." Dr Kaja Milanowska Instytut Biologii Molekularnej i Biotechnologii UAM VitaInSilica sp. z o.o. Warszawa, 9 lutego 2015 Dane biomedyczne 1)

Bardziej szczegółowo

Instalacja Pakietu R

Instalacja Pakietu R Instalacja Pakietu R www.r-project.org wybór źródła wybór systemu operacyjnego: Download R for Windows opcja: install R for the first time opcja: Download R 3.3.3 for Windows uruchomienie R-3.3.3-win MAGDA

Bardziej szczegółowo

Ćwiczenia nr 5. Wykorzystanie baz danych i narzędzi analitycznych dostępnych online

Ćwiczenia nr 5. Wykorzystanie baz danych i narzędzi analitycznych dostępnych online Techniki molekularne ćw. 5 1 z 13 Ćwiczenia nr 5. Wykorzystanie baz danych i narzędzi analitycznych dostępnych online I. Zasoby NCBI Strona: http://www.ncbi.nlm.nih.gov/ stanowi punkt startowy dla eksploracji

Bardziej szczegółowo

Ekologia molekularna. wykład 11

Ekologia molekularna. wykład 11 Ekologia molekularna wykład 11 Sekwencjonowanie nowej generacji NGS = next generation sequencing = high throughput sequencing = massive pararell sequencing =... Różne techniki i platformy Illumina (MiSeq,

Bardziej szczegółowo

BIOLOGICZNE BAZY DANYCH GENOMY I ICH ADNOTACJE. Pracownia Informatyczna 2

BIOLOGICZNE BAZY DANYCH GENOMY I ICH ADNOTACJE. Pracownia Informatyczna 2 BIOLOGICZNE BAZY DANYCH GENOMY I ICH ADNOTACJE Pracownia Informatyczna 2 WYBRANE BIOLOGICZNE BAZY DANYCH GENOMY I ICH ADNOTACJE NCBI Ensembl UCSC NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION NCBI Utworzone

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Wprowadzenie i biologiczne bazy danych. 1 Wprowadzenie... 3. 2 Wprowadzenie do biologicznych baz danych...

Spis treści. Przedmowa... XI. Wprowadzenie i biologiczne bazy danych. 1 Wprowadzenie... 3. 2 Wprowadzenie do biologicznych baz danych... Przedmowa... XI Część pierwsza Wprowadzenie i biologiczne bazy danych 1 Wprowadzenie... 3 Czym jest bioinformatyka?... 5 Cele... 5 Zakres zainteresowań... 6 Zastosowania... 7 Ograniczenia... 8 Przyszłe

Bardziej szczegółowo

Politechnika Wrocławska. Dopasowywanie sekwencji Sequence alignment

Politechnika Wrocławska. Dopasowywanie sekwencji Sequence alignment Dopasowywanie sekwencji Sequence alignment Drzewo filogenetyczne Kserokopiarka zadanie: skopiować 300 stron. Co może pójść źle? 2x ta sama strona Opuszczona strona Nadmiarowa pusta strona Strona do góry

Bardziej szczegółowo

DHPLC. Denaturing high performance liquid chromatography. Wiktoria Stańczyk Zofia Kołeczko

DHPLC. Denaturing high performance liquid chromatography. Wiktoria Stańczyk Zofia Kołeczko DHPLC Denaturing high performance liquid chromatography Wiktoria Stańczyk Zofia Kołeczko Mini-słowniczek SNP (Single Nucleotide Polymorphism) - zmienność sekwencji DNA; HET - analiza heterodupleksów; HPLC

Bardziej szczegółowo

Bioinformatyczna analiza danych. Wykład 1 Dr Wioleta Drobik-Czwarno Katedra Genetyki i Ogólnej Hodowli Zwierząt

Bioinformatyczna analiza danych. Wykład 1 Dr Wioleta Drobik-Czwarno Katedra Genetyki i Ogólnej Hodowli Zwierząt Bioinformatyczna analiza danych Wykład 1 Dr Wioleta Drobik-Czwarno Katedra Genetyki i Ogólnej Hodowli Zwierząt Sprawy organizacyjne Prowadzący przedmiot: Dr Wioleta Drobik-Czwarno koordynator przedmiotu,

Bardziej szczegółowo

Database resources of the National Center for Biotechnology Information. Magdalena Malczyk

Database resources of the National Center for Biotechnology Information. Magdalena Malczyk Database resources of the National Center for Biotechnology Information Magdalena Malczyk NCBI NCBI = National Center for Biotechnology Information Założone w 1998 r. Cel: rozwijanie systemów informatycznych

Bardziej szczegółowo

1. Symulacje komputerowe Idea symulacji Przykład. 2. Metody próbkowania Jackknife Bootstrap. 3. Łańcuchy Markova. 4. Próbkowanie Gibbsa

1. Symulacje komputerowe Idea symulacji Przykład. 2. Metody próbkowania Jackknife Bootstrap. 3. Łańcuchy Markova. 4. Próbkowanie Gibbsa BIOINFORMATYKA 1. Wykład wstępny 2. Bazy danych: projektowanie i struktura 3. Równowaga Hardyego-Weinberga, wsp. rekombinacji 4. Analiza asocjacyjna 5. Analiza asocjacyjna 6. Sekwencjonowanie nowej generacji

Bardziej szczegółowo

Automatyczne generowanie testów z modeli. Bogdan Bereza Automatyczne generowanie testów z modeli

Automatyczne generowanie testów z modeli. Bogdan Bereza Automatyczne generowanie testów z modeli Automatyczne generowanie testów z modeli Numer: 1 (33) Rozkmina: Projektowanie testów na podstawie modeli (potem można je wykonywać ręcznie, lub automatycznie zwykle chce się automatycznie) A ja mówię

Bardziej szczegółowo

Skrypt Bioinformatyka DRAFT Strona 67

Skrypt Bioinformatyka DRAFT Strona 67 Spis treści 5 Budowa kwasów nukleinowych... 68 5.1 Nukleotydy... 68 5.2 Łaocuch polinukleotydowy... 71 5.3 Nić komplementarna... 71 6 Centralny dogmat Biologii Molekularnej... 74 7 Przepływ informacji

Bardziej szczegółowo

Co to jest transkryptom? A. Świercz ANALIZA DANYCH WYSOKOPRZEPUSTOWYCH 2

Co to jest transkryptom? A. Świercz ANALIZA DANYCH WYSOKOPRZEPUSTOWYCH 2 ALEKSANDRA ŚWIERCZ Co to jest transkryptom? A. Świercz ANALIZA DANYCH WYSOKOPRZEPUSTOWYCH 2 Ekspresja genów http://genome.wellcome.ac.uk/doc_wtd020757.html A. Świercz ANALIZA DANYCH WYSOKOPRZEPUSTOWYCH

Bardziej szczegółowo

PAKIETY STATYSTYCZNE 5. SAS wprowadzenie - środowisko Windows

PAKIETY STATYSTYCZNE 5. SAS wprowadzenie - środowisko Windows PAKIETY STATYSTYCZNE 1. Wykład wstępny 2. Statistica wprowadzenie 3. Statistica elementy analizy danych 4. Statistica wykresy 5. SAS wprowadzenie - środowisko Windows 6. SAS wprowadzenie - środowisko Linux

Bardziej szczegółowo

Wstęp do Biologii Obliczeniowej

Wstęp do Biologii Obliczeniowej Wstęp do Biologii Obliczeniowej Zagadnienia na kolokwium Bartek Wilczyński 5. czerwca 2018 Sekwencje DNA i grafy Sekwencje w biologii, DNA, RNA, białka, alfabety, transkrypcja DNA RNA, translacja RNA białko,

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI WYKŁAD 5 ANALIZA FILOGENETYCZNA

PODSTAWY BIOINFORMATYKI WYKŁAD 5 ANALIZA FILOGENETYCZNA PODSTAWY BIOINFORMATYKI WYKŁAD 5 ANALIZA FILOGENETYCZNA ANALIZA FILOGENETYCZNA 1. Wstęp - filogenetyka 2. Struktura drzewa filogenetycznego 3. Metody konstrukcji drzewa 4. Etapy konstrukcji drzewa filogenetycznego

Bardziej szczegółowo

GENOMIKA. MAPOWANIE GENOMÓW MAPY GENOMICZNE

GENOMIKA. MAPOWANIE GENOMÓW MAPY GENOMICZNE GENOMIKA. MAPOWANIE GENOMÓW MAPY GENOMICZNE Bioinformatyka, wykład 3 (21.X.2008) krzysztof_pawlowski@sggw.waw.pl tydzień temu Gen??? Biologiczne bazy danych historia Biologiczne bazy danych najważniejsze

Bardziej szczegółowo

BUDOWA I FUNKCJA GENOMU LUDZKIEGO

BUDOWA I FUNKCJA GENOMU LUDZKIEGO BUDOWA I FUNKCJA GENOMU LUDZKIEGO Magdalena Mayer Katedra i Zakład Genetyki Medycznej UM w Poznaniu 1. Projekt poznania genomu człowieka: Cele programu: - skonstruowanie szczegółowych map fizycznych i

Bardziej szczegółowo

Ćwiczenie 5/6. Informacja genetyczna i geny u różnych grup organizmów. Porównywanie sekwencji nukleotydowych w bazie NCBI z wykorzystaniem BLAST.

Ćwiczenie 5/6. Informacja genetyczna i geny u różnych grup organizmów. Porównywanie sekwencji nukleotydowych w bazie NCBI z wykorzystaniem BLAST. Ćwiczenie 5/6 Informacja genetyczna i geny u różnych grup organizmów. Porównywanie sekwencji nukleotydowych w bazie NCBI z wykorzystaniem BLAST. Prof. dr hab. Roman Zieliński 1. Informacja genetyczna u

Bardziej szczegółowo

Metody badania polimorfizmu/mutacji DNA. Aleksandra Sałagacka Pracownia Diagnostyki Molekularnej i Farmakogenomiki Uniwersytet Medyczny w Łodzi

Metody badania polimorfizmu/mutacji DNA. Aleksandra Sałagacka Pracownia Diagnostyki Molekularnej i Farmakogenomiki Uniwersytet Medyczny w Łodzi Metody badania polimorfizmu/mutacji DNA Aleksandra Sałagacka Pracownia Diagnostyki Molekularnej i Farmakogenomiki Uniwersytet Medyczny w Łodzi Mutacja Mutacja (łac. mutatio zmiana) - zmiana materialnego

Bardziej szczegółowo

PAKIETY STATYSTYCZNE JOANNA SZYDA TOMASZ SUCHOCKI

PAKIETY STATYSTYCZNE JOANNA SZYDA TOMASZ SUCHOCKI PAKIETY STATYSTYCZNE JOANNA SZYDA TOMASZ SUCHOCKI WSTĘP 1. Katedra Genetyki 2. Pracownia biostatystyki - projekt 3. Charakterystyka przedmiotu 4. Kontakt 5. Literatura Copyright 2017 Joanna Szyda KATEDRA

Bardziej szczegółowo

1. Analiza asocjacyjna. Cechy ciągłe. Cechy binarne. Analiza sprzężeń. Runs of homozygosity. Signatures of selection

1. Analiza asocjacyjna. Cechy ciągłe. Cechy binarne. Analiza sprzężeń. Runs of homozygosity. Signatures of selection BIOINFORMATYKA 1. Wykład wstępny 2. Bazy danych: projektowanie i struktura 3. Równowaga Hardyego-Weinberga, wsp. rekombinacji 4. Analiza asocjacyjna 5. Analiza asocjacyjna 6. Sekwencjonowanie nowej generacji

Bardziej szczegółowo

PAKIETY STATYSTYCZNE

PAKIETY STATYSTYCZNE 1. Wykład wstępny PAKIETY STATYSTYCZNE 2. SAS, wprowadzenie - środowisko Windows, Linux 3. SAS, elementy analizy danych edycja danych 4. SAS, elementy analizy danych regresja liniowa, regresja nieliniowa

Bardziej szczegółowo

I. 1) NAZWA I ADRES: Uniwersytet Przyrodniczy we Wrocławiu, ul. C.K. Norwida 25/27, Wrocław, woj.

I. 1) NAZWA I ADRES: Uniwersytet Przyrodniczy we Wrocławiu, ul. C.K. Norwida 25/27, Wrocław, woj. 1 z 7 2010-12-09 14:39 Wrocław: Dostawa programów komputerowych do celów dydaktycznych, służące do realizacji programu zajęć na kierunku Bioinformatyka, na Wydziale Biologii i Hodowli Zwierząt Uniwersytetu

Bardziej szczegółowo

Bioinformatyka: Wykład 5. Bioconductor

Bioinformatyka: Wykład 5. Bioconductor Bioinformatyka: Wykład 5 Bioconductor Pytanie z poprzedniego wkładu opisz dwie klasy R odnoszące się do czasu, podaj najważniejszą różnicę BIOCONDUCTOR Zestaw ściśle ze sobą powiązanych pakietów (1104)

Bardziej szczegółowo

października 2013: Elementarz biologii molekularnej. Wykład nr 2 BIOINFORMATYKA rok II

października 2013: Elementarz biologii molekularnej. Wykład nr 2 BIOINFORMATYKA rok II 10 października 2013: Elementarz biologii molekularnej www.bioalgorithms.info Wykład nr 2 BIOINFORMATYKA rok II Komórka: strukturalna i funkcjonalne jednostka organizmu żywego Jądro komórkowe: chroniona

Bardziej szczegółowo

Dopasowanie sekwencji (sequence alignment)

Dopasowanie sekwencji (sequence alignment) Co to jest alignment? Dopasowanie sekwencji (sequence alignment) Alignment jest sposobem dopasowania struktur pierwszorzędowych DNA, RNA lub białek do zidentyfikowanych regionów w celu określenia podobieństwa;

Bardziej szczegółowo

Wykład 5 Dopasowywanie lokalne

Wykład 5 Dopasowywanie lokalne Wykład 5 Dopasowywanie lokalne Dopasowanie par (sekwencji) Dopasowanie globalne C A T W A L K C A T W A L K C O W A R D C X X O X W X A X R X D X Globalne dopasowanie Schemat punktowania (uproszczony)

Bardziej szczegółowo

Bazy danych i R/Bioconductor

Bazy danych i R/Bioconductor Bazy danych i R/Bioconductor Praca z pakietem biomart Zagadnienia RStudio Oprogramowanie BioMart Pakiet biomart wprowadzenie funkcje biomart przykładowe zastosowania RStudio RStudio http://www.rstudio.com/

Bardziej szczegółowo

BIOINFORMATYKA. edycja 2016 / wykład 11 RNA. dr Jacek Śmietański

BIOINFORMATYKA. edycja 2016 / wykład 11 RNA. dr Jacek Śmietański BIOINFORMATYKA edycja 2016 / 2017 wykład 11 RNA dr Jacek Śmietański jacek.smietanski@ii.uj.edu.pl http://jaceksmietanski.net Plan wykładu 1. Rola i rodzaje RNA 2. Oddziaływania wewnątrzcząsteczkowe i struktury

Bardziej szczegółowo

Postępy w realizacji polskiego programu selekcji genomowej buhajów MASinBULL Joanna Szyda

Postępy w realizacji polskiego programu selekcji genomowej buhajów MASinBULL Joanna Szyda Postępy w realizacji polskiego programu selekcji genomowej buhajów MASinBULL Joanna Szyda Uniwersytet Przyrodniczy we Wrocławiu Katedra Genetyki, Pracownia Biostatystyki 1. MASinBULL 2. Metody oceny genomowej

Bardziej szczegółowo

Traceability. matrix

Traceability. matrix Traceability matrix Radek Smilgin W testowaniu od 2002 roku Tester, test manager, konsultant Twórca testerzy.pl i mistrzostw w testowaniu Fan testowania eksploracyjnego i testowania w agile [zdjecie wikipedia:

Bardziej szczegółowo

Porównywanie i dopasowywanie sekwencji

Porównywanie i dopasowywanie sekwencji Porównywanie i dopasowywanie sekwencji Związek bioinformatyki z ewolucją Wraz ze wzrostem dostępności sekwencji DNA i białek narodziła się nowa dyscyplina nauki ewolucja molekularna Ewolucja molekularna

Bardziej szczegółowo

Zarządzanie sieciami komputerowymi - wprowadzenie

Zarządzanie sieciami komputerowymi - wprowadzenie Zarządzanie sieciami komputerowymi - wprowadzenie Model zarządzania SNMP SNMP standardowy protokół zarządzania w sieci Internet stosowany w dużych sieciach IP (alternatywa logowanie i praca zdalna w każdej

Bardziej szczegółowo

System operacyjny Linux wybrane zagadnienia. Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu

System operacyjny Linux wybrane zagadnienia. Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu System operacyjny Linux wybrane zagadnienia Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Linux Open Source Stale rozwijany Darmowy (wersje niekomercyjne) Bezpieczny Stabilny

Bardziej szczegółowo

Metody odczytu kolejności nukleotydów - sekwencjonowania DNA

Metody odczytu kolejności nukleotydów - sekwencjonowania DNA Metody odczytu kolejności nukleotydów - sekwencjonowania DNA 1. Metoda chemicznej degradacji DNA (metoda Maxama i Gilberta 1977) 2. Metoda terminacji syntezy łańcucha DNA - klasyczna metoda Sangera (Sanger

Bardziej szczegółowo

ZALETY NOWSZYCH WERSJI I KIERUNKI ROZWOJU SPDS-A SŁAWOMIR BOKINIEC

ZALETY NOWSZYCH WERSJI I KIERUNKI ROZWOJU SPDS-A SŁAWOMIR BOKINIEC ZALETY NOWSZYCH WERSJI I KIERUNKI ROZWOJU SPDS-A SŁAWOMIR BOKINIEC AGENDA Wybrane zalety wersji 5.1 i wcześniejszych SPDS z SAS Gridem Co kształtuje kierunki rozwoju? Nowsze wersje SPDS z Hadoopem WYBRANE

Bardziej szczegółowo

Bioinformatyka. Program UGENE

Bioinformatyka. Program UGENE Bioinformatyka Program UGENE www.michalbereta.pl UGENE jest darmowym programem do zadań bioinformatycznych. Można go pobrać ze strony http://ugene.net/. 1 1. Wczytanie rekordu z bazy ENA do programu UGENE

Bardziej szczegółowo

Oznaczenie polimorfizmu genetycznego cytochromu CYP2D6: wykrywanie liczby kopii genu

Oznaczenie polimorfizmu genetycznego cytochromu CYP2D6: wykrywanie liczby kopii genu Ćwiczenie 4 Oznaczenie polimorfizmu genetycznego cytochromu CYP2D6: wykrywanie liczby kopii genu Wstęp CYP2D6 kodowany przez gen występujący w co najmniej w 78 allelicznych formach związanych ze zmniejszoną

Bardziej szczegółowo

Analiza genomu człowieka przy wykorzystaniu NGS w kontekście diagnostyki medycznej

Analiza genomu człowieka przy wykorzystaniu NGS w kontekście diagnostyki medycznej Analiza genomu człowieka przy wykorzystaniu NGS w kontekście diagnostyki medycznej dr inż. Tomasz Gambin 1 Instytut 2 Zakład 1,2 Informatyki, Politechnika Warszawska Genetyki Medycznej, Instytut Matki

Bardziej szczegółowo

Samouczek: Konstruujemy drzewo

Samouczek: Konstruujemy drzewo ROZDZIAŁ 2 Samouczek: Konstruujemy drzewo Po co nam drzewa filogenetyczne? Drzewa filogenetyczne często pojawiają się dzisiaj w pracach z dziedziny biologii molekularnej, które nie mają związku z filogenetyką

Bardziej szczegółowo

Gromadzenie danych. Przybliżony czas ćwiczenia. Wstęp. Przegląd ćwiczenia. Poniższe ćwiczenie ukończysz w czasie 15 minut.

Gromadzenie danych. Przybliżony czas ćwiczenia. Wstęp. Przegląd ćwiczenia. Poniższe ćwiczenie ukończysz w czasie 15 minut. Gromadzenie danych Przybliżony czas ćwiczenia Poniższe ćwiczenie ukończysz w czasie 15 minut. Wstęp NI-DAQmx to interfejs służący do komunikacji z urządzeniami wspomagającymi gromadzenie danych. Narzędzie

Bardziej szczegółowo

Bioinformatyczne bazy danych - część 2. -przeszukiwanie baz danych -pobieranie danych

Bioinformatyczne bazy danych - część 2. -przeszukiwanie baz danych -pobieranie danych Bioinformatyczne bazy danych - część 2 -przeszukiwanie baz danych -pobieranie danych Numery dostępowe baz danych (accession number) to ciąg liter i cyfr służących jako etykieta identyfikująca sekwencję

Bardziej szczegółowo

Budowa kwasów nukleinowych

Budowa kwasów nukleinowych Bioinformatyka (wykład monograficzny) wykład 2. E. Banachowicz Zakład Biofizyki Molekularnej IF UAM http://www.amu.edu.pl/~ewas Budowa kwasów nukleinowych Kwasy nukleinowe (DA i RA) zbudowane są z nukleotydów

Bardziej szczegółowo

Oracle PL/SQL. Paweł Rajba. pawel@ii.uni.wroc.pl http://www.kursy24.eu/

Oracle PL/SQL. Paweł Rajba. pawel@ii.uni.wroc.pl http://www.kursy24.eu/ Paweł Rajba pawel@ii.uni.wroc.pl http://www.kursy24.eu/ Zawartość modułu 1 Wprowadzenie Dostęp do bazy danych Program SQL*Plus Podstawy PL/SQL - 2 - Wprowadzenie Dlaczego warto uczyć się o Oracle u? Oracle

Bardziej szczegółowo

Oprogramowanie dla GWAS

Oprogramowanie dla GWAS BIOINFORMATYKA 1. Wykład wstępny 2. Bazy danych: projektowanie i struktura 3. Równowaga Hardyego-Weinberga, wsp. rekombinacji 4. Analiza asocjacyjna 5. Analiza asocjacyjna 6. Sekwencjonowanie nowej generacji

Bardziej szczegółowo

Tomasz Suchocki Kacper Żukowski, Magda Mielczarek, Joanna Szyda

Tomasz Suchocki Kacper Żukowski, Magda Mielczarek, Joanna Szyda Tomasz Suchocki Kacper Żukowski, Magda Mielczarek, Joanna Szyda Uniwersytet Przyrodniczy we Wrocławiu, Pracownia Biostatystyki Instytut Zootechniki Państwowy Instytut Badawczy 2 > 76 000 osobników w bazie

Bardziej szczegółowo

Podstawy biologiczne - komórki. Podstawy biologiczne - cząsteczki. Model komórki eukariotycznej. Wprowadzenie do Informatyki Biomedycznej

Podstawy biologiczne - komórki. Podstawy biologiczne - cząsteczki. Model komórki eukariotycznej. Wprowadzenie do Informatyki Biomedycznej Wprowadzenie do Informatyki Biomedycznej Wykład 1: Podstawy bioinformatyki Wydział Informatyki PB Podstawy biologiczne - komórki Wszystkie organizmy zbudowane są z komórek komórka jest skomplikowanym systemem

Bardziej szczegółowo

OfficeObjects e-forms

OfficeObjects e-forms OfficeObjects e-forms Rodan Development Sp. z o.o. 02-820 Warszawa, ul. Wyczółki 89, tel.: (+48-22) 643 92 08, fax: (+48-22) 643 92 10, http://www.rodan.pl Spis treści Wstęp... 3 Łatwość tworzenia i publikacji

Bardziej szczegółowo