Programowanie Proceduralne
|
|
- Laura Marek
- 7 lat temu
- Przeglądów:
Transkrypt
1 Programowanie Proceduralne Bożena Woźna-Szcześniak Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 1 / 59
2 Cel wykładów z programowania proceduralnego Wykład jest poświęcony wprowadzeniu do języka C++ i jego celem jest nauczenie projektowania i psania programów proceduralnych w tym języku. Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 2 / 59
3 Cel wykładów z programowania proceduralnego Wykład jest poświęcony wprowadzeniu do języka C++ i jego celem jest nauczenie projektowania i psania programów proceduralnych w tym języku. Zalecana Literatura Prata Stephen. Szkoła programowania. Język C++. Wydanie V. Helion, Andrzej Stasiewicz. C++. Ćwiczenia praktyczne. Wydanie III. Helion, Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 2 / 59
4 Struktura danych - tablica Tablica jednowymiarowa (wektor) jest takim uporzadkowanym zbiorem elementów jednorodnych, że z każdym elementem jest zwiazany uporzadkowany zbiór liczb całkowitych - indeksów. Indeksy w sposób jednoznaczny określaja pozycję każdego elementu tablicy. W tablicach każdy indeks zmienia się ze stałym krokiem od dolnej do górnej granicy. W przypadku tablic z języka C/C++/Java zbiór indeksów przebiega wartości od 0 do n 1, dla pewnej ustalonej liczby naturalnej n. Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 3 / 59
5 Struktura danych - tablica Tablica jednowymiarowa (wektor) jest takim uporzadkowanym zbiorem elementów jednorodnych, że z każdym elementem jest zwiazany uporzadkowany zbiór liczb całkowitych - indeksów. Indeksy w sposób jednoznaczny określaja pozycję każdego elementu tablicy. W tablicach każdy indeks zmienia się ze stałym krokiem od dolnej do górnej granicy. W przypadku tablic z języka C/C++/Java zbiór indeksów przebiega wartości od 0 do n 1, dla pewnej ustalonej liczby naturalnej n. Przykład: 11 elementowa tablica liczb całkowitych. Indeksy Wartości Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 3 / 59
6 Struktura danych - tablica Przykład: 11 elementowa tablica liczb rzczywistych o nazwie A. Indeksy Wartości Notacja: 1 element tablicy: A[0] 5 element tablicy: A[4] i element tablicy: A[i] Zakres tablicy: A[0].. A[n-1], gdzie n oznacza liczbe elementów w tablicy. Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 4 / 59
7 Struktura danych - tablica Przykład: 11 elementowa tablica liczb rzczywistych o nazwie A. Indeksy Wartości Notacja: 1 element tablicy: A[0] 5 element tablicy: A[4] i element tablicy: A[i] Zakres tablicy: A[0].. A[n-1], gdzie n oznacza liczbe elementów w tablicy. wartość 2 elementu tablicy A: A[1] = 3 wartość 9 elementu tablicy A: A[1] = 5.33 Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 4 / 59
8 Struktura danych - tablica Przykład: 11 elementowa tablica zanków o nazwie C. Indeksy Wartości A L A M A K O T A Notacja: 1 element tablicy: C[0] 5 element tablicy: C[4] i element tablicy: C[i] Zakres tablicy: C[0].. C[n-1], gdzie n oznacza liczbe elementów w tablicy. Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 5 / 59
9 Struktura danych - tablica Przykład: 11 elementowa tablica zanków o nazwie C. Indeksy Wartości A L A M A K O T A Notacja: 1 element tablicy: C[0] 5 element tablicy: C[4] i element tablicy: C[i] Zakres tablicy: C[0].. C[n-1], gdzie n oznacza liczbe elementów w tablicy. wartość 2 elementu tablicy C: C[1] = L wartość 9 elementu tablicy C: C[1] = A Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 5 / 59
10 Sumowanie elemantów z tablicy, instrukacja while Require: tablica A o rozmiarze n {A=[0],...,A[n-1] Algorytm: Suma 1: suma := 0; 2: i := 0; 3: while i < n do 4: suma := suma+a[i]; 5: i := i + 1; 6: end while 7: return suma; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 6 / 59
11 # include <iostream > using namespace std ; i n t main ( ) { i n t A [ 1 0 ] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 1 0 ; i n t suma = 0, i =0, n=10; while ( i < n ) { suma = suma + A[ i ] ; i = i +1; cout << "suma = " << suma << endl ; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 7 / 59
12 Sumowanie elemantów z tablicy, instrukacja for Require: tablica A o rozmiarze n {A=[0],...,A[n-1] Algorytm: Suma 1: suma := 0; 2: for i := 0 n 1 do 3: suma := suma+a[i]; 4: end for 5: return suma; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 8 / 59
13 # include <iostream > using namespace std ; i n t main ( ) { i n t A [ 1 0 ] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 1 0 ; i n t suma = 0, i =0, n=10; f o r ( i n t i =0 ; i < n ; i ++){ suma = suma + A[ i ] ; cout << "suma = " << suma << endl ; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 9 / 59
14 # include <iostream > using namespace std ; i n t main ( ) { long tab [12]={31,28,31,30,31,30,31,31,30,31,30,31; i n t k = 0 ; while ( k < 12) { cout << tab [ k ] << " " ; ++k ; cout << endl ; long s = 0 ; k = 0 ; while ( k < 12) { s += tab [ k ] ; ++k ; cout << s ; r e t u r n 0 ; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 10 / 59
15 # include <iostream > using namespace std ; i n t main ( ) { long a []={31,28,31,30,31,30,31,31,30,31,30,31; i n t const n = s i z e o f ( a ) / s i z e o f ( a [ 0 ] ) ; i n t k ; f o r ( k = 0 ; k < n ; ++k ) { cout << a [ k ] << " " ; cout << endl ; long s = 0 ; f o r ( k = 0 ; k < n ; ++k ) { s += a [ k ] ; cout << s ; r e t u r n 0 ; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 11 / 59
16 Sumowanie elemantów parzystych z tablicy, instrukacja while Require: tablica A o rozmiarze n {A=[0],...,A[n-1] Algorytm: Suma 1: suma := 0; 2: i := 0; 3: while i < n do 4: if A[i] mod 2 = 0 then 5: suma := suma+a[i]; 6: end if 7: i := i + 1; 8: end while 9: return suma; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 12 / 59
17 # include <iostream > using namespace std ; i n t main ( ) { i n t A [ 1 0 ] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 1 0 ; i n t suma = 0, i =0, n=10; while ( i < n ) { i f (A[ i ]%2==0) suma = suma + A[ i ] ; i ++; cout << "suma = " << suma << endl ; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 13 / 59
18 Sumowanie elemantów parzystych z tablicy, instrukacja for Require: tablica A o rozmiarze n {A=[0],...,A[n-1] Algorytm: Suma 1: suma := 0; 2: for i := 0 n 1 do 3: if A[i] mod 2 = 0 then 4: suma := suma+a[i]; 5: end if 6: end for 7: return suma; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 14 / 59
19 # include <iostream > using namespace std ; i n t main ( ) { i n t A [ 1 0 ] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 1 0 ; i n t suma = 0, n=10; f o r ( i n t i =0; i < n ; i ++){ i f (A[ i ]%2==0) suma = suma + A[ i ] ; cout << "suma = " << suma << endl ; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 15 / 59
20 Losowe wypełnianie tablicy # include <iostream > # include <ctime > # include < c s t d l i b > using namespace std ; i n t main ( ) { i n t a [ ] ; srand ( time ( 0 ) ) ; f o r ( i n t k = 0 ; k < 100; ++k ) { a [ k ] = rand ( ) % 100; f o r ( i n t k = 0 ; k < 100; ++k ) { cout << a [ k ] << " " ; r e t u r n 0 ; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 16 / 59
21 Losowe wypełnianie tablicy #include<iostream> #include<ctime> #include<cstdlib> using namespace std; int wypelnij(int [], int); int wypisz(const int [], int); int main() { int a[100]; wypelnij(a, 100); wypisz(a, 100); return 0; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 17 / 59
22 Losowe wypełnianie tablicy int wypelnij(int a[], int n) { srand(time(0)); for (int k = 0; k < n; ++k) { a[k] = rand() % 100; int wypisz(const int a[], int n) { for (int k = 0; k < n; ++k) { cout << a[k] << " "; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 18 / 59
23 Element minimalny i maksymalny zbioru Definicja problemu: Dane: n - liczba elementów zbioru a 1, a 2, a 3,...,a n - ciag elementów Szukane: Elementy największy i najmniejszy zbioru. Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 19 / 59
24 Element minimalny zbioru Require: tablica A o rozmiarze n {A=[0],...,A[n-1] Algorytm: MIN 1: min := 0; 2: for all i := 1 to n do 3: if A[i] < A[min] then 4: min := i; 5: end if 6: i := i + 1; 7: end for 8: return min; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 20 / 59
25 Element minimalny tablicy #include<iostream> #include<ctime> #include<cstdlib> using namespace std; int wypelnij(int [], int); int wypisz(const int [], int); int min(const int [], int); int main() { int a[100]; wypelnij(a, 10); wypisz(a, 10); int m = min(a, 10); cout << "Element minimalny: " << m << endl; return 0; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 21 / 59
26 Element minimalny tablicy int min(const int a[], int n) { int m = 0; for (int i=0; i<n ; i++){ if (a[i] < a[m]) m = i; return a[m]; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 22 / 59
27 Element maksymalny zbioru Require: tablica A o rozmiarze n {A=[0],...,A[n-1] Algorytm: MAX 1: max := 0; 2: for all i := 1 to n do 3: if A[i] > A[max] then 4: max := i; 5: end if 6: i := i + 1; 7: end for 8: return max; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 23 / 59
28 Element maksymalny tablicy #include<iostream> #include<ctime> #include<cstdlib> using namespace std; int wypelnij(int [], int); int wypisz(const int [], int); int max(const int [], int); int main() { int a[100]; wypelnij(a, 10); wypisz(a, 10); int m = max(a, 10); cout << "Element maksymalny: " << m << endl; return 0; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 24 / 59
29 Element maksymalny tablicy int max(const int a[], int n) { int m = 0; for (int i=0; i<n ; i++){ if (a[i] > a[m]) m = i; return a[m]; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 25 / 59
30 Wyszukiwanie binarne Wyszukiwanie binarne pozwala na szybkie wyszukiwanie wartości w posortowanych zbiorach (np. tablicy). Skuteczność wyszukiwania binarnego wynika z tego, że zamiast przegladać wszystkie elementy posortowanego zbioru po kolei, wykorzystujemy informację o tym, że jest on uporzadkowany. Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 26 / 59
31 Wyszukiwanie binarne Algorytm: Dana jest tablica A oraz poszukiwany element key. Sprawdź środkowy element tablicy. Jeśli jest równy key, to koniec. Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 27 / 59
32 Wyszukiwanie binarne Algorytm: Dana jest tablica A oraz poszukiwany element key. Sprawdź środkowy element tablicy. Jeśli jest równy key, to koniec. Jeśli środkowy element jest większy niż key, to poszukiwany element jeśli jest w tablicy, to jest w jej lewej części. Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 27 / 59
33 Wyszukiwanie binarne Algorytm: Dana jest tablica A oraz poszukiwany element key. Sprawdź środkowy element tablicy. Jeśli jest równy key, to koniec. Jeśli środkowy element jest większy niż key, to poszukiwany element jeśli jest w tablicy, to jest w jej lewej części. Jeśli środkowy element jest mniejszy niż key, to poszukiwany element jeśli jest w tablicy, to jest w jej prawej części. Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 27 / 59
34 Wyszukiwanie binarne - przykład Znaleźć liczbę 9 w ciagu: 3, 5, 7, 8, 9, 12, 15. Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 28 / 59
35 Wyszukiwanie binarne - algorytm Require: tablica A o rozmiarze n, wartość key {A=[0],...,A[n-1] Algorytm: Wyszukiwanie binarne 1: left := 0; 2: right := n 1; 3: while left <= right do 4: curr := (left + right)/2; 5: if key = a[curr] then 6: return curr; 7: else 8: if key < a[curr] then 9: right := curr 1; 10: else 11: left := curr + 1; 12: end if 13: end if 14: end while Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 29 / 59
36 Wyszukiwanie binarne #include<iostream> #include<ctime> #include<cstdlib> using namespace std; int wypelnij(int [], int); int wypisz(const int [], int); int binsearch(int a[], int, int ); int main() { int a[100]; wypelnij(a, 10); wypisz(a, 10); cout << "Podaj liczbe jakiej szukasz: "; int n; cin >> n; int m = binsearch(a, 10, n); if (m == -1) cout << "Podanego elementu nie ma w tablicy" << endl; else cout << "Element znajduje sie na " << m << " pozycji" << endl; return 0; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 30 / 59
37 Wyszukiwanie binarne int binsearch(int a[], int n, int key) { int left = 0, right = n - 1; while (left <= right) { int curr = (left + right) / 2; if (key == a[curr]) { return curr; else if (key < a[curr]) { right = curr - 1; else { left = curr + 1; return (-1); Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 31 / 59
38 Wyszukiwanie binarne int wypelnij(int a[], int n) { srand(time(0)); for (int k = 0; k < n; ++k) { a[k] = k; int wypisz(const int a[], int n) { for (int k = 0; k < n; ++k) { cout << a[k] << " "; cout << endl; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 32 / 59
39 Liczby pierwsze Liczby pierwsze już od wieków fascynowały i zastanawiały uczonych. W matematyce pojęcie pierwszości liczb, to fundamentalne zagadnienie dotyczace liczb naturalnych. Jest ich nieskończenie wiele, co udowodnił już Euklides. Liczba pierwsza jest liczba naturalna, która dzieli się bez reszty tylko przez 1 i przez sama siebie, np. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 itd. Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 33 / 59
40 Sita Eratostenesa Sito Eratostenesa to algorytm wyznaczania liczb pierwszych z zadanego przedziału [2, n]. Idea: Ze zbioru liczb naturalnych większych od jedności, tj. {2, 3, 4,..., wybieramy najmniejsza, czyli 2, i wykreślamy wszystkie jej wielokrotności większe od niej samej, tj. wszystkie liczby parzyste większe od 2. Z pozostałych liczb wybieramy najmniejsza niewykreślona liczbę, tj. 3, i usuwamy wszystkie jej wielokrotności większe od niej samej: {6, 9, 12,...; nie przejmujemy się tym, że niektóre liczby (np. 6) będa skreślane więcej niż raz. Według tej samej procedury postępujemy dla liczby 5. Potem dla liczby 7, 11, 13, itd., aż do sprawdzenia wszystkich niewykreślonych wcześniej liczb. Dla danej liczby n wszystkie niewykreślone liczby mniejsze od n sa liczbami pierwszymi. Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 34 / 59
41 Zadanie! Zaimplementować Algorytm na laboratoriach! Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 35 / 59
42 Algorym wyznaczania liczb pierwszych Twierdzenie 1 Liczba złożona n posiada dzielnik, który jest mniejszy od pierwiastka z tej liczby, tj. sqrt(n). Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 36 / 59
43 Algorym wyznaczania liczb pierwszych Twierdzenie 1 Liczba złożona n posiada dzielnik, który jest mniejszy od pierwiastka z tej liczby, tj. sqrt(n). Dowód - idea: Niech n będzie liczba złożona. Wtedy n = a b oraz 0 < a b < n. Zatem musi być a sqrt(n), gdyż inaczej otrzymalibyśmy a b > n (sprzeczność). Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 36 / 59
44 Algorym wyznaczania liczb pierwszych Require: tablica A o rozmiarze n+1 {A=[0,...,n+1] Algorytm: Czy n jest liczba pierwsza 1: i := 2 2: while i < sqrt(n)+1 do 3: if i jest dzielnikiem n then 4: return n jest liczba złożona; 5: end if 6: i := i + 1; 7: end while 8: return n jest liczba pierwsza; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 37 / 59
45 Zadanie! Zaimplementować Algorytm na laboratoriach! Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 38 / 59
46 Liczby doskonałe Liczba doskonała jest liczba naturalna, równa sumie wszystkich swoich dzielników, mniejszych od niej samej. Najmniejsza liczba doskonała jest 6, ponieważ 6 = Następna jest 28 (28 = ). Kolejne znane to 496, 8128, Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 39 / 59
47 Liczby doskonałe W IX księdze Elementów Euklides podał następujacy sposób znajdowania liczb doskonałych parzystych: obliczać sumy kolejnych potęg dwójki np , jeżeli, któraś z otrzymanych sum okaże się liczba pierwsza, należy pomnożyć ja przez ostatni składnik i otrzymamy liczbę doskonała. Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 40 / 59
48 Problem Sortowania Definicja problemu Niech (U, ) będzie zbiorem liniowo uporzadkowanym z relacja porzadkuj ac a i niech (a 1, a 2,..., a n ) będzie ciagiem n elementów z U, dla pewnego całkowitego n > 0. Znaleźć permutację (a 1, a 2,..., a n) taka, że (a 1 a 2 a n). Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 41 / 59
49 Problem Sortowania Definicja problemu Niech (U, ) będzie zbiorem liniowo uporzadkowanym z relacja porzadkuj ac a i niech (a 1, a 2,..., a n ) będzie ciagiem n elementów z U, dla pewnego całkowitego n > 0. Znaleźć permutację (a 1, a 2,..., a n) taka, że (a 1 a 2 a n). Przykład Wejście: Wyjście: Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 41 / 59
50 Problem Sortowania Definicja problemu Niech (U, ) będzie zbiorem liniowo uporzadkowanym z relacja porzadkuj ac a i niech (a 1, a 2,..., a n ) będzie ciagiem n elementów z U, dla pewnego całkowitego n > 0. Znaleźć permutację (a 1, a 2,..., a n) taka, że (a 1 a 2 a n). Przykład Wejście: Wyjście: Uwaga! Na U moga składać się zarówno liczby całkowite lub rzeczywiste, jak i U może być zbiorem rekordów, które należy posortować według ich kluczy. Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 41 / 59
51 Popularne algorytmy sortowania Sortowanie przez porównywanie elementów: Sortowanie przez proste wybieranie (ang. selection sort) Sortowanie przez wstawianie (ang. insertion sort) Sortowanie babelkowe (ang. bubblesort) Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 42 / 59
52 Popularne algorytmy sortowania Sortowanie przez porównywanie elementów: Sortowanie przez proste wybieranie (ang. selection sort) Sortowanie przez wstawianie (ang. insertion sort) Sortowanie babelkowe (ang. bubblesort) Inne - będa omawiane na przedmiocie ASD Sortowanie przez scalanie (ang. merge sort) sortowanie szybkie (ang. quicksort) Sortowanie przez zliczanie (ang. counting sort) Sortowanie pozycyjne (ang. radix sort) sortowanie przez kopcowanie (ang. heapsort) Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 42 / 59
53 Sortowanie przez proste wybieranie Idea Sortowanie przez wybieranie polega na tym, że w każdym kroku znajdujemy najmniejszy element w sortowanym ciagu, po czym przenosimy ten element na odpowiednią pozycję do ciagu wynikowego (przez zamianę elementów miejscami). Sortowanie odbywa się w n-1 przebiegach. W i-tym przebiegu szukamy i-tego najmniejszego (największego) elementu. Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 43 / 59
54 Sortowanie przez proste wybieranie Require: tablica A o rozmiarze n {A=[0],...,A[n-1] 1: for all i := 0 to n 2 do 2: min := i; 3: for all j := i + 1 to n 1 do 4: if A[j] < A[min] then 5: min := j; 6: end if 7: j := j + 1; 8: end for {zamiana elementu A[min] z elementem A[i] w tablicy A 9: zamiana (A, min, i); 10: i := i + 1; 11: end for Ze względu na dwie zagnieżdżone pętle, z których każda wykonuje się dokładnie n razy, algorytm wymaga n n porównań, aby posortować n elementowy ciag, czyli jest w klasie O(n 2 ). Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 44 / 59
55 Sortowanie przez proste wybieranie - Przykład nr iteracji - i Tablica Minimum 0 [9,1,6,8,4,3,2,0] 0 1 [0,1,6,8,4,3,2,9] 1 - na właściwej pozycji 2 [0,1,6,8,4,3,2,9] 2 3 [0,1,2,8,4,3,6,9] 3 4 [0,1,2,3,4,8,6,9] 4 5 [0,1,2,3,4,8,6,9] 6 6 [0,1,2,3,4,6,8,9] 8 7 [0,1,2,3,4,6,8,9] 9 - na właściwej pozycji Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 45 / 59
56 Sortowanie przez proste wybieranie - Przykład K r o k i a l g o r y t m u Klucze i = 2 i = 3 i = 4 i = 5 i = Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 46 / 59
57 void s e l e c t i o n S o r t ( i n t a [ ], i n t size ) { i n t i, j, min, temp ; f o r ( i = 0 ; i < size 1; i ++) { min = i ; f o r ( j = i +1; j < size ; j ++) { i f ( a [ j ] < a [ min ] ) min = j ; temp = a [ i ] ; a [ i ] = a [ min ] ; a [ min ] = temp ; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 47 / 59
58 void s e l e c t i o n S o r t ( i n t [ ] a, i n t size ) { f o r ( i n t n = size ; n > 1 ; n ) { i n t j = max( a, n 1); swap ( a, j, n 1 ) ; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 48 / 59
59 Sortowanie przez wstawianie Idea Sortowanie przez wstawianie odbywa się w n 1 przebiegach. W i-tym przebiegu elementy na pozycjach 1,...,(i 1) sa już uporzadkowane, a wstawiany i-ty element przepycha się do przodu na właściwe miejsce, tak by stworzył wraz z innymi ciag uporzadkowany długości i. Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 49 / 59
60 Sortowanie przez wstawianie - przykład Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 50 / 59
61 Sortowanie przez wstawianie Require: tablica A o rozmiarze n {A=[0],...,A[n-1] 1: for i := 1 to n 1 do 2: key := A[i]; 3: j := i 1; 4: while j 0 and A[j] > key do 5: A[j + 1] := A[j]; 6: j := j 1; 7: end while 8: A[j + 1] := key; 9: end for Ze względu na dwie zagnieżdżone pętle, z których każda wykonuje się dokładnie n razy, algorytm wymaga n n porównań, aby posortować n elementowy ciag, czyli jest w klasie O(n 2 ). Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 51 / 59
62 Sortowanie przez wstawianie - Przykład nr iteracji (wartość i ) Tablica Rozważany element 0 [9,1,6,8,4,3,2,0] 9 Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 52 / 59
63 Sortowanie przez wstawianie - Przykład nr iteracji (wartość i ) Tablica Rozważany element 0 [9,1,6,8,4,3,2,0] 9 1 [1,9,6,8,4,3,2,0] 1 Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 52 / 59
64 Sortowanie przez wstawianie - Przykład nr iteracji (wartość i ) Tablica Rozważany element 0 [9,1,6,8,4,3,2,0] 9 1 [1,9,6,8,4,3,2,0] 1 2 [1,6,9,8,4,3,2,0] 6 Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 52 / 59
65 Sortowanie przez wstawianie - Przykład nr iteracji (wartość i ) Tablica Rozważany element 0 [9,1,6,8,4,3,2,0] 9 1 [1,9,6,8,4,3,2,0] 1 2 [1,6,9,8,4,3,2,0] 6 3 [1,6,8,9,4,3,2,0] 8 Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 52 / 59
66 Sortowanie przez wstawianie - Przykład nr iteracji (wartość i ) Tablica Rozważany element 0 [9,1,6,8,4,3,2,0] 9 1 [1,9,6,8,4,3,2,0] 1 2 [1,6,9,8,4,3,2,0] 6 3 [1,6,8,9,4,3,2,0] 8 4 [1,6,8,4,9,3,2,0] 4 Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 52 / 59
67 Sortowanie przez wstawianie - Przykład nr iteracji (wartość i ) Tablica Rozważany element 0 [9,1,6,8,4,3,2,0] 9 1 [1,9,6,8,4,3,2,0] 1 2 [1,6,9,8,4,3,2,0] 6 3 [1,6,8,9,4,3,2,0] 8 4 [1,6,8,4,9,3,2,0] 4 [1,6,4,8,9,3,2,0] 4 Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 52 / 59
68 Sortowanie przez wstawianie - Przykład nr iteracji (wartość i ) Tablica Rozważany element 0 [9,1,6,8,4,3,2,0] 9 1 [1,9,6,8,4,3,2,0] 1 2 [1,6,9,8,4,3,2,0] 6 3 [1,6,8,9,4,3,2,0] 8 4 [1,6,8,4,9,3,2,0] 4 [1,6,4,8,9,3,2,0] 4 [1,4,6,8,9,3,2,0] 4 Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 52 / 59
69 Sortowanie przez wstawianie - Przykład nr iteracji (wartość i ) Tablica Rozważany element 0 [9,1,6,8,4,3,2,0] 9 1 [1,9,6,8,4,3,2,0] 1 2 [1,6,9,8,4,3,2,0] 6 3 [1,6,8,9,4,3,2,0] 8 4 [1,6,8,4,9,3,2,0] 4 [1,6,4,8,9,3,2,0] 4 [1,4,6,8,9,3,2,0] 4 5 [1,4,6,8,3,9,2,0] 3 Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 52 / 59
70 Sortowanie przez wstawianie - Przykład nr iteracji (wartość i ) Tablica Rozważany element 0 [9,1,6,8,4,3,2,0] 9 1 [1,9,6,8,4,3,2,0] 1 2 [1,6,9,8,4,3,2,0] 6 3 [1,6,8,9,4,3,2,0] 8 4 [1,6,8,4,9,3,2,0] 4 [1,6,4,8,9,3,2,0] 4 [1,4,6,8,9,3,2,0] 4 5 [1,4,6,8,3,9,2,0] 3 [1,4,6,3,8,9,2,0] 3 Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 52 / 59
71 Sortowanie przez wstawianie - Przykład nr iteracji (wartość i ) Tablica Rozważany element 0 [9,1,6,8,4,3,2,0] 9 1 [1,9,6,8,4,3,2,0] 1 2 [1,6,9,8,4,3,2,0] 6 3 [1,6,8,9,4,3,2,0] 8 4 [1,6,8,4,9,3,2,0] 4 [1,6,4,8,9,3,2,0] 4 [1,4,6,8,9,3,2,0] 4 5 [1,4,6,8,3,9,2,0] 3 [1,4,6,3,8,9,2,0] 3 [1,4,3,6,8,9,2,0] 3 Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 52 / 59
72 Sortowanie przez wstawianie - Przykład nr iteracji (wartość i ) Tablica Rozważany element 0 [9,1,6,8,4,3,2,0] 9 1 [1,9,6,8,4,3,2,0] 1 2 [1,6,9,8,4,3,2,0] 6 3 [1,6,8,9,4,3,2,0] 8 4 [1,6,8,4,9,3,2,0] 4 [1,6,4,8,9,3,2,0] 4 [1,4,6,8,9,3,2,0] 4 5 [1,4,6,8,3,9,2,0] 3 [1,4,6,3,8,9,2,0] 3 [1,4,3,6,8,9,2,0] 3 [1,3,4,6,8,9,2,0] 3 Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 52 / 59
73 Sortowanie przez wstawianie - Przykład nr iteracji (wartość i ) Tablica Rozważany element 0 [9,1,6,8,4,3,2,0] 9 1 [1,9,6,8,4,3,2,0] 1 2 [1,6,9,8,4,3,2,0] 6 3 [1,6,8,9,4,3,2,0] 8 4 [1,6,8,4,9,3,2,0] 4 [1,6,4,8,9,3,2,0] 4 [1,4,6,8,9,3,2,0] 4 5 [1,4,6,8,3,9,2,0] 3 [1,4,6,3,8,9,2,0] 3 [1,4,3,6,8,9,2,0] 3 [1,3,4,6,8,9,2,0] 3 6 [1,2,3,4,6,8,9,0] 2 Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 52 / 59
74 Sortowanie przez wstawianie - Przykład nr iteracji (wartość i ) Tablica Rozważany element 0 [9,1,6,8,4,3,2,0] 9 1 [1,9,6,8,4,3,2,0] 1 2 [1,6,9,8,4,3,2,0] 6 3 [1,6,8,9,4,3,2,0] 8 4 [1,6,8,4,9,3,2,0] 4 [1,6,4,8,9,3,2,0] 4 [1,4,6,8,9,3,2,0] 4 5 [1,4,6,8,3,9,2,0] 3 [1,4,6,3,8,9,2,0] 3 [1,4,3,6,8,9,2,0] 3 [1,3,4,6,8,9,2,0] 3 6 [1,2,3,4,6,8,9,0] 2 7 [1,2,3,4,6,8,9,0] 0 Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 52 / 59
75 Sortowanie przez wstawianie - przykład K r o k i a l g o r y t m u Klucze i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 53 / 59
76 void i n s e r t ( i n t [ ] a, i n t n, i n t x ) { / / i n s e r t x i n t o a [ 0.. i 1] i n t j ; f o r ( j = i 1 ; j >= 0 && x < a [ j ] ; j ) a [ j + 1 ] = a [ j ] ; a [ j + 1 ] = x ; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 54 / 59
77 void i n s e r t S o r t ( i n t [ ] a, i n t n ) { f o r ( i n t i = 1 ; i < n ; i ++) { / / i n s e r t a [ i ] i n t o a [ 0 : i 1] i n s e r t ( a, i, a [ i ] ) ; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 55 / 59
78 Sortowanie babelkowe W sortowaniu babelkowym liczby zachowuja się jak babelki, po kolei, jedna po drugiej ida do góry (lub w prawo). Sortowanie babelkowe jest wykonywane w n 1 fazach. W fazie i-tej wyznaczany jest i-ty najmniejszy/największy element. Idea Sprawdzamy cały ciag od końca. Jeżeli trafimy na parę elementów, w której większy poprzedza mniejszy, to zamieniamy je miejscami. Czynność powtarzamy tak długo, aż podczas sprawdzania całego ciagu, nie zajdzie ani jedna zamiana elementów. Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 56 / 59
79 Sortowanie babelkowe Require: tablica A o rozmiarze n {A=[0],...,A[n-1] 1: for i := 0 to n 1 do 2: for j := n downto i + 1 do 3: if A[j 1] > A[j] then 4: Zamiana(A, j 1, j); 5: end if 6: end for 7: end for Ze względu na dwie zagnieżdżone pętle, z których każda wykonuje się dokładnie n razy, algorytm wymaga n n porównań, aby posortować n elementowy ciag, czyli jest w klasie O(n 2 ). Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 57 / 59
80 Sortowanie babelkowe - przykład 44 Klucze i = i = 2 K r o k i a l g o r y t m u i = i = i = i = i = Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 58 / 59
81 void bubblesort ( i n t A [ ], i n t n ) { f o r ( i n t i =0; i <n ; i ++) f o r ( i n t j =n 1; j > i ; j ) i f (A[ j ] < A[ j 1]) { / / zamiana A[ j 1] z A[ j ] i n t temp= A[ j 1]; A[ j 1] = A[ j ] ; A[ j ]= temp ; Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 59 / 59
Podstawowe algorytmy i ich implementacje w C. Wykład 9
Wstęp do programowania 1 Podstawowe algorytmy i ich implementacje w C Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Element minimalny i maksymalny zbioru Element minimalny
Bardziej szczegółowoPodstawy Informatyki
Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 7 i 8 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 7 i 8 1 / 44 Struktura danych - tablica
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Organizacja wykładu. Problem Sortowania. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Metoda Dziel i zwyciężaj. Problem Sortowania, cd. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Algorytmy
Bardziej szczegółowoLaboratorium nr 7 Sortowanie
Laboratorium nr 7 Sortowanie 1. Sortowanie bąbelkowe (BbS) 2. Sortowanie przez wstawianie (IS) 3. Sortowanie przez wybieranie (SS) Materiały Wyróżniamy następujące metody sortowania: 1. Przez prostą zamianę
Bardziej szczegółowoAnaliza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą
Bardziej szczegółowoWstęp do Informatyki
Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 11 1 / 52 Pętla for # i n c l u d e
Bardziej szczegółowoZadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.
Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Problem Sortowania. Metoda Dziel i zwyciężaj. dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Algorytmy
Bardziej szczegółowoAlgorytm selekcji Hoare a. Łukasz Miemus
Algorytm selekcji Hoare a Łukasz Miemus 1 lutego 2006 Rozdział 1 O algorytmie 1.1 Problem Mamy tablicę A[N] różnych elementów i zmienną int K, takie że 1 K N. Oczekiwane rozwiązanie to określenie K-tego
Bardziej szczegółowoWstęp do programowania
wykład 6 Agata Półrola Wydział Matematyki i Informatyki UŁ sem. zimowy 2017/2018 Losowanie liczb całkowitych Dostępne biblioteki Najprostsze losowanie liczb całkowitych można wykonać za pomocą funkcji
Bardziej szczegółowoPodstawy algorytmiki i programowania - wykład 6 Sortowanie- algorytmy
1 Podstawy algorytmiki i programowania - wykład 6 Sortowanie- algorytmy Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com
Bardziej szczegółowoInformatyka A. Algorytmy
Informatyka A Algorytmy Spis algorytmów 1 Algorytm Euklidesa....................................... 2 2 Rozszerzony algorytm Euklidesa................................ 2 3 Wyszukiwanie min w tablicy..................................
Bardziej szczegółowoInformacje wstępne #include <nazwa> - derektywa procesora umożliwiająca włączenie do programu pliku o podanej nazwie. Typy danych: char, signed char
Programowanie C++ Informacje wstępne #include - derektywa procesora umożliwiająca włączenie do programu pliku o podanej nazwie. Typy danych: char, signed char = -128 do 127, unsigned char = od
Bardziej szczegółowoAlgorytmy i Struktury Danych
Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu
Bardziej szczegółowoProgramowanie Procedurale
Programowanie Procedurale Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 6 Bożena Woźna-Szcześniak (AJD) Programowanie Procedurale Wykład 6 1 / 27 Zbiór ctime zawiera deklarcję
Bardziej szczegółowoProgramowanie proceduralne INP001210WL rok akademicki 2017/18 semestr letni. Wykład 3. Karol Tarnowski A-1 p.
Programowanie proceduralne INP001210WL rok akademicki 2017/18 semestr letni Wykład 3 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji (1) Co to jest algorytm? Zapis algorytmów Algorytmy
Bardziej szczegółowoRozwiązanie. #include <cstdlib> #include <iostream> using namespace std;
Programowanie C++ Zadanie 1 Napisz program do obliczenia sumy i iloczynu ciągu liczb zakooczonego liczbą zero. Zakładamy, że ciąg zawiera co najmniej jedną liczbę (założenie to jest konieczne przy obliczeniu
Bardziej szczegółowoWstęp do programowania
wykład 7 Agata Półrola Wydział Matematyki i Informatyki UŁ sem. zimowy 2016/2017 Losowanie liczb całkowitych Dostępne biblioteki Najprostsze losowanie liczb całkowitych można wykonać za pomocą funkcji
Bardziej szczegółowoWykład 4. Sortowanie
Wykład 4 Sortowanie 1 Sortowanie - zadanie Definicja (dla liczb): wejście: ciąg n liczb A = (a 1, a 2,, a n ) wyjście: permutacja (a 1,, a n ) taka, że a 1 a n Po co sortować? Podstawowy problem dla algorytmiki
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Problem Sortowania, cd. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład
Bardziej szczegółowoProgramowanie w VB Proste algorytmy sortowania
Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich
Bardziej szczegółowoAlgorytmika i programowanie. Wykład 2 inż. Barbara Fryc Wyższa Szkoła Informatyki i Zarządzania w Rzeszowie
Algorytmika i programowanie Wykład 2 inż. Barbara Fryc Wyższa Szkoła Informatyki i Zarządzania w Rzeszowie Tablice Tablica jest zbiorem elementów tego samego typu. Każdy element jest identyfikowany (numer
Bardziej szczegółowoProgramowanie i struktury danych
Programowanie i struktury danych 1 / 30 STL Standard Template Library, STL (ang. = Standardowa Biblioteka Wzorców) biblioteka C++ zawierająca szablony (wzorce), które umożliwiają wielokrotne użycie. Główne
Bardziej szczegółowoWybrane algorytmy tablicowe
Wybrane algorytmy tablicowe Algorytmy i struktury danych Wykład 2. Rok akademicki: 2009/2010 Sortowanie przez wybieranie for (int i = 0; i < liczby.length - 1; i++) k = i; for (int j = i; j < liczby.length;
Bardziej szczegółowoStrategia "dziel i zwyciężaj"
Strategia "dziel i zwyciężaj" W tej metodzie problem dzielony jest na kilka mniejszych podproblemów podobnych do początkowego problemu. Problemy te rozwiązywane są rekurencyjnie, a następnie rozwiązania
Bardziej szczegółowoDefinicja. Ciąg wejściowy: Funkcja uporządkowująca: Sortowanie polega na: a 1, a 2,, a n-1, a n. f(a 1 ) f(a 2 ) f(a n )
SORTOWANIE 1 SORTOWANIE Proces ustawiania zbioru elementów w określonym porządku. Stosuje się w celu ułatwienia późniejszego wyszukiwania elementów sortowanego zbioru. 2 Definicja Ciąg wejściowy: a 1,
Bardziej szczegółowoWykład 5. Sortowanie w czasie liniowologarytmicznym
Wykład 5 Sortowanie w czasie liniowologarytmicznym 1 Sortowanie - zadanie Definicja (dla liczb): wejście: ciąg n liczb A = (a 1, a 2,, a n ) wyjście: permutacja (a 1,, a n ) taka, że a 1 a n 2 Zestawienie
Bardziej szczegółowoSortowanie danych. Jolanta Bachan. Podstawy programowania
Sortowanie danych Podstawy programowania 2013-06-06 Sortowanie przez wybieranie 9 9 9 9 9 9 10 7 7 7 7 7 10 9 1 3 3 4 10 7 7 10 10 10 10 4 4 4 4 4 4 3 3 3 3 2 2 2 2 2 2 2 3 1 1 1 1 1 1 Gurbiel et al. 2000
Bardziej szczegółowoWstęp do programowania
wykład 4 Agata Półrola Wydział Matematyki i Informatyki UŁ sem. zimowy 2017/2018 Pętle wykonujące się podaną liczbę razy Jeśli chcemy wykonać pewien fragment programu określoną liczbę razy, możemy użyć
Bardziej szczegółowoRekurencja. Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)!
Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)! Pseudokod: silnia(n): jeżeli n == 0 silnia = 1 w przeciwnym
Bardziej szczegółowoSortowanie - wybrane algorytmy
Sortowanie - wybrane algorytmy Aleksandra Wilkowska Wydział Matematyki - Katedra Matematyki Stosowanej Politechika Wrocławska 2 maja 2018 1 / 39 Plan prezentacji Złożoność obliczeniowa Sortowanie bąbelkowe
Bardziej szczegółowoAnaliza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe 15 stycznia 2019 Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r P Jaka wartość zostanie zwrócona
Bardziej szczegółowoWstęp do programowania
Wstęp do programowania Algorytmy na tablicach Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk (Wydział Fizyki) WP w. III Jesień 2013 1 / 23 Dwadzieścia pytań Zasady 1 Osoba 1 wymyśla hasło z ustalonej
Bardziej szczegółowoWYKŁAD 9. Algorytmy sortowania elementów zbioru (tablic) Programy: c4_1.c... c4_3.c. Tomasz Zieliński
WYKŁAD 9 Algorytmy sortowania elementów zbioru (tablic) Programy: c4_1.c... c4_3.c Tomasz Zieliński /* Przyklad 4.1 - SORTOWANIE TABLIC - metoda najprostsza */ #include #define ROZMIAR 11 void
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Grafy dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 1 / 20
Bardziej szczegółowoProgramowanie w C++ Wykład 2. Katarzyna Grzelak. 5 marca K.Grzelak (Wykład 1) Programowanie w C++ 1 / 41
Programowanie w C++ Wykład 2 Katarzyna Grzelak 5 marca 2018 K.Grzelak (Wykład 1) Programowanie w C++ 1 / 41 Reprezentacje liczb w komputerze K.Grzelak (Wykład 1) Programowanie w C++ 2 / 41 Reprezentacje
Bardziej szczegółowotablica: dane_liczbowe
TABLICE W JĘZYKU C/C++ tablica: dane_liczbowe float dane_liczbowe[5]; dane_liczbowe[0]=12.5; dane_liczbowe[1]=-0.2; dane_liczbowe[2]= 8.0;... 12.5-0.2 8.0...... 0 1 2 3 4 indeksy/numery elementów Tablica
Bardziej szczegółowoPodstawy algorytmiki i programowania - wykład 3 Funkcje rekurencyjne Wyszukiwanie liniowe i binarne w tablicy
1 Podstawy algorytmiki i programowania - wykład 3 Funkcje rekurencyjne Wyszukiwanie liniowe i binarne w tablicy Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania.
Bardziej szczegółowoKontrola przebiegu programu
Kontrola przebiegu programu Wykład 9 Instrukcje sterujące: pętle rozgałęzienia skoki PRZYPOMINAJKA Zadanie : Zaprojektuj rekurencyjny przepis na wyznaczenie największej takiej liczby m, że 2 m jest podzielnikiem
Bardziej szczegółowoWykład 1_2 Algorytmy sortowania tablic Sortowanie bąbelkowe
I. Struktury sterujące.bezpośrednie następstwo (A,B-czynności) Wykład _2 Algorytmy sortowania tablic Sortowanie bąbelkowe Elementy języka stosowanego do opisu algorytmu Elementy Poziom koncepcji Poziom
Bardziej szczegółowoAlgorytmy. 1. Sortowanie 2. Statki i okręty. programowanie cz.7. poniedziałek, 2 marca 2009
Algorytmy. Sortowanie 2. Statki i okręty programowanie cz. ALGORYTMY SORTUJĄCE A. Przez zamianę (bąbelkowe) B. Przez wybieranie Najpopularniejsze metody sortowania C. Przez wstawianie Przez zamianę (sortowanie
Bardziej szczegółowoWstęp do programowania
wykład 5 Agata Półrola Wydział Matematyki i Informatyki UŁ sem. zimowy 2016/2017 Zadanie o kotach z poprzedniego wykładu # include < iostream > using namespace std ; int main (){ int rozmiar_ rodzinki,
Bardziej szczegółowoProgramowanie w C++ Wykład 2. Katarzyna Grzelak. 4 marca K.Grzelak (Wykład 1) Programowanie w C++ 1 / 44
Programowanie w C++ Wykład 2 Katarzyna Grzelak 4 marca 2019 K.Grzelak (Wykład 1) Programowanie w C++ 1 / 44 Na poprzednim wykładzie podstawy C++ Każdy program w C++ musi mieć funkcję o nazwie main Wcięcia
Bardziej szczegółowoPODSTAWY INFORMATYKI wykład 10.
PODSTAWY INFORMATYKI wykład 10. Adrian Horzyk Web: http://home.agh.edu.pl/~horzyk/ E-mail: horzyk@agh.edu.pl Google: Adrian Horzyk Gabinet: paw. D13 p. 325 Akademia Górniczo-Hutniacza w Krakowie WEAIiE,
Bardziej szczegółowoAlgorytmy sortujące i wyszukujące
Algorytmy sortujące i wyszukujące Zadaniem algorytmów sortujących jest ułożenie elementów danego zbioru w ściśle określonej kolejności. Najczęściej wykorzystywany jest porządek numeryczny lub leksykograficzny.
Bardziej szczegółowoPDF stworzony przez wersję demonstracyjną pdffactory Pro Program 15
Program 15 Program zawierający następujące funkcje: funkcję wczytującą elementy do tablicy liczb całkowitych podanej jako parametr (długość tablicy również ma być podana jako parametr); funkcję wypisującą
Bardziej szczegółowoWstęp do programowania
wykład 3 Agata Półrola Wydział Matematyki i Informatyki UŁ sem. zimowy 2017/2018 Instrukcja wielokrotnego wyboru Instrukcja wielokrotnego wyboru switch umożliwia podejmowanie decyzji na podstawie wartości
Bardziej szczegółowoZajęcia nr 5 Algorytmy i wskaźniki. dr inż. Łukasz Graczykowski mgr inż. Leszek Kosarzewski Wydział Fizyki Politechniki Warszawskiej
Zajęcia nr 5 Algorytmy i wskaźniki dr inż. Łukasz Graczykowski mgr inż. Leszek Kosarzewski Wydział Fizyki Politechniki Warszawskiej Plan Zapis i odczyt z plików tekstowych O tablicach ciąg dalszy Referencje
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Liniowe struktury danych - Lista Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.
Bardziej szczegółowoProgramowanie - wykład 4
Programowanie - wykład 4 Filip Sośnicki Wydział Fizyki Uniwersytet Warszawski 20.03.2019 Przypomnienie Prosty program liczący i wyświeltający wartość silni dla wprowadzonej z klawiatury liczby: 1 # include
Bardziej szczegółowoKolokwium ze wstępu do informatyki, I rok Mat. (Ściśle tajne przed godz. 10 : grudnia 2005.)
Kolokwium ze wstępu do informatyki, I rok Mat. (Ściśle tajne przed godz. 10 : 15 1 grudnia 005.) 1. Program w C 1 zawiera deklaracje 1 void P1 ( int a, int b) { int i ; 3 for ( i =0;i
Bardziej szczegółowoWstęp do Informatyki
Wstęp do Informatyki dr hab. Bożena Woźna-Szcześniak, prof. AJD bwozna@gmail.com Jan Długosz University, Poland Wykład 8 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 8 1 / 32 Instrukcje iteracyjne
Bardziej szczegółowoINFORMATYKA Z MERMIDONEM. Programowanie. Moduł 5 / Notatki
INFORMATYKA Z MERMIDONEM Programowanie Moduł 5 / Notatki Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego. Realizator projektu: Opracowano w ramach projektu
Bardziej szczegółowowykład IV uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C, a C++. wykład IV dr Jarosław Mederski Spis Język C++ - wstęp
Programowanie uzupełnienie notatek: dr Jerzy Białkowski 1 2 3 4 Historia C++ został zaprojektowany w 1979 przez Bjarne Stroustrupa jako rozszerzenie języka C o obiektowe mechanizmy abstrakcji danych i
Bardziej szczegółowoWykład 2. Poprawność algorytmów
Wykład 2 Poprawność algorytmów 1 Przegląd Ø Poprawność algorytmów Ø Podstawy matematyczne: Przyrost funkcji i notacje asymptotyczne Sumowanie szeregów Indukcja matematyczna 2 Poprawność algorytmów Ø Algorytm
Bardziej szczegółowoTablice jednowymiarowe
Tablice jednowymiarowe Gdy mamy do czynienia z zestawem zmiennych, to można z nich zrobić tablicę. Tablica jest ciągiem elementów tego samego typu, który zajmuje ciągły obszar pamięci. Korzyść z zastosowania
Bardziej szczegółowoZaawansowane algorytmy i struktury danych
Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań praktycznych z egzaminów. Strona 1 z 12 Pytania praktyczne z kolokwium zaliczeniowego z 19 czerwca 2014 (studia dzienne)
Bardziej szczegółowoSortowanie bąbelkowe
1/98 Sortowanie bąbelkowe (Bubble sort) prosty i nieefektywny algorytm sortowania wielokrotnie przeglądamy listę elementów, porównując dwa sąsiadujące i zamieniając je miejscami, jeśli znajdują się w złym
Bardziej szczegółowoAlgorytmy i struktury danych
Algorytmy i struktury danych Proste algorytmy sortowania Witold Marańda maranda@dmcs.p.lodz.pl 1 Pojęcie sortowania Sortowaniem nazywa się proces ustawiania zbioru obiektów w określonym porządku Sortowanie
Bardziej szczegółowoAlgorytmy i Struktury Danych, 2. ćwiczenia
Algorytmy i Struktury Danych, 2. ćwiczenia 2017-10-13 Spis treści 1 Optymalne sortowanie 5 ciu elementów 1 2 Sortowanie metodą Shella 2 3 Przesunięcie cykliczne tablicy 3 4 Scalanie w miejscu dla ciągów
Bardziej szczegółowoProste programy w C++ zadania
Proste programy w C++ zadania Zbiór zadao do samodzielnego rozwiązania stanowiący powtórzenie materiału. Podstawy C++ Budowa programu w C++ Dyrektywy preprocesora Usunięcie dublujących się nazw Częśd główna
Bardziej szczegółowoRekurencja. Przygotowała: Agnieszka Reiter
Rekurencja Przygotowała: Agnieszka Reiter Definicja Charakterystyczną cechą funkcji (procedury) rekurencyjnej jest to, że wywołuje ona samą siebie. Drugą cechą rekursji jest jej dziedzina, którą mogą być
Bardziej szczegółowoZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima Uwagi przed sprawdzianem nr 1.
POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2015 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 5 : Algorytmy sortowania. Struktury
Bardziej szczegółowoAlgorytmy i struktury danych. Wykład 4
Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej 2017-11-24 Algorytmy i struktury danych
Bardziej szczegółowoEGZAMIN MATURALNY Z INFORMATYKI. 10 maja 2017 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY
Bardziej szczegółowoAlgorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne
Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na
Bardziej szczegółowoMatematyka dyskretna - wykład - część Podstawowe algorytmy kombinatoryczne
A. Permutacja losowa Matematyka dyskretna - wykład - część 2 9. Podstawowe algorytmy kombinatoryczne Załóżmy, że mamy tablice p złożoną z n liczb (ponumerowanych od 0 do n 1). Aby wygenerować losową permutację
Bardziej szczegółowoSortowanie w czasie liniowym
Sortowanie w czasie liniowym 1 Sortowanie - zadanie Definicja (dla liczb): wejście: ciąg n liczb A = (a 1, a 2,, a n ) wyjście: permutacja (a 1,, a n ) taka, że a 1 a n Po co sortować? Podstawowy problem
Bardziej szczegółowoALGORYTMY I STRUKTURY DANYCH
ALGORYTMY I STRUKTURY DANYCH Temat : Drzewa zrównoważone, sortowanie drzewiaste Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/
Bardziej szczegółowoWstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami
Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Przykład 1. Napisz program, który dla podanej liczby n wypisze jej rozkład na czynniki pierwsze. Oblicz asymptotyczną złożoność
Bardziej szczegółowoLiczby całkowite i rzeczywiste
Wykład 4(20 marzec 2014r.) Liczby całkowite i rzeczywiste Paulina Rogowiecka Klaudia Kamińska Adrianna Znyk 1 Spis treści: Czynniki pierwsze metoda próbnych dzieleń Pierwszość liczby naturalnej algorytmy
Bardziej szczegółowoWrocław, Wstęp do informatyki i programowania: liczby pierwsze. Wydział Matematyki Politechniki Wrocławskiej.
Wrocław, 28.11.2017 Wstęp do informatyki i programowania: liczby pierwsze Wydział Matematyki Politechniki Wrocławskiej Andrzej Giniewicz Dzisiaj na zajęciach... Zajmiemy się liczbami pierwszymi... liczby
Bardziej szczegółowo(3 kwiecień 2014) Marika Pankowska Kamila Pietrzak
(3 kwiecień 2014) Marika Pankowska Kamila Pietrzak Wyszukiwanie liniowe (ang. linear search), zwane również sekwencyjnym (ang. sequential search) polega na przeglądaniu kolejnych elementów zbioru Z. Jeśli
Bardziej szczegółowoMACIERZE. Sobiesiak Łukasz Wilczyńska Małgorzata
MACIERZE Sobiesiak Łukasz Wilczyńska Małgorzata Podstawowe pojęcia dotyczące macierzy Nie bez przyczyny zaczynamy od pojęcia macierzy, które jest niezwykle przydatne we wszystkich zastosowaniach, obliczeniach
Bardziej szczegółowoPodstawy Informatyki. Sprawność algorytmów
Podstawy Informatyki Sprawność algorytmów Sprawność algorytmów Kryteria oceny oszczędności Miara złożoności rozmiaru pamięci (złożoność pamięciowa): Liczba zmiennych + liczba i rozmiar struktur danych
Bardziej szczegółowoWstęp do informatyki- wykład 12 Funkcje (przekazywanie parametrów przez wartość i zmienną)
1 Wstęp do informatyki- wykład 12 Funkcje (przekazywanie parametrów przez wartość i zmienną) Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion,
Bardziej szczegółowo1,3,4,2,3,4,0,1,4,5,0. Wówczas największa suma trzech kolejnych liczb (zaznaczone na czerwono) wynosi:
Program 20 Napisać następujące funkcje: funkcję pobierającą (z klawiatury) zawartość tablicy liczb całkowitych podanej jako parametr, o długości podanej jako parametr; funkcję wypisującą zawartość tablicy
Bardziej szczegółowoĆwiczenie 3 z Podstaw programowania. Język C++, programy pisane w nieobiektowym stylu programowania. Zofia Kruczkiewicz
Ćwiczenie 3 z Podstaw programowania. Język C++, programy pisane w nieobiektowym stylu programowania Zofia Kruczkiewicz Zakres Podstawowe algorytmy przetwarzania tablic (wypełnianie, porównywanie elementów,
Bardziej szczegółowowykład V uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C++ klasy i obiekty wykład V dr Jarosław Mederski Spis Język C++ - klasy
i obiekty Programowanie i obiekty uzupełnienie notatek: dr Jerzy Białkowski i obiekty 1 2 3 4 i obiekty Obiektowość języka C++ Na tym wykładzie poznamy: ˆ Klasa (w języku C++ rozszerzenie struktury, typ
Bardziej szczegółowoINFORMATYKA SORTOWANIE DANYCH.
INFORMATYKA SORTOWANIE DANYCH http://www.infoceram.agh.edu.pl SORTOWANIE Jest to proces ustawiania zbioru obiektów w określonym porządku. Sortowanie stosowane jest w celu ułatwienia późniejszego wyszukania
Bardziej szczegółowoPodstawy Programowania Podstawowa składnia języka C++
Podstawy Programowania Podstawowa składnia języka C++ Katedra Analizy Nieliniowej, WMiI UŁ Łódź, 3 października 2013 r. Szablon programu w C++ Najprostszy program w C++ ma postać: #include #include
Bardziej szczegółowoSortowanie. Bartman Jacek Algorytmy i struktury
Sortowanie Bartman Jacek jbartman@univ.rzeszow.pl Algorytmy i struktury danych Sortowanie przez proste wstawianie przykład 41 56 17 39 88 24 03 72 41 56 17 39 88 24 03 72 17 41 56 39 88 24 03 72 17 39
Bardziej szczegółowoJęzyk C++ wykład VIII
Programowanie uzupełnienie notatek: dr Jerzy Białkowski 1 2 3 4 Obiektowość języka C++ ˆ Klasa (rozszerzenie struktury), obiekt instancją klasy, konstruktory i destruktory ˆ Enkapsulacja - kapsułkowanie,
Bardziej szczegółowoJeszcze o algorytmach
Jeszcze o algorytmach Przykłady różnych, podstawowych algorytmów 11.01.2018 M. Rad Plan Powtórka Znajdowanie najmniejszego elementu Segregowanie Poszukiwanie przez połowienie Wstawianie Inne algorytmy
Bardziej szczegółowo1. Znajdowanie miejsca zerowego funkcji metodą bisekcji.
1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. Matematyczna funkcja f ma być określona w programie w oddzielnej funkcji języka C (tak, aby moŝna było łatwo ją zmieniać). Przykładowa funkcja to:
Bardziej szczegółowoznalezienia elementu w zbiorze, gdy w nim jest; dołączenia nowego elementu w odpowiednie miejsce, aby zbiór pozostał nadal uporządkowany.
Przedstawiamy algorytmy porządkowania dowolnej liczby elementów, którymi mogą być liczby, jak również elementy o bardziej złożonej postaci (takie jak słowa i daty). Porządkowanie, nazywane również często
Bardziej szczegółowoAlgorytmy i złożoność obliczeniowa. Wojciech Horzelski
Algorytmy i złożoność obliczeniowa Wojciech Horzelski 1 Tematyka wykładu Ø Ø Ø Ø Ø Wprowadzenie Poprawność algorytmów (elementy analizy algorytmów) Wyszukiwanie Sortowanie Elementarne i abstrakcyjne struktury
Bardziej szczegółowonp. dla p=1 mamy T1(N) N/2 średni czas chybionego wyszukiwania z prawdopodobieństwem q:
Wykład 4 Wyszukiwania w tablicach posortowanych 1. Wyszukiwanie sekwencyjne w tablicy posortowanej 2. Wyszukiwanie binarne bez powtórzeń 3. Wyszukiwanie binarne z powtórzeniami 1 2 3 4 5 6 7 8 9 10 11
Bardziej szczegółowoMetodyki i Techniki Programowania 2
Metodyki i Techniki Programowania 2 zajęcia nr 5 algorytmy cz.1: sortowanie Elektronika i Telekomunikacja, semestr III rok akademicki 2009/2010 mgr inż.. Paweł Myszkowski Plan dzisiejszych zajęć 1. Sortowanie
Bardziej szczegółowoTablice są typem pochodnym. Poniżej mamy przykłady deklaracji różnych tablic:
Tablice TEORIA Tablica to ciąg obiektów tego samego typu, które zajmują ciągły obszar w pamięci. Dzięki stosowaniu tablic, zamiast nazywania każdej z np. stu zmiennych osobno możemy zabudować tablicę 100-elementową,
Bardziej szczegółowoPodstawy Informatyki. Metalurgia, I rok. Wykład 5 Rekurencja
Podstawy Informatyki Metalurgia, I rok Wykład 5 Rekurencja Rekurencja z łacińskiego oznacza to przybiec z powrotem - osiągniesz rzecz wielką, jeśli zawrócisz po to, by osiągnąć rzeczy małe Przykład: Małe
Bardziej szczegółowoPodstawy Informatyki. Metalurgia, I rok. Rekurencja. skomplikowane zadanie. Rekurencja
Podstawy Informatyki Metalurgia, I rok Rekurencja z łacińskiego oznacza to przybiec z powrotem - osiągniesz rzecz wielką, jeśli zawrócisz po to, by osiągnąć rzeczy małe Małe dziecko otrzymuje polecenie
Bardziej szczegółowoPodstawy algorytmiki i programowania - wykład 2 Tablice dwuwymiarowe cd Funkcje rekurencyjne
1 Podstawy algorytmiki i programowania - wykład 2 Tablice dwuwymiarowe cd Funkcje rekurencyjne Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion,
Bardziej szczegółowo8. Wektory. Przykłady Napisz program, który pobierze od użytkownika 10 liczb, a następnie wypisze je w kolejności odwrotnej niż podana.
8. Wektory Przykłady 8.1. Napisz program, który pobierze od użytkownika 10 liczb, a następnie wypisze je w kolejności odwrotnej niż podana. Uwaga! Kod poniżej. To zadanie można rozwiązać przy użyciu wiedzy
Bardziej szczegółowoZaawansowane algorytmy i struktury danych
Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)
Bardziej szczegółowo5. Rekurencja. Przykłady
5. Rekurencja Uwaga! W tym rozdziale nie są omówione żadne nowe konstrukcje języka C++. Omówiona jest za to technika wykorzystująca funkcje, która pozwala na rozwiązanie pewnych nowych rodzajów zadań.
Bardziej szczegółowofunkcje rekurencyjne Wykład 12. Podstawy programowania (język C) Funkcje rekurencyjne (1) Funkcje rekurencyjne (2)
Podstawy programowania (język C) funkcje rekurencyjne Wykład 12. Tomasz Marks - Wydział MiNI PW -1- Tomasz Marks - Wydział MiNI PW -2- Funkcje rekurencyjne (1) W języku C funkcja moŝe wywoływać samą siebie.
Bardziej szczegółowoWstęp do programowania
Wstęp do programowania Wykład 5 Podstawowe techniki programownia w przykładach Janusz Szwabiński Plan wykładu: Metoda babilońska wyliczania pierwiastka Liczby pierwsze i sito Eratostenesa Metoda bisekcji
Bardziej szczegółowo