Algorytmy i struktury danych. Wykład 6 Tablice rozproszone cz. 2

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algorytmy i struktury danych. Wykład 6 Tablice rozproszone cz. 2"

Transkrypt

1 Algorytmy i struktury danych Wykład 6 Tablice rozproszone cz. 2

2 Na poprzednim wykładzie Wiele problemów wymaga dynamicznych zbiorów danych, na których można wykonywać operacje: wstawiania (Insert) szukania (Search) usuwania (Delete)

3 Na poprzednim wykładzie Taki abstrakcyjny typ danych nazywamy słownikiem.

4 Na poprzednim wykładzie Efektywnym sposobem implementacji takich typów danych są tablice z techniką dostępu nazywaną rozproszoną (hash tables).

5 Na poprzednim wykładzie Polega one na obliczaniu adresu danego elementu (rekordu) na podstawie fragmentu tego rekordu zwanego kluczem. Umożliwia to (zazwyczaj) odnalezienie danego rekordu w jednej próbie.

6 Na poprzednim wykładzie 1. Zbiór kluczy 2. Funkcja rozpraszająca (haszującą) 3. Tablica adresów

7 Na poprzednim wykładzie Jeżeli dla dwóch (lub kilku) rekordów ich klucze zwracają tą samą wartość funkcja rozpraszającej to dochodzi do kolizji.

8 Na poprzednim wykładzie Techniki rozwiązywania kolizji: 1. Łańcuchowanie oddzielne 2. Łańcuchowanie bezpośrednie

9 Na poprzednim wykładzie Do analizy przydatny będzie parametr n N Gdzie n to liczba rekordów a N to liczba komórek tablicy

10 Na poprzednim wykładzie Analiza (poszukiwanie zakończone sukcesem): 1. Łańcuchowanie oddzielne (1+ ) <- wyprowadzenie 2. Łańcuchowanie bezpośrednie (1+e 2 /(8 ) )

11 Na poprzednim wykładzie Analiza (poszukiwanie zakończone sukcesem): Przykład: Łańcuchowanie oddzielne 1000 rekordów, 500 komórek tablicy. Ilu sondowań spodziewamy się przed znalezieniem rekordu?

12 Adresowanie otwarte 1. Nie ma listy synonimów (przestrzeni w pamięci dodatkowej). 2. Jeżeli występuje kolizja to obliczany jest nowy adres rekordu.

13 Adresowanie otwarte 2. Jeżeli występuje kolizja to obliczany jest nowy adres rekordu (początkowo dla i=1). h H ( k) 0 h i [H(k) G(i)]mod N dla i 1,2,..., N 1

14 Adresowanie otwarte Uwaga: w łańcuchowaniu bezpośrednim potrzebny był wskaźnik do adresu następnego synonimu. Jego brak pozwala zaoszczędzić miejsce w pamięci. Zaoszczędzone miejsce może być wykorzystane do implementacji większej tablicy adresów.

15 Adresowanie otwarte W zależności od postaci funkcji G(i) wyróżniamy różne typy adresowania otwartego: Z sondowaniem liniowym Z sondowaniem kwadratowym Z sondowaniem sześciennym Z sondowaniem losowym Z podwójnym rozpraszaniem h [h G(i)]mod N dla i 1,2,..., N 1 i 0

16 Adresowanie z sondowaniem liniowym W tym przypadku funkcja G(i) =i czyli h H( k) 0 h i [H(k) i]mod N dla i 1,2,..., N 1 Przykład: wstawianie kluczy do tablicy k={9,13,19,27,23,7,17,8,2,11} H(k) = k mod 10

17 Adresowanie z sondowaniem liniowym Uwagi: 1. Stosunkowo proste w implementacji 2. Dochodzi do grupowania rekordów, wydłużając wyszukiwanie. Jeżeli i komórek jest zajętych, zajęcie następnej pustej następuje z prawdopodobieństwem (i+1)/n

18 Adresowanie z sondowaniem liniowym Uwagi: 2. Cd: grupowanie jest spowodowane faktem, że sondowanie liniowe nie rozprasza po tablicy.

19 Adresowanie otwarte Uwagi ogólne Zamiast pisać h H( k) 0 h i [K(k) i]mod N dla i 1,2,..., N 1 Można zapisać: h(k,i) Gdzie h jest funkcją zdefiniowaną dla zbioru k,i U {0,1,..., N 1} {0,1,..., N 1}

20 Adresowanie otwarte Algorytm wstawiania klucza do tablicy i 0 while(i m) j h(k,i) if T[j] T[j] NULL k else i i 1 if i m then "Nie ma miejsca"

21 Adresowanie otwarte Algorytm wyszukiwania klucza w tablicy Kiedy algorytm powinien się zatrzymać (w przypadku gdy nie ma klucza w tablicy)?

22 Adresowanie otwarte Algorytm wyszukiwania klucza w tablicy i 0 while(i m and T[j]! Null) j h(k,i) if T[j] k return j else i i 1 if i m or T[j] NULL then "Nie ma rekordu"

23 Adresowanie z sondowaniem kwadratowym W tym przypadku funkcja G(i) =b*i+a*i^2 czyli h H( k) 0 h i [H(k) i]mod N dla i 1,2,..., N 1 Przykład k={9,13,19,27,23,7,17,8,2,11} H(k) = k mod 10

24 Uwagi: Adresowanie z sondowaniem kwadratowym 1. By wykorzystać wszystkie adresy w tablicy wartości a,b i N muszą być odpowiednio dobrane (np. a =1,b=0,N=11 dla h(k,0)=3 ) 2. Dochodzi do tak zwanego wtórnego grupowania rekordów (jeżeli h(k,0)=h(k,0) to h(k,i)=h(k,i)).

25 Adresowanie z sondowaniem sześciennym W tym przypadku funkcja G(i) =i^3 czyli h H( k) 0 h i [H(k) i]mod N dla i 1,2,..., N 1 Przykład k={9,13,19,27,23,7,17,8,2,11} H(k) = k mod 10

26 Adresowanie otwarte z sondowaniem Funkcja G(i): losowym 1. Generuje liczby z przedziału [0,,N-1] z jednakowym prawdopodobieństwem 2. W kolejnych N wywołaniach zwraca tę samą liczbę 3. Dla tego samego klucza k zwraca tę samą sekwencję liczb

27 Adresowanie otwarte z sondowaniem losowym Uwagi: trudno skonstruować dobrą funkcję generującą liczby losowe.

28 Adresowanie otwarte z podwójnym rozpraszaniem h H( k) 0 h i [H(k) ih '(k)]mod N dla i 1,2,..., N 1 Przykład K={18,41,22,31,8,7,11,3,9,17} H(k)=k mod 10 H (k)=1 + k mod 7

29 Adresowanie otwarte z podwójnym rozpraszaniem Co zrobić by sondowana była cała tablica? H (k) musi być względnie pierwsza do N np. N jest potęgą 2 a H (k) zwraca liczbę nieparzystą N jest liczbą pierwszą a H (k) zawsze zwraca liczbę mniejszą od N

30 Adresowanie otwarte z podwójnym rozpraszaniem N jest liczbą pierwszą a H (k) zawsze zwraca liczbę mniejszą od N Hk ( ) k mod N H'( k) 1 (k mod N') np. N' N 1

31 Adresowanie otwarte z podwójnym rozpraszaniem Jest to jedna z najlepszych metod adresowania otwartego (ciągi przewidywanych miejsc w tablicy mają wiele cech losowych permutacji).

32 Adresowanie otwarte z podwójnym rozpraszaniem Przewidywane miejsce w tablicy zależy od wartości klucza na dwa sposoby.

33 Adresowanie otwarte z podwójnym rozpraszaniem Analiza: 1. Wyszukiwanie zakończone porażką 1/(1- ) Przykład: 500 rekordów, 1000 komórek tablicy. Jakiej liczby sondowań spodziewamy się zanim nie ustalimy tego, że rekordu nie ma w tablicy?

34 Adresowanie otwarte z podwójnym rozpraszaniem Analiza: 1. Wyszukiwanie zakończone porażką 1/(1- ) Przykład: 900 rekordów, 1000 komórek tablicy. Jakiej liczby sondowań spodziewamy się zanim nie ustalimy tego, że rekordu nie ma w tablicy?

35 Adresowanie otwarte z podwójnym Analiza: 2. Wstawianie 1/(1- ) rozpraszaniem

36 Adresowanie otwarte z podwójnym rozpraszaniem Analiza: 3. Wyszukiwanie zakończone sukcesem 1/ log e 1/(1- )

37 Adresowanie otwarte z podwójnym rozpraszaniem Analiza: 3. Wyszukiwanie zakończone sukcesem 1/ log e (1/(1- )) Ilu sondowań spodziewamy się przed Znalezieniem rekordu? rekordów 500, komórek tablicy 1000 rekordów 900, komórek tablicy 1000

38 Porównanie metod

39 Porównanie metod

40 Porównanie metod Dlaczego w takim razie używa się adresowania otwartego? Mniej kosztowne w implementacji.

Algorytmy i struktury danych. Wykład 4 Tablice nieporządkowane i uporządkowane

Algorytmy i struktury danych. Wykład 4 Tablice nieporządkowane i uporządkowane Algorytmy i struktury danych Wykład 4 Tablice nieporządkowane i uporządkowane Tablice uporządkowane Szukanie binarne Szukanie interpolacyjne Tablice uporządkowane Szukanie binarne O(log N) Szukanie interpolacyjne

Bardziej szczegółowo

Haszowanie. dr inż. Urszula Gałązka

Haszowanie. dr inż. Urszula Gałązka Haszowanie dr inż. Urszula Gałązka Problem Potrzebujemy struktury do Wstawiania usuwania wyszukiwania Liczb, napisów, rekordów w Bazach danych, sieciach komputerowych, innych Rozwiązanie Tablice z haszowaniem

Bardziej szczegółowo

struktury danych dla operacji słownikowych

struktury danych dla operacji słownikowych struktury danych dla operacji słownikowych tablica nieuporządkowana tablica uporządkowana lista dowiązaniowa drzewo poszukiwań binarnych drzewa zrównoważone z tablice haszowaniem tablice z haszowaniem

Bardziej szczegółowo

Wykład 4. Tablice z haszowaniem

Wykład 4. Tablice z haszowaniem Wykład 4 Tablice z haszowaniem 1 Wprowadzenie Tablice z adresowaniem bezpośrednim Tablice z haszowaniem: Adresowanie otwarte Haszowanie łańcuchowe Funkcje haszujące (mieszające) Haszowanie uniwersalne

Bardziej szczegółowo

Tablice z haszowaniem

Tablice z haszowaniem Tablice z haszowaniem - efektywna metoda reprezentacji słowników (zbiorów dynamicznych, na których zdefiniowane są operacje Insert, Search i Delete) - jest uogólnieniem zwykłej tablicy - przyspiesza operacje

Bardziej szczegółowo

Tablice z haszowaniem

Tablice z haszowaniem Tablice z haszowaniem - efektywna metoda reprezentacji słowników (zbiorów dynamicznych, na których zdefiniowane są operacje Insert, Search i Delete) - jest uogólnieniem zwykłej tablicy - przyspiesza operacje

Bardziej szczegółowo

Algorytmy i złożoności Wykład 5. Haszowanie (hashowanie, mieszanie)

Algorytmy i złożoności Wykład 5. Haszowanie (hashowanie, mieszanie) Algorytmy i złożoności Wykład 5. Haszowanie (hashowanie, mieszanie) Wprowadzenie Haszowanie jest to pewna technika rozwiązywania ogólnego problemu słownika. Przez problem słownika rozumiemy tutaj takie

Bardziej szczegółowo

Haszowanie (adresowanie rozpraszające, mieszające)

Haszowanie (adresowanie rozpraszające, mieszające) Haszowanie (adresowanie rozpraszające, mieszające) Tadeusz Pankowski H. Garcia-Molina, J.D. Ullman, J. Widom, Implementacja systemów baz danych, WNT, Warszawa, Haszowanie W adresowaniu haszującym wyróżniamy

Bardziej szczegółowo

Algorytmy i Struktury Danych, 9. ćwiczenia

Algorytmy i Struktury Danych, 9. ćwiczenia Algorytmy i Struktury Danych, 9. ćwiczenia 206-2-09 Plan zajęć usuwanie z B-drzew join i split na 2-3-4 drzewach drzepce adresowanie otwarte w haszowaniu z analizą 2 B-drzewa definicja każdy węzeł ma następujące

Bardziej szczegółowo

wykład Organizacja plików Opracował: dr inż. Janusz DUDCZYK

wykład Organizacja plików Opracował: dr inż. Janusz DUDCZYK wykład Organizacja plików Opracował: dr inż. Janusz DUDCZYK 1 2 3 Pamięć zewnętrzna Pamięć zewnętrzna organizacja plikowa. Pamięć operacyjna organizacja blokowa. 4 Bufory bazy danych. STRUKTURA PROSTA

Bardziej szczegółowo

Lista, Stos, Kolejka, Tablica Asocjacyjna

Lista, Stos, Kolejka, Tablica Asocjacyjna Lista, Stos, Kolejka, Tablica Asocjacyjna Listy Lista zbiór elementów tego samego typu może dynamicznie zmieniać rozmiar, pozwala na dostęp do poszczególnych elementów Typowo dwie implementacje: tablicowa,

Bardziej szczegółowo

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie. Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy

Bardziej szczegółowo

Wykład 6. Drzewa poszukiwań binarnych (BST)

Wykład 6. Drzewa poszukiwań binarnych (BST) Wykład 6 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST

Bardziej szczegółowo

Zazwyczaj rozmiar bloku jest większy od rozmiaru rekordu, tak więc. ich efektywna lokalizacja kiedy tylko zachodzi taka potrzeba.

Zazwyczaj rozmiar bloku jest większy od rozmiaru rekordu, tak więc. ich efektywna lokalizacja kiedy tylko zachodzi taka potrzeba. Proces fizycznego projektowania bazy danych sprowadza się do wyboru określonych technik organizacji danych, najbardziej odpowiednich dla danych aplikacji. Pojęcia podstawowe: Dane są przechowywane na dysku

Bardziej szczegółowo

Przykładowe B+ drzewo

Przykładowe B+ drzewo Przykładowe B+ drzewo 3 8 1 3 7 8 12 Jak obliczyć rząd indeksu p Dane: rozmiar klucza V, rozmiar wskaźnika do bloku P, rozmiar bloku B, liczba rekordów w indeksowanym pliku danych r i liczba bloków pliku

Bardziej szczegółowo

Techniki wyszukiwania danych haszowanie

Techniki wyszukiwania danych haszowanie Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Techniki wyszukiwania danych haszowanie 1 Cel

Bardziej szczegółowo

Porządek symetryczny: right(x)

Porządek symetryczny: right(x) Porządek symetryczny: x lef t(x) right(x) Własność drzewa BST: W drzewach BST mamy porządek symetryczny. Dla każdego węzła x spełniony jest warunek: jeżeli węzeł y leży w lewym poddrzewie x, to key(y)

Bardziej szczegółowo

Wykład 2. Drzewa zbalansowane AVL i 2-3-4

Wykład 2. Drzewa zbalansowane AVL i 2-3-4 Wykład Drzewa zbalansowane AVL i -3-4 Drzewa AVL Wprowadzenie Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Drzewa -3-4 Definicja drzewa -3-4 Operacje wstawiania

Bardziej szczegółowo

Wykład 2. Drzewa poszukiwań binarnych (BST)

Wykład 2. Drzewa poszukiwań binarnych (BST) Wykład 2 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Liniowe struktury danych - Lista Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Algorytmy i struktury danych Proste algorytmy sortowania Witold Marańda maranda@dmcs.p.lodz.pl 1 Pojęcie sortowania Sortowaniem nazywa się proces ustawiania zbioru obiektów w określonym porządku Sortowanie

Bardziej szczegółowo

Algorytmy i złożoność obliczeniowa. Wojciech Horzelski

Algorytmy i złożoność obliczeniowa. Wojciech Horzelski Algorytmy i złożoność obliczeniowa Wojciech Horzelski 1 Tematyka wykładu Ø Ø Ø Ø Ø Wprowadzenie Poprawność algorytmów (elementy analizy algorytmów) Wyszukiwanie Sortowanie Elementarne i abstrakcyjne struktury

Bardziej szczegółowo

Podstawy Informatyki Metody dostępu do danych

Podstawy Informatyki Metody dostępu do danych Podstawy Informatyki Metody dostępu do danych alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Wprowadzenie Czym zajmuje się informatyka 2 Wprowadzenie Podstawowe problemy baz danych Struktury

Bardziej szczegółowo

Wykład 7 Abstrakcyjne typy danych słownik (lista symboli)

Wykład 7 Abstrakcyjne typy danych słownik (lista symboli) Wykład 7 Abstrakcyjne typy danych słownik (lista symboli) Definicja słownika: Słownik (tablica lub lista symboli) to struktura danych zawierająca elementy z kluczami, która pozwala na przeprowadzanie dwóch

Bardziej szczegółowo

Informatyka A. Algorytmy

Informatyka A. Algorytmy Informatyka A Algorytmy Spis algorytmów 1 Algorytm Euklidesa....................................... 2 2 Rozszerzony algorytm Euklidesa................................ 2 3 Wyszukiwanie min w tablicy..................................

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wieczorowe Studia Licencjackie Wrocław, 9.01.2007 Wstęp do programowania Wykład nr 13 Listy usuwanie elementów Poniżej prezentujemy funkcję, która usuwa element o podanej wartości pola wiek z nieuporządkowanej

Bardziej szczegółowo

Zaawansowane algorytmy i struktury danych

Zaawansowane algorytmy i struktury danych Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań praktycznych z egzaminów. Strona 1 z 12 Pytania praktyczne z kolokwium zaliczeniowego z 19 czerwca 2014 (studia dzienne)

Bardziej szczegółowo

Podstawy Informatyki. Metody dostępu do danych

Podstawy Informatyki. Metody dostępu do danych Podstawy Informatyki c.d. alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Bazy danych Struktury danych Średni czas odszukania rekordu Drzewa binarne w pamięci dyskowej 2 Sformułowanie

Bardziej szczegółowo

Tabela wewnętrzna - definicja

Tabela wewnętrzna - definicja ABAP/4 Tabela wewnętrzna - definicja Temporalna tabela przechowywana w pamięci operacyjnej serwera aplikacji Tworzona, wypełniana i modyfikowana jest przez program podczas jego wykonywania i usuwana, gdy

Bardziej szczegółowo

Algorytmy i struktury danych. wykład 5

Algorytmy i struktury danych. wykład 5 Plan wykładu: Wskaźniki. : listy, drzewa, kopce. Wskaźniki - wskaźniki Wskaźnik jest to liczba lub symbol który w ogólności wskazuje adres komórki pamięci. W językach wysokiego poziomu wskaźniki mogą również

Bardziej szczegółowo

Twój wynik: 4 punktów na 6 możliwych do uzyskania (66,67 %).

Twój wynik: 4 punktów na 6 możliwych do uzyskania (66,67 %). Powrót Twój wynik: 4 punktów na 6 możliwych do uzyskania (6667 %). Nr Opcja Punkty Poprawna Odpowiedź Rozważmy algorytm AVLSequence postaci: 1 Niech drzewo będzie rezultatem działania algorytmu AVLSequence

Bardziej szczegółowo

Dynamiczne struktury danych

Dynamiczne struktury danych Listy Zbiór dynamiczny Zbiór dynamiczny to zbiór wartości pochodzących z pewnego określonego uniwersum, którego zawartość zmienia się w trakcie działania programu. Elementy zbioru dynamicznego musimy co

Bardziej szczegółowo

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2014/15 Znajdowanie maksimum w zbiorze

Bardziej szczegółowo

Podstawowe struktury danych

Podstawowe struktury danych Podstawowe struktury danych 1) Listy Lista to skończony ciąg elementów: q=[x 1, x 2,..., x n ]. Skrajne elementy x 1 i x n nazywamy końcami listy, a wielkość q = n długością (rozmiarem) listy. Szczególnym

Bardziej szczegółowo

Podstawowe algorytmy i ich implementacje w C. Wykład 9

Podstawowe algorytmy i ich implementacje w C. Wykład 9 Wstęp do programowania 1 Podstawowe algorytmy i ich implementacje w C Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Element minimalny i maksymalny zbioru Element minimalny

Bardziej szczegółowo

Drzewa poszukiwań binarnych

Drzewa poszukiwań binarnych 1 Drzewa poszukiwań binarnych Kacper Pawłowski Streszczenie W tej pracy przedstawię zagadnienia związane z drzewami poszukiwań binarnych. Przytoczę poszczególne operacje na tej strukturze danych oraz ich

Bardziej szczegółowo

Matematyka dyskretna - wykład - część Podstawowe algorytmy kombinatoryczne

Matematyka dyskretna - wykład - część Podstawowe algorytmy kombinatoryczne A. Permutacja losowa Matematyka dyskretna - wykład - część 2 9. Podstawowe algorytmy kombinatoryczne Załóżmy, że mamy tablice p złożoną z n liczb (ponumerowanych od 0 do n 1). Aby wygenerować losową permutację

Bardziej szczegółowo

Wstęp do programowania. Procedury i funkcje. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Procedury i funkcje. Piotr Chrząstowski-Wachtel Wstęp do programowania Procedury i funkcje Piotr Chrząstowski-Wachtel Po co procedury i funkcje? Gdyby jakis tyran zabronił korzystać z procedur lub funkcji, to informatyka by upadła! Procedury i funkcje

Bardziej szczegółowo

Wykład 2. Poprawność algorytmów

Wykład 2. Poprawność algorytmów Wykład 2 Poprawność algorytmów 1 Przegląd Ø Poprawność algorytmów Ø Podstawy matematyczne: Przyrost funkcji i notacje asymptotyczne Sumowanie szeregów Indukcja matematyczna 2 Poprawność algorytmów Ø Algorytm

Bardziej szczegółowo

Wstęp do Informatyki

Wstęp do Informatyki Wstęp do Informatyki dr hab. Bożena Woźna-Szcześniak, prof. AJD bwozna@gmail.com Jan Długosz University, Poland Wykład 8 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 8 1 / 32 Instrukcje iteracyjne

Bardziej szczegółowo

< K (2) = ( Adams, John ), P (2) = adres bloku 2 > < K (1) = ( Aaron, Ed ), P (1) = adres bloku 1 >

< K (2) = ( Adams, John ), P (2) = adres bloku 2 > < K (1) = ( Aaron, Ed ), P (1) = adres bloku 1 > Typy indeksów Indeks jest zakładany na atrybucie relacji atrybucie indeksowym (ang. indexing field). Indeks zawiera wartości atrybutu indeksowego wraz ze wskaźnikami do wszystkich bloków dyskowych zawierających

Bardziej szczegółowo

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski : idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Bardziej szczegółowo

Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych.

Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych. Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych. 1. Rodzaje pamięci używanej w programach Pamięć komputera, dostępna dla programu,

Bardziej szczegółowo

Wyzwalacze. do automatycznego generowania wartości kluczy głównych. Składnia instrukcji tworzacej wyzwalacz

Wyzwalacze. do automatycznego generowania wartości kluczy głównych. Składnia instrukcji tworzacej wyzwalacz Wyzwalacze Wyzwalacze są specjalnymi procedurami składowanymi, uruchamianymi automatycznie w następstwie zaistnienia określonego typu zdarzenia. Ich główne zadanie polega na wymuszaniu integralności danych

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Liniowe struktury danych - Lista uporzadkowana. Wartownicy. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 6 Bożena Woźna-Szcześniak (AJD)

Bardziej szczegółowo

Jeszcze o algorytmach

Jeszcze o algorytmach Jeszcze o algorytmach Przykłady różnych, podstawowych algorytmów 11.01.2018 M. Rad Plan Powtórka Znajdowanie najmniejszego elementu Segregowanie Poszukiwanie przez połowienie Wstawianie Inne algorytmy

Bardziej szczegółowo

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może

Bardziej szczegółowo

Podstawy programowania skrót z wykładów:

Podstawy programowania skrót z wykładów: Podstawy programowania skrót z wykładów: // komentarz jednowierszowy. /* */ komentarz wielowierszowy. # include dyrektywa preprocesora, załączająca biblioteki (pliki nagłówkowe). using namespace

Bardziej szczegółowo

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują

Bardziej szczegółowo

Algorytmy i język C++

Algorytmy i język C++ Wykład 6 Wskaźniki Wskaźnik nie przechowuje wartości zmiennej ale, podobnie jak tablica, wskazuje miejsce w pamięci, w którym znajduje się zmienna danego typu. W poniższym przykładzie symbol * pomiędzy

Bardziej szczegółowo

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2013/14 Znajdowanie maksimum w zbiorze

Bardziej szczegółowo

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010 Algorytmy równoległe Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka Znajdowanie maksimum w zbiorze n liczb węzły - maksimum liczb głębokość = 3 praca = 4++ = 7 (operacji) n - liczność

Bardziej szczegółowo

Ataki na RSA. Andrzej Chmielowiec. Centrum Modelowania Matematycznego Sigma. Ataki na RSA p. 1

Ataki na RSA. Andrzej Chmielowiec. Centrum Modelowania Matematycznego Sigma. Ataki na RSA p. 1 Ataki na RSA Andrzej Chmielowiec andrzej.chmielowiec@cmmsigma.eu Centrum Modelowania Matematycznego Sigma Ataki na RSA p. 1 Plan prezentacji Wprowadzenie Ataki algebraiczne Ataki z kanałem pobocznym Podsumowanie

Bardziej szczegółowo

FUNKCJA REKURENCYJNA. function s(n:integer):integer; begin if (n>1) then s:=n*s(n-1); else s:=1; end;

FUNKCJA REKURENCYJNA. function s(n:integer):integer; begin if (n>1) then s:=n*s(n-1); else s:=1; end; Rekurencja Wykład: rekursja, funkcje rekurencyjne, wywołanie samej siebie, wyznaczanie poszczególnych liczb Fibonacciego, potęgowanie, algorytm Euklidesa REKURENCJA Rekurencja (z łac. recurrere), zwana

Bardziej szczegółowo

Algorytm. a programowanie -

Algorytm. a programowanie - Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik

Bardziej szczegółowo

operacje porównania, a jeśli jest to konieczne ze względu na złe uporządkowanie porównywanych liczb zmieniamy ich kolejność, czyli przestawiamy je.

operacje porównania, a jeśli jest to konieczne ze względu na złe uporządkowanie porównywanych liczb zmieniamy ich kolejność, czyli przestawiamy je. Problem porządkowania zwanego również sortowaniem jest jednym z najważniejszych i najpopularniejszych zagadnień informatycznych. Dane: Liczba naturalna n i ciąg n liczb x 1, x 2,, x n. Wynik: Uporządkowanie

Bardziej szczegółowo

Algorytmy równoległe: prezentacja i ocena efektywności prostych algorytmów dla systemów równoległych

Algorytmy równoległe: prezentacja i ocena efektywności prostych algorytmów dla systemów równoległych Algorytmy równoległe: prezentacja i ocena efektywności prostych algorytmów dla systemów równoległych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2018/19 Problem: znajdowanie

Bardziej szczegółowo

1. Nagłówek funkcji: int funkcja(void); wskazuje na to, że ta funkcja. 2. Schemat blokowy przedstawia algorytm obliczania

1. Nagłówek funkcji: int funkcja(void); wskazuje na to, że ta funkcja. 2. Schemat blokowy przedstawia algorytm obliczania 1. Nagłówek funkcji: int funkcja(void); wskazuje na to, że ta funkcja nie ma parametru i zwraca wartość na zewnątrz. nie ma parametru i nie zwraca wartości na zewnątrz. ma parametr o nazwie void i zwraca

Bardziej szczegółowo

Wykład X. Programowanie. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2016 Janusz Słupik

Wykład X. Programowanie. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2016 Janusz Słupik Wykład X Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2016 c Copyright 2016 Janusz Słupik Drzewa binarne Drzewa binarne Drzewo binarne - to drzewo (graf spójny bez cykli) z korzeniem (wyróżnionym

Bardziej szczegółowo

Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika.

Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika. Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika. 1. Pojcie struktury danych Nieformalnie Struktura danych (ang. data

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 6a: Model danych oparty na zbiorach http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Model danych oparty na zbiorach

Bardziej szczegółowo

Struktury Danych i Złożoność Obliczeniowa

Struktury Danych i Złożoność Obliczeniowa Struktury Danych i Złożoność Obliczeniowa Zajęcia 2 Algorytmy wyszukiwania, sortowania i selekcji Sortowanie bąbelkowe Jedna z prostszych metod sortowania, sortowanie w miejscu? Sortowanie bąbelkowe Pierwsze

Bardziej szczegółowo

np. dla p=1 mamy T1(N) N/2 średni czas chybionego wyszukiwania z prawdopodobieństwem q:

np. dla p=1 mamy T1(N) N/2 średni czas chybionego wyszukiwania z prawdopodobieństwem q: Wykład 4 Wyszukiwania w tablicach posortowanych 1. Wyszukiwanie sekwencyjne w tablicy posortowanej 2. Wyszukiwanie binarne bez powtórzeń 3. Wyszukiwanie binarne z powtórzeniami 1 2 3 4 5 6 7 8 9 10 11

Bardziej szczegółowo

Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych

Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych Plan laboratorium Generatory liczb pseudolosowych dla rozkładów dyskretnych: Generator liczb o rozkładzie równomiernym Generator

Bardziej szczegółowo

Algorytm selekcji Hoare a. Łukasz Miemus

Algorytm selekcji Hoare a. Łukasz Miemus Algorytm selekcji Hoare a Łukasz Miemus 1 lutego 2006 Rozdział 1 O algorytmie 1.1 Problem Mamy tablicę A[N] różnych elementów i zmienną int K, takie że 1 K N. Oczekiwane rozwiązanie to określenie K-tego

Bardziej szczegółowo

Algorytmy i Struktury Danych. Co dziś? Drzewo decyzyjne. Wykład IV Sortowania cd. Elementarne struktury danych

Algorytmy i Struktury Danych. Co dziś? Drzewo decyzyjne. Wykład IV Sortowania cd. Elementarne struktury danych Algorytmy i Struktury Danych Wykład IV Sortowania cd. Elementarne struktury danych 1 Co dziś? Dolna granica sortowań Mediany i statystyki pozycyjne Warstwa implementacji Warstwa abstrakcji #tablice #listy

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 5b: Model danych oparty na listach http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Słowem wstępu Listy należą do najbardziej

Bardziej szczegółowo

PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy.

PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy. PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy. 1. Instrukcję case t of... w przedstawionym fragmencie programu moŝna zastąpić: var t : integer; write( Podaj

Bardziej szczegółowo

Sortowanie przez scalanie

Sortowanie przez scalanie Sortowanie przez scalanie Wykład 2 12 marca 2019 (Wykład 2) Sortowanie przez scalanie 12 marca 2019 1 / 17 Outline 1 Metoda dziel i zwyciężaj 2 Scalanie Niezmiennik pętli - poprawność algorytmu 3 Sortowanie

Bardziej szczegółowo

sprowadza się od razu kilka stron!

sprowadza się od razu kilka stron! Bazy danych Strona 1 Struktura fizyczna 29 stycznia 2010 10:29 Model fizyczny bazy danych jest oparty na pojęciu pliku i rekordu. Plikskłada się z rekordów w tym samym formacie. Format rekordujest listą

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Organizacja wykładu. Problem Sortowania. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury

Bardziej szczegółowo

Wstęp do Programowania potok funkcyjny

Wstęp do Programowania potok funkcyjny Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline Wyszukiwanie wzorców w tekście 1 Wyszukiwanie wzorców w tekście Problem wyszukiwania wzorca w tekście Na tym wykładzie zajmiemy się

Bardziej szczegółowo

Algorytmy i złożoności. Wykład 3. Listy jednokierunkowe

Algorytmy i złożoności. Wykład 3. Listy jednokierunkowe Algorytmy i złożoności Wykład 3. Listy jednokierunkowe Wstęp. Lista jednokierunkowa jest strukturą pozwalającą na pamiętanie danych w postaci uporzadkowanej, a także na bardzo szybkie wstawianie i usuwanie

Bardziej szczegółowo

ang. file) Pojęcie pliku (ang( Typy plików Atrybuty pliku Fragmentacja wewnętrzna w systemie plików Struktura pliku

ang. file) Pojęcie pliku (ang( Typy plików Atrybuty pliku Fragmentacja wewnętrzna w systemie plików Struktura pliku System plików 1. Pojęcie pliku 2. Typy i struktury plików 3. etody dostępu do plików 4. Katalogi 5. Budowa systemu plików Pojęcie pliku (ang( ang. file)! Plik jest abstrakcyjnym obrazem informacji gromadzonej

Bardziej szczegółowo

Algorytmy i struktury danych. wykład 9

Algorytmy i struktury danych. wykład 9 Plan wykładu:. Algorytmy numeryczne. Funkcja skrótu jest to funkcja H, która dla do dowolnej informacji m przyporządkowuje niespecyficzną wartość h, mającą cechy pseudolosowe. Cechy: skróty są zazwyczaj

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Algorytmy na tablicach Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk (Wydział Fizyki) WP w. III Jesień 2013 1 / 23 Dwadzieścia pytań Zasady 1 Osoba 1 wymyśla hasło z ustalonej

Bardziej szczegółowo

Wykład 8. Drzewa AVL i 2-3-4

Wykład 8. Drzewa AVL i 2-3-4 Wykład 8 Drzewa AVL i 2-3-4 1 Drzewa AVL Ø Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Ø Drzewa 2-3-4 Definicja drzewa 2-3-4 Operacje wstawiania i usuwania Złożoność

Bardziej szczegółowo

Algorytmy i Struktury Danych, 2. ćwiczenia

Algorytmy i Struktury Danych, 2. ćwiczenia Algorytmy i Struktury Danych, 2. ćwiczenia 2017-10-13 Spis treści 1 Optymalne sortowanie 5 ciu elementów 1 2 Sortowanie metodą Shella 2 3 Przesunięcie cykliczne tablicy 3 4 Scalanie w miejscu dla ciągów

Bardziej szczegółowo

Struktury danych (I): kolejka, stos itp.

Struktury danych (I): kolejka, stos itp. Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Struktury danych (I): kolejka, stos itp. Struktury danych (I): kolejka, stos itp. Struktura danych stanowi sposób uporządkowania

Bardziej szczegółowo

Dynamiczne struktury danych

Dynamiczne struktury danych Dynamiczne struktury danych 391 Dynamiczne struktury danych Przez dynamiczne struktury danych rozumiemy proste i złożone struktury danych, którym pamięć jest przydzielana i zwalniana na żądanie w trakcie

Bardziej szczegółowo

Sortowanie. Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania:

Sortowanie. Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania: Sortowanie Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania: podać strukturę danych dla elementów dynamicznego skończonego multi-zbioru S, względem którego są wykonywane następujące

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania wykład 6 Agata Półrola Wydział Matematyki i Informatyki UŁ sem. zimowy 2017/2018 Losowanie liczb całkowitych Dostępne biblioteki Najprostsze losowanie liczb całkowitych można wykonać za pomocą funkcji

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Złożoność obliczeniowa, poprawność programów Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XII Jesień 2013 1 / 20 Złożoność obliczeniowa Problem Ile czasu

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 7

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 7 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 7 Spis treści 11 Algorytm ElGamala 3 11.1 Wybór klucza.................... 3 11.2 Szyfrowanie.....................

Bardziej szczegółowo

- - Ocena wykonaniu zad3. Brak zad3

- - Ocena wykonaniu zad3. Brak zad3 Indeks Zad1 Zad2 Zad3 Zad4 Zad Ocena 20986 218129 ocena 4 Zadanie składa się z Cw3_2_a oraz Cw3_2_b Brak opcjonalnego wywołania operacji na tablicy. Brak pętli Ocena 2 Brak zad3 Ocena wykonaniu zad3 po

Bardziej szczegółowo

Oracle11g: Wprowadzenie do SQL

Oracle11g: Wprowadzenie do SQL Oracle11g: Wprowadzenie do SQL OPIS: Kurs ten oferuje uczestnikom wprowadzenie do technologii bazy Oracle11g, koncepcji bazy relacyjnej i efektywnego języka programowania o nazwie SQL. Kurs dostarczy twórcom

Bardziej szczegółowo

Algorytmy i Struktury Danych. (c) Marcin Sydow. Słownik. Tablica mieszająca. Słowniki. Słownik uporządkowany. Drzewo BST.

Algorytmy i Struktury Danych. (c) Marcin Sydow. Słownik. Tablica mieszająca. Słowniki. Słownik uporządkowany. Drzewo BST. i Zawartość wykładu definicja słownika analiza naiwnych implementacji słownika tablice mieszające własności funkcji mieszającej analiza operacji słownika zaimplementowanych na tablicy mieszającej sposoby

Bardziej szczegółowo

Wysokość drzewa Głębokość węzła

Wysokość drzewa Głębokość węzła Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.

Bardziej szczegółowo

PLAN WYKŁADU BAZY DANYCH HIERARCHIA MECHANIZMÓW SKŁADOWANIA PRZECHOWYWANIA BAZ DANYCH

PLAN WYKŁADU BAZY DANYCH HIERARCHIA MECHANIZMÓW SKŁADOWANIA PRZECHOWYWANIA BAZ DANYCH PLAN WYKŁADU Składowanie danych Podstawowe struktury plikowe Organizacja plików BAZY DANYCH Wykład 8 dr inż. Agnieszka Bołtuć HIERARCHIA MECHANIZMÓW SKŁADOWANIA Podstawowy mechanizm składowania pamięć

Bardziej szczegółowo

1. Znajdowanie miejsca zerowego funkcji metodą bisekcji.

1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. 1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. Matematyczna funkcja f ma być określona w programie w oddzielnej funkcji języka C (tak, aby moŝna było łatwo ją zmieniać). Przykładowa funkcja to:

Bardziej szczegółowo

Zaawansowane algorytmy i struktury danych

Zaawansowane algorytmy i struktury danych Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)

Bardziej szczegółowo

Analiza algorytmów zadania podstawowe

Analiza algorytmów zadania podstawowe Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą

Bardziej szczegółowo

Optymalizacja. Przeszukiwanie lokalne

Optymalizacja. Przeszukiwanie lokalne dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Idea sąsiedztwa Definicja sąsiedztwa x S zbiór N(x) S rozwiązań, które leżą blisko rozwiązania x

Bardziej szczegółowo

2. Klasy cz. 2 - Konstruktor kopiujący. Pola tworzone statycznie i dynamicznie - Funkcje zaprzyjaźnione - Składowe statyczne

2. Klasy cz. 2 - Konstruktor kopiujący. Pola tworzone statycznie i dynamicznie - Funkcje zaprzyjaźnione - Składowe statyczne Tematyka wykładów 1. Wprowadzenie. Klasy cz. 1 - Język C++. Programowanie obiektowe - Klasy i obiekty - Budowa i deklaracja klasy. Prawa dostępu - Pola i funkcje składowe - Konstruktor i destruktor - Tworzenie

Bardziej szczegółowo

Bazy danych - BD. Organizacja plików. Wykład przygotował: Robert Wrembel. BD wykład 5 (1)

Bazy danych - BD. Organizacja plików. Wykład przygotował: Robert Wrembel. BD wykład 5 (1) Organizacja plików Wykład przygotował: Robert Wrembel BD wykład 5 (1) 1 Plan wykładu Struktura przechowywania danych i organizacja rekordów w blokach Rodzaje organizacji plików pliki nieuporządkowane pliki

Bardziej szczegółowo

Algorytm i złożoność obliczeniowa algorytmu

Algorytm i złożoność obliczeniowa algorytmu Algorytm i złożoność obliczeniowa algorytmu Algorytm - przepis postępowania, którego wykonanie prowadzi do rozwiązania określonego problemu określa czynności, jakie należy wykonać wyszczególnia wszystkie

Bardziej szczegółowo

Podstawy systemów kryptograficznych z kluczem jawnym RSA

Podstawy systemów kryptograficznych z kluczem jawnym RSA Podstawy systemów kryptograficznych z kluczem jawnym RSA RSA nazwa pochodząca od nazwisk twórców systemu (Rivest, Shamir, Adleman) Systemów z kluczem jawnym można używać do szyfrowania operacji przesyłanych

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach

Bardziej szczegółowo