Filtrowanie a sploty. W powyższym przykładzie proszę zwrócić uwagę na efekty brzegowe. Wprowadzenie Projektowanie filtru Zadania

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Filtrowanie a sploty. W powyższym przykładzie proszę zwrócić uwagę na efekty brzegowe. Wprowadzenie Projektowanie filtru Zadania"

Transkrypt

1 Filtrowanie a sploty idea x=[ ] %sygnałstochastycznyodługości5próbek h=[1111]/4; %Filtruśredniającypo4sąsiednichelementach y=conv(h,x)%zaaplikowaniefiltruhdosygnałux W powyższym przykładzie proszę zwrócić uwagę na efekty brzegowe. MAszumu N=100; x = randn(n,1); % sygnał stochastyczny o długości N próbek h=[1111]/4; %Filtruśredniającypo4sąsiednichelementach y=conv(h,x);%zaaplikowaniefiltruhdosygnałux t_x=1:n; t_y=1:length(y); plot(t_x,x,t_y,y);

2 Działanie filtru w dziedzinie czasu y(n) =b(1) x(n) +b(2) x(n 1) b(n b +1) x(n n b ) a(2) y(n 1)... a(n a +1) y(n n a ) Jeślin a =0in b 0filtrmaskończonąodpowiedź impulsową bo odpowiedź na impulsowe wzbudzenie kończysiępon b próbkach.nazywamygo(finite Impulse Responce FIR), nie rekursywny, średnia biegnąca(moving Average MA) Jeślin b =0in a 0mamyfiltrnieskończonejodpowiedzi impulsowej bo potencjalnie raz wzbudzony może dowolnie długo produkować niezerowe wyjście. Nazywa się go:(infinite Impulse Responce IIR), filtr rekursywny, autoregresyjny AR, Jeślin b 0in a 0 przypadeknajbardziejogólny filtrjesttypu IIR albo ARMA- autoregresive moving average.

3 Funkcja filter Wprowadzenie coś takiego jest zaimplementowane w funkcji y=filter(b,a,x) gdzie b, a są to współczynniki z poprzedniego równania. np: filter przykład b=[ ];%licznik a=[1-0.9];%mianownik y=filter(b,a,x);% x nasz sygnał y- wynik filtrowania o takiej samej długości co x t=1:length(x); plot(t,x,t,y)

4 Działanie filtru w dziedzinie częstości Stosując transformatę Z możemy równanie z dziedziny czasu przenieść do dziedziny częstości. Filtrowanie odpowiada przemnożeniu transformaty sygnału przez transformatę funkcji przenoszenia filtru: Y (z) =H(z)X(z) = b(1) +b(2)z 1 + +b(n b +1)z n b a(1) +a(2)z 1 + +a(n a +1)z nax(z) Znając funkcję H łatwo możemy przewidzieć co się stanie z widmem sygnału po przefiltrowaniu. Każda ze składowych sygnału zrzutowana na wektory bazowe(exponens zespolony) zostanie przemnożonaprzezliczbęzespolonąh(f ) =A(f )e iφ(f ) -zatem może jej się zmienić amplituda i faza.

5 Badanie własności filtru w dziedzinie częstości Funkcja freqz wylicza funkcję przenoszenia filtru zadanego współczynnikami b, a funkcja przenoszenia b=[ ];%licznik a=[1-0.9];%mianownik n=128; [h,w]=freqz(b,a,n);% n ilość punktów na których będzie obliczona funkcja h m=abs(h);% przenoszenie częstości ph=unwrap(angle(h));%faza subplot(211) plot(w,h) title( modul ) subplot(212) plot(w,h)

6 Opóźnienie grupowe i fazowe filtru grupwe τ g (ω) = dφ(ω) dω [gd, w]= grpdelay(b,a,n); fazowe τ p (ω) = φ(ω) ω [b,a] = butter(10,200/1000); gd = grpdelay(b,a,128); [h,f] = freqz(b,a,128,2000); pd=-unwrap(angle(h))*(2000/(2*pi))./f; plot(f,gd, -,f,pd, -- ) axis([ ]) legend( Group Delay, Phase Delay ) opoźnienia

7 Zaburzanie fazy Wprowadzenie filtfilt

8 Specyfikacja własności filtru ogólne określenie pasma przenoszenia np: dla sygnału próbkowanego 128 Hz zaprojektować filtr dolnoprzepustowy 30Hz w bardziej rygorystycznym opisie możemy wymagać: wielkość listków(ripple) w paśmie przenoszenia(pass band), tłumienie pasma tłumieniowego(stop band), szerokość pasma przejściowego

9 Funkcje do projektownaia filtrów FIR fir1 klasyczne pasma lowpass, bandpass, highpass, bandstop fir2 dowolne, odcinakmi prostoliniowe pasmo przenoszenia firls uogólnienie fir1 i fir2 robi minimalizację błędu kwadratowego między porządaną a faktyczną funkcją przenoszenia remez algorytm optymalizuje filtr pod względem maksymalnej rozbieżności pomiędzy zadaną i faktyczną funkcją przenoszenia Wszystkie funkcje do projektowania filtrów w matlabie działają na znormalizowanej częstości: FN = 1

10 Przykład Wprowadzenie f=[ ]; m=[ ]; n=30; b=fir2(n,f,m); [h,w] = freqz(b,1,128); plot(f,m,w/pi,abs(h)) legend( Idealny, To co wyszlo z fir2 ) fir2 remez i firls n=20; %Filterorder f=[ ]; %Frequencybandedges a=[1 1 00]; %Desiredamplitudes b_rem = remez(n,f,a); [h_rem,w_rem] = freqz(b_rem,1,128); b_ls = firls(n,f,a); [h_ls,w_ls] = freqz(b_ls,1,128); plot(f,a,w_rem/pi,abs(h_rem),w_ls/pi,abs(h_ls)) legend( Idealny, remez, firls )

11 Zaprojektuj i zbadaj własności filtru: 1 FIR48rzęduzpasmemprzenoszenia0.35 < ω < FIR 20 rzędu dolnoprzepustowy z pasmem przenoszenia do 40 Hz dla sygnału próbkowanego 256 Hz 3 FIR górnoprzepustowy z pasmem przenoszenia od 30 Hz dla sygnału próbkowanego 256 Hz

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH Generowanie podstawowych przebiegów okresowych sawtooth() przebieg trójkątny (wierzhołki +/-1, okres 2 ) square() przebieg kwadratowy (okres 2 ) gauspuls()przebieg sinusoidalny

Bardziej szczegółowo

Wprowadzenie. Spis treści. Analiza_sygnałów_-_ćwiczenia/Filtry

Wprowadzenie. Spis treści. Analiza_sygnałów_-_ćwiczenia/Filtry Analiza_sygnałów_-_ćwiczenia/Filtry Spis treści 1 Wprowadzenie 2 Filtry cyfrowe: powtórka z wykładu 2.1 Działanie filtra w dziedzinie czasu 2.2 Nazewnictwo 2.3 Przejście do dziedziny częstości 2.3.1 Działanie

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Przetwarzanie sygnałów Ćwiczenie 5 Filtry o nieskończonej odpowiedzi impulsowej (NOI) Spis treści 1 Wprowadzenie 1 1.1 Filtry jednobiegunowe....................... 1 1.2 Filtry wąskopasmowe........................

Bardziej szczegółowo

x(n) x(n-1) x(n-2) D x(n-n+1) h N-1

x(n) x(n-1) x(n-2) D x(n-n+1) h N-1 Laboratorium Układy dyskretne LTI projektowanie filtrów typu FIR Z1. apisać funkcję y = filtruj(x, h), która wyznacza sygnał y będący wynikiem filtracji sygnału x przez filtr FIR o odpowiedzi impulsowej

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Przetwarzanie sygnałów Ćwiczenie 3 Filtry o skończonej odpowiedzi impulsowej (SOI) Spis treści 1 Filtracja cyfrowa podstawowe wiadomości 1 1.1 Właściwości filtru w dziedzinie czasu............... 1 1.2

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

Filtry IIR. Zadania Przepróbkowywanie. Filtry IIR

Filtry IIR. Zadania Przepróbkowywanie. Filtry IIR Filtry IIR Filtry IIR mają zazwyczaj dużo niższe rzędy przy osiągach takich jak FIR z dużo wyższymi rzędami. W matlabie mamy zaimplementowane kilka funkcji do projektowania óptymalnych pod różnymi względami

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem: PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.

Bardziej szczegółowo

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA

WOJSKOWA AKADEMIA TECHNICZNA WOJSKOWA AKADEMIA TECHNICZNA LABORATORIUM CYFROWE PRZETWARZANIE SYGNAŁÓW Stopień, imię i nazwisko prowadzącego Imię oraz nazwisko słuchacza Grupa szkoleniowa Data wykonania ćwiczenia dr inż. Andrzej Wiśniewski

Bardziej szczegółowo

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje

Bardziej szczegółowo

Notebook. Spis treści

Notebook. Spis treści Spis treści 1 Notebook 2 Implementacja filtrowania: funkcja lfilter 2.1 Dla przypomnienia: 2.1.1 Działanie filtra w dziedzinie czasu 2.1.2 Implementacja w pythonie 3 Badanie własności filtra w dziedzinie

Bardziej szczegółowo

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej:

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej: 1. FILTRY CYFROWE 1.1 DEFIICJA FILTRU W sytuacji, kiedy chcemy przekształcić dany sygnał, w inny sygnał niezawierający pewnych składowych np.: szumów mówi się wtedy o filtracji sygnału. Ogólnie Filtracją

Bardziej szczegółowo

Podstawy Przetwarzania Sygnałów

Podstawy Przetwarzania Sygnałów Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech

Bardziej szczegółowo

8. Realizacja projektowanie i pomiary filtrów IIR

8. Realizacja projektowanie i pomiary filtrów IIR 53 8. Realizacja projektowanie i pomiary filtrów IIR Cele ćwiczenia Realizacja na zestawie TMX320C5515 ezdsp prostych liniowych filtrów cyfrowych. Pomiary charakterystyk amplitudowych zrealizowanych filtrów

Bardziej szczegółowo

Filtracja. Krzysztof Patan

Filtracja. Krzysztof Patan Filtracja Krzysztof Patan Wprowadzenie Działanie systemu polega na przetwarzaniu sygnału wejściowego x(t) na sygnał wyjściowy y(t) Równoważnie, system przetwarza widmo sygnału wejściowego X(jω) na widmo

Bardziej szczegółowo

Spis treści. Metody nieparametryczne. Transformacja Fouriera

Spis treści. Metody nieparametryczne. Transformacja Fouriera Spis treści 1 Metody nieparametryczne 1.1 Transformacja Fouriera 1.2 Bliżej życia 1.3 Splot 2 Transformacja Z 3 Filtry 4 Metody parametryczne 5 Analiza danych wielokanałowych 5.1 Koherencje 5.2 Związki

Bardziej szczegółowo

Laboratorium nr 4: Porównanie filtrów FIR i IIR. skończonej odpowiedzi impulsowej (FIR) zawsze stabilne, mogą mieć liniową charakterystykę fazową

Laboratorium nr 4: Porównanie filtrów FIR i IIR. skończonej odpowiedzi impulsowej (FIR) zawsze stabilne, mogą mieć liniową charakterystykę fazową Teoria Sygnałów sprawozdanie z zajęć laboratoryjnych Zajęcia z dnia 07.01.2009 Prowadzący: dr inż. Stanisław Nuckowski Sprawozdanie wykonał: Tomasz Witka Laboratorium nr 4: Porównanie filtrów FIR i IIR

Bardziej szczegółowo

Filtry cyfrowe. h(n) odpowiedź impulsowa. Filtr cyfrowy. Procesory sygnałowe (DSP), układy programowalne

Filtry cyfrowe. h(n) odpowiedź impulsowa. Filtr cyfrowy. Procesory sygnałowe (DSP), układy programowalne Filtry cyfrowe Procesory sygnałowe (DSP), układy programowalne x(n) Filtr cyfrowy y(n) h(n) odpowiedź impulsowa x(n) y(n) y(n) = x(n) h(n) 1 Filtry cyfrowe Po co filtrujemy sygnały? Aby uzyskać: redukcję

Bardziej szczegółowo

Filtry elektroniczne sygnałów ciągłych - cz.1

Filtry elektroniczne sygnałów ciągłych - cz.1 Filtry elektroniczne sygnałów ciągłych - cz.1 Wprowadzenie Podstawowe pojęcia Klasyfikacje, charakterystyki częstotliwościowe filtrów Właściwości filtrów w dziedzinie czasu Realizacje elektroniczne filtrów

Bardziej szczegółowo

ZASTOSOWANIA PRZEKSZTAŁCENIA ZET

ZASTOSOWANIA PRZEKSZTAŁCENIA ZET CPS - - ZASTOSOWANIA PRZEKSZTAŁCENIA ZET Rozwiązywanie równań różnicowych Dyskretny system liniowy-stacjonarny można opisać równaniem różnicowym w postaci ogólnej N M aky[ n k] bkx[ n k] k k Przekształcenie

Bardziej szczegółowo

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt.

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt. 1 Kodowanie podpasmowe Kompresja Danych Streszczenie Studia Dzienne Wykład 13, 18.05.2006 1.1 Transformaty, próbkowanie i filtry Korzystamy z faktów: Każdą funkcję okresową można reprezentować w postaci

Bardziej szczegółowo

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20). SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy

Bardziej szczegółowo

Analiza szeregów czasowych: 4. Filtry liniowe

Analiza szeregów czasowych: 4. Filtry liniowe Analiza szeregów czasowych: 4. Filtry liniowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Filtry liniowe W dziedzinie fourierowskiej filtruje się bardzo prosto: oblicza się iloczyn

Bardziej szczegółowo

Katedra Elektrotechniki Teoretycznej i Informatyki

Katedra Elektrotechniki Teoretycznej i Informatyki Katedra Elektrotechniki Teoretycznej i Informatyki Przedmiot: Zintegrowane Pakiety Obliczeniowe W Zastosowaniach InŜynierskich Numer ćwiczenia: 7,8 Temat: Signal Processing Toolbox - filtry cyfrowe, transmitancja

Bardziej szczegółowo

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................

Bardziej szczegółowo

Kompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ

Kompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ Kompensacja wyprzedzająca i opóźniająca fazę dr hab. inż. Krzysztof Patan, prof. PWSZ Kształtowanie charakterystyki częstotliwościowej Kształtujemy charakterystykę układu otwartego aby uzyskać: pożądane

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

A-2. Filtry bierne. wersja

A-2. Filtry bierne. wersja wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne

Bardziej szczegółowo

Laboratorium: Projektowanie pasywnych i aktywnych filtrów analogowych

Laboratorium: Projektowanie pasywnych i aktywnych filtrów analogowych Laboratorium: Projektowanie pasywnych i aktywnych filtrów analogowych Autorzy: Karol Kropidłowski Jan Szajdziński Michał Bujacz 1. Cel ćwiczenia 1. Cel laboratorium: Zapoznanie się i przebadanie podstawowych

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

BADANIE FILTRÓW. Instytut Fizyki Akademia Pomorska w Słupsku

BADANIE FILTRÓW. Instytut Fizyki Akademia Pomorska w Słupsku BADANIE FILTRÓW Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z właściwościami filtrów. Zagadnienia teoretyczne. Filtry częstotliwościowe Filtrem nazywamy układ o strukturze czwórnika, który przepuszcza

Bardziej szczegółowo

Laboratorium Inżynierii akustycznej. Przetwarzanie dźwięku - wprowadzenie do efektów dźwiękowych, realizacja opóźnień

Laboratorium Inżynierii akustycznej. Przetwarzanie dźwięku - wprowadzenie do efektów dźwiękowych, realizacja opóźnień Laboratorium Inżynierii akustycznej Przetwarzanie dźwięku - wprowadzenie do efektów dźwiękowych, realizacja opóźnień STRONA 1 Wstęp teoretyczny: LABORATORIUM NR1 Przetwarzanie sygnału dźwiękowego wiąże

Bardziej szczegółowo

Filtry FIR i biblioteka DSPLIB

Filtry FIR i biblioteka DSPLIB Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Filtry FIR i biblioteka DSPLIB Wstęp Na poprzednim wykładzie napisaliśmy algorytm

Bardziej szczegółowo

Stabilność. Krzysztof Patan

Stabilność. Krzysztof Patan Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu

Bardziej szczegółowo

Wykonawcy: Data Wydział Elektryczny Studia dzienne Nr grupy:

Wykonawcy: Data Wydział Elektryczny Studia dzienne Nr grupy: POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 2 Temat: Projektowanie i analiza

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

POŁÓWKOWO-PASMOWE FILTRY CYFROWE

POŁÓWKOWO-PASMOWE FILTRY CYFROWE Krzysztof Sozański POŁÓWKOWOPASMOWE FILTRY CYFROWE W pracy przedstawiono połówkowopasmowe filtry cyfrowe. Opisano dwa typy filtrów: pierwszy z zastosowaniem filtrów typu FIR oraz drugi typu IIR. Filtry

Bardziej szczegółowo

Model autoregresyjny stochastycznego szeregu czasowego

Model autoregresyjny stochastycznego szeregu czasowego Pracownia EEG / Widmowa analiza parametryczna Spis treści 1 Model autoregresyjny stochastycznego szeregu czasowego 1.1 Wstęp 1.2 Parametryczna analiza widmowa 1.3 Wybór rzędu modelu 1.4 Sygnały wielokanałowe

Bardziej szczegółowo

1. Modulacja analogowa, 2. Modulacja cyfrowa

1. Modulacja analogowa, 2. Modulacja cyfrowa MODULACJA W16 SMK 2005-05-30 Jest operacja mnożenia. Jest procesem nakładania informacji w postaci sygnału informacyjnego m.(t) na inny przebieg o wyższej częstotliwości, nazywany falą nośną. Przyczyna

Bardziej szczegółowo

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 1. Modelowanie i analiza widmowa dyskretnych sygnałów losowych

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 1. Modelowanie i analiza widmowa dyskretnych sygnałów losowych ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 1 Modelowanie i analiza widmowa dyskretnych sygnałów losowych 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie studentów z wybranymi algorytmami

Bardziej szczegółowo

13.2. Filtry cyfrowe

13.2. Filtry cyfrowe Bibliografia: 1. Chassaing Rulph, Digital Signal Processing and Applications with the C6713 and C6416 DSK, Wiley-Interscience 2005. 2. Borodziewicz W., Jaszczak K., Cyfrowe Przetwarzanie sygnałów, Wydawnictwo

Bardziej szczegółowo

Technika audio część 2

Technika audio część 2 Technika audio część 2 Wykład 12 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Wprowadzenie do filtracji

Bardziej szczegółowo

Rys. 1. Wzmacniacz odwracający

Rys. 1. Wzmacniacz odwracający Ćwiczenie. 1. Zniekształcenia liniowe 1. W programie Altium Designer utwórz schemat z rys.1. Rys. 1. Wzmacniacz odwracający 2. Za pomocą symulacji wyznaczyć charakterystyki częstotliwościowe (amplitudową

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów. Ćwiczenie 3. Filtracja i korelacja sygnałów dyskretnych

Laboratorium Przetwarzania Sygnałów. Ćwiczenie 3. Filtracja i korelacja sygnałów dyskretnych PTS laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 3 Filtracja i korelacja sygnałów dyskretnych Opracowali: - prof. dr hab. inż. Krzysztof Kałużyński - dr inż. Beata Leśniak-Plewińska - dr

Bardziej szczegółowo

Ćwiczenie - 7. Filtry

Ćwiczenie - 7. Filtry LABOATOIUM ELEKTONIKI Ćwiczenie - 7 Filtry Spis treści 1 el ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Transmitancja filtru dolnoprzepustowego drugiego rzędu............. 2 2.2 Aktywny filtr dolnoprzepustowy

Bardziej szczegółowo

FILTRACJE W DZIEDZINIE CZĘSTOTLIWOŚCI

FILTRACJE W DZIEDZINIE CZĘSTOTLIWOŚCI FILTRACJE W DZIEDZINIE CZĘSTOTLIWOŚCI ( frequency domain filters) Każdy człon F(u,v) zawiera wszystkie wartości f(x,y) modyfikowane przez wartości członów wykładniczych Za wyjątkiem trywialnych przypadków

Bardziej szczegółowo

Ćwiczenie 3. Właściwości przekształcenia Fouriera

Ćwiczenie 3. Właściwości przekształcenia Fouriera Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia

Bardziej szczegółowo

Realizacja filtrów cyfrowych z buforowaniem próbek

Realizacja filtrów cyfrowych z buforowaniem próbek str. 1 Realizacja filtrów cyfrowych z buforowaniem próbek 1. Filtry Cyfrowe Zadaniem filtracji jest przepuszczanie (tłumienie) składowych sygnału leŝących w określonym paśmie częstotliwości. Ogólnie filtr

Bardziej szczegółowo

Akwizycja i przetwarzanie sygnałów cyfrowych

Akwizycja i przetwarzanie sygnałów cyfrowych Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Projektowania filtrów IIR Metoda niezmienności odpowiedzi impulsowej Podstawowa zasada określajaca: projektujemy

Bardziej szczegółowo

A3 : Wzmacniacze operacyjne w układach liniowych

A3 : Wzmacniacze operacyjne w układach liniowych A3 : Wzmacniacze operacyjne w układach liniowych Jacek Grela, Radosław Strzałka 2 kwietnia 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1.

Bardziej szczegółowo

Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem.

Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem. Znowu prosta zasada - zbierzmy wszystkie zagadnienia z tych 3ech kartkówek i opracujmy - może się akurat przyda na dopytkę i uda się zaliczyć labki :) (dodatkowo można opracowania z tych rzeczy z doc ów

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1C400027 Temat ćwiczenia:

Bardziej szczegółowo

Analiza szeregów czasowych: 7. Liniowe modele stochastyczne

Analiza szeregów czasowych: 7. Liniowe modele stochastyczne Analiza szeregów czasowych: 7. Liniowe modele stochastyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Liniowe modele stochastyczne Niech {y n } N n=1 będzie pewnym ciagiem danych

Bardziej szczegółowo

Detekcja zespołów QRS w sygnale elektrokardiograficznym

Detekcja zespołów QRS w sygnale elektrokardiograficznym Detekcja zespołów QRS w sygnale elektrokardiograficznym 1 Wprowadzenie Zadaniem algorytmu detekcji zespołów QRS w sygnale elektrokardiograficznym jest określenie miejsc w sygnale cyfrowym w których znajdują

Bardziej szczegółowo

7. Szybka transformata Fouriera fft

7. Szybka transformata Fouriera fft 7. Szybka transformata Fouriera fft Dane pomiarowe sygnałów napięciowych i prądowych często obarczone są dużym błędem, wynikającym z istnienia tak zwanego szumu. Jedną z metod wspomagających analizę sygnałów

Bardziej szczegółowo

Laboratorium nr 3. Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka

Laboratorium nr 3. Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka Laboratorium nr 3. Cele ćwiczenia Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka poznanie sposobów tworzenia liniowych modeli układów automatyki, zmiana postaci modeli, tworzenie

Bardziej szczegółowo

Języki Modelowania i Symulacji

Języki Modelowania i Symulacji Języki Modelowania i Symulacji Przetwarzanie sygnałów fonicznych Marcin Ciołek Katedra Systemów Automatyki WETI, Politechnika Gdańska 3 listopada 211 O czym będziemy mówili? 1 2 wavrecord wavplay y = wavrecord(n,

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

GENERACJA PRZEBIEGU SINUSOIDALNEGO.

GENERACJA PRZEBIEGU SINUSOIDALNEGO. GENERACJA PRZEBIEGU SINUSOIDALNEGO. Podstawą generacji sygnału sinusoidalnego jest równanie różnicowe wyprowadzone w sposób następujący. Transmitancja układu generującego jest równa: Na wyjściu spodziewany

Bardziej szczegółowo

PORÓWNANIE METOD PROJEKTOWANIA FILTRÓW CYFROWYCH

PORÓWNANIE METOD PROJEKTOWANIA FILTRÓW CYFROWYCH POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS No 93 Electrical Engineering 2018 DOI 10.21008/j.1897-0737.2018.93.0029 Dominik MATECKI * PORÓWNANIE METOD PROJEKTOWANIA FILTRÓW CYFROWYCH W artykule zostały

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 5 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 38 Plan wykładu Kompensator wyprzedzający Kompensator opóźniający

Bardziej szczegółowo

Przetwarzanie sygnałów z czasem ciągłym

Przetwarzanie sygnałów z czasem ciągłym Przetwarzanie sygnałów z czasem ciągłym Model systemowy układu p( t ) r ( t) wejście Układ wyjście p( t ) pobudzenie r ( t) reakcja Układ wykonuje pewną operację { i } na sygnale wejściowym p t (pobudzeniu),

Bardziej szczegółowo

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej 1. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 3. Charakterystyki

Bardziej szczegółowo

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1C400027 Temat ćwiczenia:

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7

INSTRUKCJA DO ĆWICZENIA NR 7 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety

Bardziej szczegółowo

Instrukcja do laboratorium z cyfrowego przetwarzania sygnałów. Ćwiczenie 3. Transformata Z; blokowe struktury opisujące filtr

Instrukcja do laboratorium z cyfrowego przetwarzania sygnałów. Ćwiczenie 3. Transformata Z; blokowe struktury opisujące filtr Instrukcja do laboratorium z cyfrowego przetwarzania sygnałów Ćwiczenie Transformata ; blokowe struktury opisujące filtr Przemysław Korohoda, KE, AGH awartość instrukcji: Materiał z zakresu DSP. Transformata.2

Bardziej szczegółowo

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Marcin Polkowski (251328) 15 marca 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Techniczny i matematyczny aspekt ćwiczenia 2 3 Pomiary - układ RC

Bardziej szczegółowo

Liniowe układy scalone. Filtry aktywne w oparciu o wzmacniacze operacyjne

Liniowe układy scalone. Filtry aktywne w oparciu o wzmacniacze operacyjne Liniowe układy scalone Filtry aktywne w oparciu o wzmacniacze operacyjne Wiadomości ogólne (1) Zadanie filtrów aktywnych przepuszczanie sygnałów znajdujących się w pewnym zakresie częstotliwości pasmo

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów. Ćwiczenie 2. Filtracja i korelacja sygnałów dyskretnych

Laboratorium Przetwarzania Sygnałów. Ćwiczenie 2. Filtracja i korelacja sygnałów dyskretnych PTS laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 2 Filtracja i korelacja sygnałów dyskretnych Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - dr inż. Beata Leśniak-Plewińska

Bardziej szczegółowo

Analiza szeregów czasowych: 5. Liniowe modele stochastyczne

Analiza szeregów czasowych: 5. Liniowe modele stochastyczne Analiza szeregów czasowych: 5. Liniowe modele stochastyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Dwa rodzaje modelowania 1. Modelowanie z pierwszych zasad. Znamy prawa

Bardziej szczegółowo

Filtry Elektryczne. opracował: Marcin Bieda

Filtry Elektryczne. opracował: Marcin Bieda Filtry Elektryczne opracował: Marcin Bieda 1. Wprowadzenie Filtrami elektrycznymi nazywane są układy elektryczne przepuszczające przebiegi elektryczne zawarte w określonym paśmie częstotliwości, a tłumiące

Bardziej szczegółowo

KOMPUTEROWE SYSTEMY POMIAROWE

KOMPUTEROWE SYSTEMY POMIAROWE KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST - ITwE Semestr zimowy Wykład nr 12 Prawo autorskie Niniejsze

Bardziej szczegółowo

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, 2013 Spis treści Słowo wstępne 8 Wymagania egzaminacyjne 9 Wykaz symboli graficznych 10 Lekcja 1. Podstawowe prawa

Bardziej szczegółowo

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1-

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Filtry cyfrowe cz. Zastosowanie funkcji okien do projektowania filtrów SOI Nierównomierności charakterystyki amplitudowej filtru cyfrowego typu SOI można

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 3 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 32 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA

WOJSKOWA AKADEMIA TECHNICZNA WOJSKOWA AKADEMIA TECHNICZNA LABORATORIUM CYFROWE PRZETWARZANIE SYGNAŁÓW Stopień, imię i nazwisko prowadzącego Imię oraz nazwisko słuchacza Grupa szkoleniowa Data wykonania ćwiczenia dr inż. Andrzej Wiśniewski

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Konstrukcje i Technologie w Aparaturze Elektronicznej.

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Konstrukcje i Technologie w Aparaturze Elektronicznej. Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Konstrukcje i Technologie w Aparaturze Elektronicznej Ćwiczenie nr 5 Temat: Przetwarzanie A/C. Implementacja

Bardziej szczegółowo

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania

Bardziej szczegółowo

Twierdzenie o splocie

Twierdzenie o splocie Twierdzenie o splocie g(t) = (s h) (t) G(f ) = S(f ) H(f ) (1) To twierdzenie działa też w drugą stronę: G(f ) = (S H) (f ) g(t) = s(t) h(t) (2) Zastosowania: zamiana splotu na mnożenie daje wgląd w okienkowanie

Bardziej szczegółowo

PROJEKTOWANIA FILTRÓW CYFROWYCH PRZY WYKORZYSTANIU MATLAB-SIMULINK (DSP BLOCKSET).

PROJEKTOWANIA FILTRÓW CYFROWYCH PRZY WYKORZYSTANIU MATLAB-SIMULINK (DSP BLOCKSET). DSP Blockset LABORATORIUM PROCESORY SYGNALOWE W AUTOMATYCE PRZEMYSLOWEJ PROJEKTOWANIA FILTRÓW CYFROWYCH PRZY WYKORZYSTANIU MATLAB-SIMULINK (DSP BLOCKSET). DSP Blockset Modelowanie i symulacja systemów

Bardziej szczegółowo

Laboratorium Techniki ultradźwiękowej w diagnostyce medycznej

Laboratorium Techniki ultradźwiękowej w diagnostyce medycznej TUD - laboratorium Laboratorium Techniki ultradźwiękowej w diagnostyce medycznej Ćwiczenie 1 Analiza sygnałów występujących w diagnostycznej aparaturze ultradźwiękowej (rev.2) Opracowali: prof. nzw. dr

Bardziej szczegółowo

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów Biomedycznych

Laboratorium Przetwarzania Sygnałów Biomedycznych Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 3 Analiza sygnału o nieznanej strukturze Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik Politechnika Warszawska,

Bardziej szczegółowo

5 Filtry drugiego rzędu

5 Filtry drugiego rzędu 5 Filtry drugiego rzędu Cel ćwiczenia 1. Zrozumienie zasady działania i charakterystyk filtrów. 2. Poznanie zalet filtrów aktywnych. 3. Zastosowanie filtrów drugiego rzędu z układem całkującym Podstawy

Bardziej szczegółowo

Analiza właściwości filtra selektywnego

Analiza właściwości filtra selektywnego Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..

Bardziej szczegółowo

4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych...

4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych... Spis treści 1 Wstęp 11 1.1 Do kogo adresowana jest ta książka... 12 1.2 Historia badań nad mową i językiem... 12 1.3 Obecne główne trendy badań... 16 1.4 Opis zawartości rozdziałów... 18 2 Wyzwania i możliwe

Bardziej szczegółowo

FFT i dyskretny splot. Aplikacje w DSP

FFT i dyskretny splot. Aplikacje w DSP i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata

Bardziej szczegółowo

Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c.

Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c. Opis matematyczny Równanie modulatora Charakterystyka statyczna d t = v c t V M dla 0 v c t V M D 1 V M V c Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy v c (t )=V c + v c (t ) d (t

Bardziej szczegółowo

ZAPYTANIE OFERTOWE NR PLCRC/ /06/1295/2015

ZAPYTANIE OFERTOWE NR PLCRC/ /06/1295/2015 Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka. 23.04.2014 ZAPYTANIE OFERTOWE NR PLCRC/2830700/06/1295/2015 I. Informacja

Bardziej szczegółowo

WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego

WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego Pracownia Wstępna - - WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego Układy złożone z elementów biernych Bierne elementy elektroniczne to : opór R: u ( = Ri( indukcyjność L: di( u( = L i pojemność

Bardziej szczegółowo

Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 8

Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 8 Teoria Synałów rok nformatyki Stosowanej Wykład 8 Analiza częstotliwościowa dyskretnych synałów cyfrowych okna widmowe (cd poprzednieo wykładu) N = 52; T =.24; %czas trwania synału w sekundach dt = T/N;

Bardziej szczegółowo

SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI

SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI 1 ĆWICZENIE VI SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI (00) Celem pracy jest poznanie sposobu fizycznej realizacji filtrów cyfrowych na procesorze sygnałowym firmy Texas Instruments TMS320C6711

Bardziej szczegółowo