Notebook. Spis treści

Save this PDF as:

Wielkość: px
Rozpocząć pokaz od strony:

Download "Notebook. Spis treści"

Transkrypt

1 Spis treści 1 Notebook 2 Implementacja filtrowania: funkcja lfilter 2.1 Dla przypomnienia: Działanie filtra w dziedzinie czasu Implementacja w pythonie 3 Badanie własności filtra w dziedzinie czasu i częstości: 3.1 Zadanie: budujemy funkcję do ilustracji własności filtra 4 Funkcje do projektowania filtrów 4.1 FIR firwin Przykłady: Zbadaj włsności przykładowych projektów Zadanie: Zaprojektuj i zbadaj własności filtra: Zadanie: Znajdź rząd filtra FIR: firwin Zadanie: filtr wielopasmowy 5 Filtry IIR 5.1 Funkcje do projektowania filtrów IIR dostępne w module scipy.signal Filtr Butterwortha Filtr Czebyszewa I rodzaju Filtr Czebyszewa II rodzaju Filtr eliptyczny 5.2 Filtrowanie z zerowym przesunięciem fazowym Zadanie Zadanie Zadanie Zadanie: filtr pasmowy do wyszukiwania wrzecion snu Zadanie 5: uwaga na odpowiedź impulsową Zadanie: Uwaga na odpowiedź schodkową 5.3 Przepróbkowywanie Przepróbkowywanie do góry: Przepróbkowanie do dołu: Zmiana częstości o wymierną ilość razy: Zadanie 6 Notebook notebook o filtrach Ustawiamy parametry wyświetlania i font. # encoding: utf-8

2 % matplotlib inline import matplotlib matplotlib.rcparams['figure.figsize'] = (7,7)#(10, 7) matplotlib.rcparams.update({'font.family': 'Arial'}) matplotlib.rcparams.update({'font.size': 10}) from IPython.core.display import display, HTML display(html("<style>.container { width:100%!important; }</style>")) Importujemy podstawowe moduły: import numpy as np import pylab as py Importujemy funkcje specyficzne dla filtrowania w pythonie: from scipy.signal import freqz, group_delay #funkcja obliczająca funkcję systemu from scipy.signal import firwin, firwin2 # funkcje do projektowania filtrów FIR from scipy.signal import butter, buttord # funkcje do projektowania filtrów from scipy.signal import cheby1, cheb1ord # funkcje do projektowania filtrów from scipy.signal import cheby2, cheb2ord # funkcje do projektowania filtrów from scipy.signal import ellip, ellipord # funkcje do projektowania filtrów eliptycznych from scipy.signal import lfilter, filtfilt # funkcje do aplikowania filtrów Implementacja filtrowania: funkcja lfilter Dla przypomnienia: Działanie filtra w dziedzinie czasu Najczęściej, wyjście filtra jest kombinacją liniową:

3 gdzie: liczba przeszłych próbek wejściowych liczba przeszłych próbek wyjściowych użytych do obliczenia aktualnego wyjścia. Większa z liczb i określa "rząd" filtra. Zauważmy, że matematycznie operacje te odpowiadają splataniu próbek wejściowych z wektorem i próbek wyjściowych z wektorem. Implementacja w pythonie Filtrowanie zgodne z powyższymi równaniami zaimplementowane jest w pythonie w module scipy.signal jako funkcja lfilter. Podstawowe wywołanie tej funkcji dla sygnału we wygląda następująco: wy = scipy.signal.lfilter(b,a,we) gdzie b, a są to współczynniki z poprzedniego równania. Badanie własności filtra w dziedzinie czasu i częstości: Przy projektowaniu filtra musimy brać pod uwagę jego następujące własności: - w dziedzinie częstości: - moduł transmitancji (funkcji przenoszenia) - jest to zależność modułu funkcji systemu od częstości - opóźnienie grupowe - opóźnienie fazowe - w dziedzinie czasu: - funkcję odpowiedzi impulsowej - funkcję odpowiedzi schodkowej Zadanie: budujemy funkcję do ilustracji własności filtra Nasza funkcja będzie przyjmowała na wejściu: * współczynniki filtra a, b, * wektor zawierający częstości f, dla których własności mają być policzone, * długość odcinka czasu, T, na którym mają być prezentowane własności czasowe filtra, oraz częstość próbkowania Fs. Funkcja ta będzie rysowała wszystkie powyżej wspomniane charakterystyki filtra. def charkterystyki(a,b,f,t,fs): # przyda nam się oś czasu od -T do T sekund t = np.arange(-t, T, 1/Fs)

4 # oś częstości przeliczamy na radiany w = 2*np.pi* f/fs # obliczamy transmitancję w, h = freqz(...) # obliczamy moduł transmitancji m = np.abs(h) # obliczamy fazę i "rozwijamy" ją faza = np.unwrap(np.angle(h)) # obliczamy opóźnienie fazowe opoznieniefazowe = - faza/w # obliczamy opóźnienie grupowe df = np.diff(faza) idx, = np.where(np.abs(df-np.pi)<0.05) #to zabezpieczenie na błędy przy "rozwijaniu" fazy df[idx] = (df[idx+1]+df[idx-1])/2 grupowe = - df/np.diff(w) # obliczamy odpowiedź impulsową x = np.zeros(len(t)) x[len(t)//2] = 1 # impuls y = lfilter(b,a,x) # obliczamy odpowiedź schodkową s = np.zeros(len(t)) s[len(t)//2:] = 1 # schodek ys = lfilter(b,a,s) # przepuszczamy impuls przez filtr i obserwujemy odpowiedź impulsową # rysujemy fig = py.figure() py.subplot(3,2,1) py.title('moduł transmitancji') py.plot(f,20*np.log10(m)) py.ylabel('[db]') py.grid('on') py.subplot(3,2,3) py.title('opóźnienie fazowe') py.plot(f, opoznieniefazowe) py.ylabel('próbki') py.grid('on')

5 py.subplot(3,2,5) py.title('opóźnienie grupowe') py.plot(f[:-1],grupowe) py.ylabel('próbki') py.xlabel('częstość [Hz]') py.grid('on') py.ylim([, np.max(grupowe)+1]) py.subplot(3,2,2) py.title('odpowiedź impulsowa') py.plot(t, x) py.plot(t, y) py.xlim([-t/2,t]) py.grid('on') py.subplot(3,2,4) py.title('odpowiedź schodkowa') py.plot(t, s) py.plot(t, ys) py.xlim([-t/2,t]) py.xlabel('czas [s]') py.grid('on') fig.subplots_adjust(hspace=.5) py.show() Testujemy: b = firwin(54,0.5)# licznik a = np.array([1.0]) # mianownik Fs = 100 T = 1 f = np.arange(0.01,fs/2,0.01) charkterystyki(a,b,f,t,fs) Funkcje do projektowania filtrów W bibliotece scipy.signal jest kilka funkcji do projektowania filtrów o zadanych parametrach. My skupimy się na dwóch zasadniczych grupach: * FIR - filtry o skończonej odpowiedzi impulsowej * klasyczne IIR - filtry o nieskończonej odpowiedzi impulsowej

6 FIR Filtry typu FIR zwykle wymagają znacznie wyższych rzędów aby osiągnąć transmitancję o porządanej formie. Mają jednak dwie podstawowe zalety: * ich funkcja odpowiedzi jest skończona opisana wektorem b - efekty brzegowe sięgają z obu końców filtrowanego sygnału na dokładnie połowę długości wektora b * mają liniową zależnaość fazy od częstości. Z tego powodu opóżnienie grupowe dla wszystkich częstości jest takie samo. W module scipy.signal mamy kilka funkcji do projektowania filtrów typu FIR: firwin i firwin2. firwin Najprostszą koncepcyjnie metodą projektowania filtrów FIR jest metoda okienkowa. Metoda składa się z następujących kroków: w dziedzinie częstości projektowana jest idealna funkcja przenoszenia, obliczana jest od niej odwrotna transformata Fouriera, następnie otrzymana sekwencja czasowa (odpowiedź impulsowa) jest przemnażana przez wybrane okno. Metoda ta zaimplementowana jest w funkcji scipy.signal.firwin(numtaps, cutoff, width=none, window='hamming', pass_zero=true, scale=true, nyq=1.0). Pozwala ona projektować filtry dolno- i górno- przepustowe oraz pasmowo przepustowe i pasmowo zaporowe metodą okienkową. Najważniejsze parametry (kompletny opis w dokumentacji) numtaps: int, ilość współczynników filtru (rząd filtru+1). Liczba ta musi być parzysta jeśli pasmo przenoszenia ma zawierać częstość Nyquista. cutoff: częstość odcięcia filtru. Może być jedną liczbą zmiennoprzecinkową dla filtru dolnolub górno- przepustowego lub tablicą dla filtrów pasmowych. Wyrażamy ją w tych samych jednostkach co nyq i musi zawierać się pomiędzy 0 a nyq. window: napis lub krotka: określa jakiego okna użyć do projektu filtru. Może to być dowolne okno spośród opisanych w scipy.signal.get_window pass_zero: bool, Jeśli True to zero jest przenoszone, jeśli False to nie jest. Ten parametr decyduje jak jest interpretowane pierwsze pasmo od 0 do cutoff - czy ma to być pasmo przenoszone czy tłumione. nyq: float. Częstość Nyquista. Zwraca: współczynniki b Przykłady: Zbadaj włsności przykładowych projektów We wszystkich poniższych przykładach zakładamy, że częstość próbkowania wynosi 256Hz: filtr dolnoprzepustowy rzędu 20 z częstością odcięcia 40Hz: firwin(21, 40, nyq= 128) Fs = 128

7 T = 0.2 f = np.arange(0.01,fs/2,0.01) b = firwin(21, 40, nyq= 128) charkterystyki(1,b,f,t,fs) filtr górnoprzepustowy rzędu 15 z częstością odcięcia 5 Hz: firwin(17, 15, nyq= 128, pass_zero=false) Fs = 256 T = 1 f = np.arange(0.01,fs/2,0.01) b = firwin(17, 15, nyq= 128, pass_zero=false) charkterystyki(1,b,f,t = 0.2,Fs=Fs) pasmowo przepustowy 51 rzędu przenoszący częstości pomiędzy 8 a 14 Hz: firwin(51, [8, 14], nyq= 128, pass_zero=false) Fs = 256 f = np.arange(0.01,fs/2,0.01) b=firwin(51, [8, 14], nyq= Fs/2, pass_zero=false) charkterystyki(1,b,f,t = 0.2,Fs=Fs) Zadanie: Zaprojektuj i zbadaj własności filtra: FIR dolno z pasmem przenoszenia od 30 Hz dla sygnału próbkowanego 256 Hz Zadanie: Znajdź rząd filtra FIR: dolnoprzepustowego z pasmem przenoszenia do 40 Hz dla sygnału próbkowanego 256 Hz, tak aby dla częstości powyżej 45 Hz jego tłumienie było nie mniejsze niż 20dB. firwin2 Funkcja scipy.signal.firwin2(numtaps, freq, gain, nfreqs=none, window='hamming', nyq=1.0)

8 również implementuje okienkową metodę projektowania filtrów FIR. Daje ona nieco większą swobodę w kształtowaniu idealnej funkcji przenoszenia. Zadaje się ją przez podanie dwóch wektorów: * freq i Wektor freq definiuje punkty w częstości (jednostki takie same jak nyq, muszą zawierać 0 i nyq) dla których znana jest wartość pożądanego przenoszenia. Wartości freq muszą być ułożone w kolejności rosnącej, dopuszczalne jest powtórzenie tej samej wartości częstości i odpowiadających im różnych wartości gain aby zdefiniować nieciągłość funkcji przenoszenia. * gain Pożądane wartości przenoszenia odpowiadające kolejnym częstościom definiowane są w gain. * Znaczenie pozostałych parametrów jest takie samo jak dla ``firwin. Zadanie: filtr wielopasmowy Zaprojektuj filtr przenoszący częstości w pasmach pomiędzy : 10-11, i Hz, który w paśmie zaporowym ma co najmniej 60 db tłumienia. Fs =100 T = 2 f = np.arange(0.01,fs/2,0.01) freq = np.array([, 10, 10, 11, 11, 20, 20, 21, 21, 30, 30, 31, 31, 50]) gain = np.array([,, 1, 1,,, 1, 1,,, 1, 1,, ]) b = firwin2(100, freq, gain, nyq= 50) charkterystyki(1,b,f,t,fs) Filtry IIR Filtry o nieskończonej odpowiedzi impulsowej (infinite impulse response, IIR) mają zazwyczaj dużo niższe rzędy niż filtry o skończonej odpowiedzi impulsowej (finite impulse response, FIR) z analogicznym poziomem tłumienia i szerokością pasma przejściowego. W module scipy.signal mamy zaimplementowane kilka funkcji do projektowania optymalnych pod różnymi względami filtrów w klasycznych konfiguracjach: dolno- albo górnoprzepustowe i pasmowo-przepustowe albo pasmowo-zaporowe. Funkcje do projektowania filtrów IIR dostępne w module scipy.signal W module scipy.signal dostępne są funkcje do projektowania czterech typów filtrów: Butterwortha, Czebyszewa typu I i II, oraz eliptyczny. Do opisu wymagań projektowych funkcje te wykorzystują następujące pojęcia: * wp, ws krawędzie pasma przenoszenia i tłumienia. Częstości są znormalizowane do zakresu od 0 do 1 (1 odpowiada częstości Nyquista) przykładowo: * * dolno-przepustowy: wp = 0.2, ws = 0.3 * * górno-przepustowy: wp = 0.3, ws = 0.2 * * pasmowo-przepustowy: wp = [0.2, 0.5], ws = [0.1, 0.6] * * pasmowo-zaporowy: wp = [0.1, 0.6], ws = [0.2, 0.5] * gpass maksymalna dopuszczalna strata w pasmie przenoszenia (w funkcjach projektujących filtry jest to rp) (db). * gstop minimalne wymagane tłumienie w pasmie tłumienia (w funkcjach projektujących filtry jest to rs) (db). * btype typ filtra

9 ('lowpass', 'highpass', 'bandpass', 'bandstop'). Funkcje do projektowania filtrów są zaimplementowane parami: * jedna pomaga dobierać rząd filtru do wymagań projektowych, * druga oblicza współczynniki filtru. W poniższych przykładach przyjmiemy: T = 0.3 Fs = 100 # Hz f = np.arange(0.01,fs/2,0.01) wp = 10/(Fs/2) ws = 30/(Fs/2) gpass = 1 gstop = 25 analog= rp = gpass rs = gstop Filtr Butterwortha daje gładką (bez tętnień) funkcję przenoszenia w całym zakresie częstości. [n,wn]=buttord(wp, ws, gpass, gstop) [b,a]=butter(n,wn) charkterystyki(a,b,f,t,fs) print('filtr Butterwortha, rząd: {}, częstość odcięcia {:.3f}'.format(n,Wn*Fs/2)) Filtr Czebyszewa I rodzaju gładka funkcja przenoszenia w paśmie tłumienia, minimalizowane są tętnienia w paśmie przenoszenia [n,wn]=cheb1ord(wp, ws, gpass, gstop, analog) [b,a]=cheby1(n, rp, Wn, btype='low', output='ba') charkterystyki(a,b,f,t,fs) print('czebyszewa I Typu: rząd: {}, częstość odcięcia {:.3f}'.format(n,Wn*Fs/2)) Filtr Czebyszewa II rodzaju gładka funkcja przenoszenia w paśmie przenoszenia, minimalizowane tętnienia w paśmie tłumienia

10 [n,wn]=cheb2ord(wp, ws, gpass, gstop, analog=); [b,a]=cheby2(n, rs, Wn, btype='low', analog=, output='ba') charkterystyki(a,b,f,t,fs) print('czebyszewa II Typu: rząd: {}, częstość odcięcia {:.3f}'.format(n,Wn*Fs/2)) Filtr eliptyczny daje najostrzejsze przejście pomiędzy pasmem tłumienia i przenoszenia przy tym samym rzędzie w porównaniu z wyżej wymienionymi filtrami, tętnienia są obecne zarówno w paśmie przenoszenia jak i w paśmie tłumienia [n,wn]=ellipord(wp, ws, rp,rs); [b,a]=ellip(n, rp, rs, Wn, btype='low', analog=, output='ba') charkterystyki(a,b,f,t,fs) print('eliptyczny: rząd: {}, częstość odcięcia {:.3f}'.format(n,Wn*Fs/2)) Filtrowanie z zerowym przesunięciem fazowym Zadanie Filtrowanie sygnałów off-line można zrealizować tak, aby sygnał wyjściowy nie miał przesunięcia fazowego. Procedura powyższa zaimplementowana jest w funkcji: scipy.signal.filtfilt. Jej działanie i porównanie z efektami funkcji lfilter przedstawia poniższy przykład: # częstość próbkowania Fs = # projekt dolnoprzepustowego filtra Butterwortha 5 rzędu # o częstości odcięcia 10 Hz [b,a] = butter(...) # obliczamy funkcję przenoszenia w,h = freqz(...) transmitancja =... #opóźnienie grupowe grupowe = -np.diff(np.unwrap(np.angle(h)))/np.diff(w) # przeliczamy skalę w (radiany) na częstości w Hz f =... # generujemy sygnał t = np.arange(,1,1/fs) s = np.sin(2*np.pi*5*t)*np.hanning(len(t))

11 # Filtrowanie z zerowym opoznieniem fazowym y = filtfilt(...) # Filtrowanie standardowe y1 = lfilter(b,a,s) # WYKRESY py.subplot(2,2,1) py.plot(f,20*np.log10(transmitancja)) # przeliczenie modułu transmitancji na db py.title('moduł transmitancji') py.ylabel('[db]') py.subplot(2,2,3) py.plot(f[:-1], grupowe ) py.title('opoznienie grupowe') py.xlabel('[hz]') py.ylabel('punkty') py.subplot(1,2,2) py.plot(t,s) py.plot(t,y,'g.') py.plot(t,y1,'r') py.legend(('s','filtfilt','lfilter')) py.xlabel('[s]') py.title('sygnaly') py.show() Zadanie Skonstruować filtry dolnoprzepustowe rzędu n=5, o częstości odcięcia 30 Hz przy częstości próbkowania sygnału 128 Hz, rp = 0,5 db, rs = 20 db, przy pomocy wszystkich podanych powyżej funkcji i porównać ich własności. Zadanie Dobrać rząd i zaprojektować, a następnie zbadać własności otrzymanego filtru Butterwortha spełniającego poniższe kryteria: pasmo przenoszenia Hz, pasmo tłumienia zaczyna się 500 Hz od każdego z brzegów pasma przenoszenia, próbkowanie 10 khz, najwyżej 1 db tętnienia w paśmie przenoszenia, co najmniej 60 db tłumienia w paśmie tłumienia.

12 Zadanie: filtr pasmowy do wyszukiwania wrzecion snu Zaprojektować filtr do wyławiania wrzecion snu z sygnału. Wrzeciona snu to struktury w sygnale EEG rejestrowanym w czasie snu zawierające się w paśmie Hz. Działanie filtra przetestować na sygnale: Sygnał ten to fragment zapisu EEG z II stadium snu elektroda C4 próbkownie 128Hz. s = np.loadtxt('c4spin.txt') # wczytujemy sygnał z pliku tekstowego Fs = 128 t = np.arange(,len(s))/fs # przygotowujemy oś czasu py.plot(t, s) [b,a] = butter(...) sf = filtfilt(...) py.plot(t,sf) py.show() Zadanie 5: uwaga na odpowiedź impulsową Przydadzą nam się pliki: * Plik z sygnałem EKG * Plik z metadanymi do tego sygnału Proszę: * wykreślić pierwsze 10 sekund sygnału * zastosować filtr górnoprzepustowy Butterwartha o częstościach odcięcia: 0.01, 0.1, 0.5 -> zaobserwuj jak długo stabilizuje się sygnał * Zastosuj filtr pasmowoprzepustowy (11-14 Hz) i wykreśl wynik jego zastosowania na tle poprzedniej wersji sygnału. Zinterpretuj wynik w kontekście funkcji odpowiedzi impulsowej tego filtra. s = np.fromfile('ekg.bin', dtype='<f') # tworzymy tablicę sig o typie określonym przez ''dtype'' # ustawiamy częstość próbkowania Fs = 128 # tworzymy wektor czasu t = np.arange(,len(s))/fs # ustalamy zakres indeksów sygnału i czasu do wyświetlania zakres = np.logical_and(<t, t<10) py.plot(t[zakres],s[zakres]) # filtr górnoprzepustowy (0.01, 0.1, 0.5) [b,a] = butter(... ) sf = filtfilt(...)

13 py.plot(t[zakres],sf[zakres]) # filtr pasmowy [bl,al] = butter(... ) sf_l = filtfilt(bl,al,sf) py.plot(t[zakres],sf_l[zakres]) py.show() Zadanie: Uwaga na odpowiedź schodkową Wykorzystajmy fragment sygnału EKG z poprzedniego zadania (pomiędzy 12 a 40 -tą sekundą). * wykreśl ten fragment * zaprojektuj filtr górnoprzepustowy Butterwortha o częstości odcięcia 0.1 (potem 0.5), rzedu 1 (potem 5), * przefiltruj sygnał z tymi współczynnikami za pomocą funkcji filtfilt i lfilter, * dodaj do sygnału z lewej strony jego kopię odwróconą w czasie, * ten sygnał przefiltruj funkcją lfilter i wykreśl jego drugą połowę, * zinterpretuj uzyskane wyniki w kontekście funkcji odpowiedzi impulsowej. zakres = np.logical_and(10<t, t<40) t_z = t[zakres] s_z = s[zakres] py.plot(t_z,s_z, label = 'oryginalny') py.grid('on') # filtr górnoprzepustowy ( 0.1, 0.5) [b,a] = butter(...) sff = filtfilt(...) py.plot(t_z, sff, label = 'filtfilt') # lfilter sfl = lfilter(...) py.plot(t_z,...,label = 'lfilter') # lfilter z przedłużeniem x=np.concatenate((s_z[::-1],s_z)) sfl_p = lfilter(...) py.plot(t_z,sfl_p[len(t_z):],label = 'lfilter z przedłużaniem') py.legend() py.show() Przepróbkowywanie Przepróbkowywanie do góry: Zwiększamy częstość prókowania całkowitą ilość razy P

14 Najpowszechniej stosowana metoda polega na dodaniu P zer pomiędzy istniejące próbki sygnału tak aby osiągnął on P-krotnie większą długość. Następnie taki rozciągnięty sygnał filtrujemy filtrem dolnoprzepustowym o częstości odcięcia nie większej niż częstość Nyquista oryginalnego sygnału rozciąganie sygnału nie dokłada do niego nowej informacji więc i tak nic nie tracimy. Przykład przepróbkowania do góry: t = np.arange(,0.05,0.001) # czas x = np.sin(2*np.pi*30*t) + np.sin(2*np.pi*60*t) # sygnał py.subplot(3,1,1) py.plot(x,'.') py.title('sygnał oryginalny') py.subplot(3,1,2) X = np.zeros(4*len(x)) X[::4] = x py.plot(x,'.') py.title('sygnał poprzetykany zerami') [b,a] = butter(8,...) # filtr powinien przepuszczać tylko te częstości, # które były w oryginalnym sygnale tzn. poniżej pierwotnego Nyqista y = filtfilt(b,a,x); # filtrujemy dolnoprzepustowo py.subplot(3,1,3) py.plot(y,'.') py.show() Przepróbkowanie do dołu: Zmniejszamy częstość próbkowania całkowitą ilość razy. Musimy pamiętać o tym, żeby wyfiltrować to, co było w oryginalnym sygnale powyżej docelowego Nyquista, żeby uniknąć aliasingu w wynikowym sygnale. Fs1 = # pierwotna częstość próbkowania [Hz] FN1 = Fs1/2 # pierwotna częstość Nyquista t = arange(,1,1.0/fs1) # czas probkowany 1/Fs1 f1 = 6 # Hz f2 = 60 fi = pi/2 s = sin(2*pi*t*f1+fi) + sin(2*pi*t*f2+fi) subplot(4,1,1) plot(t,s,'.-') title(u'sygnał pierwotny') # obnizamy czestosc probkowania k razy

15 k = 2 Fs2 = Fs1/k # nowa czestosc probkowania jest k razy niższa FN2 = Fs2/2 # nowa częstość Nyquista [b,a] = butter(8,fn2/fn1) # przefiltrujemy filtrem dolnoprzepustowym # tak aby nic nie zostało powyzej # docelowej częstości Nyquista ss = filtfilt(b,a,s); t2 = arange(,1,1.0/fs2) subplot(4,1,2) plot(t,ss,'.-') title(u'sygnał przefiltrowany dolnoprzepustowy') subplot(4,1,3) ss2 = ss[::k] plot(t2,ss2,'.-') title(u'sygnał przepróbkowany prawidłowo') subplot(4,1,4) ss3 = s[::k] plot(t2,ss3,'.-') title(u'sygnał przepróbkowany nieprawidłowo, bez filtrowania dolnoprzepustowego') show() Zmiana częstości o wymierną ilość razy: Zmieniamy częstość próbkowania o wymierną liczbę razy uzyskujemy składając powyższe kroki tzn. najpierw zwiększamy częstość P-krotnie, a następnie zmniejszamy Q-krotnie. Zadanie 6 Proszę napisać funkcję, która będzie przepróbkowywać sygnał o wymierną liczbę razy. Funkcja powinna przyjmować sygnał, częstość próbkowania, parametry P i Q i zwracać przepróbkowany sygnał i nową częstość próbkowania def resample(s,fs,p=1,q=1): if P>1 and isinstance(p,int): sp = np.zeros(p*len(s)) sp[...] = s fs =... [b,a] = butter(...) s = filtfilt(...) if Q>1 and isinstance(q,int): fs = fs/q

16 [b,a] = butter(...) s = filtfilt(...) s = s[...] return s,fs fs = 1000 t = np.arange(,0.05,0.001) # czas s1 = np.sin(2*np.pi*30*t) + np.sin(2*np.pi*60*t) # sygnał py.subplot(3,1,1) py.plot(s1,'.') y,fs2 = resample(s1,fs,p=10,q=1) py.subplot(3,1,2) py.plot(y,'.') py.show() fs = t = np.arange(,1,1.0/fs) f1 = 6 # Hz f2 = 40 fi = np.pi/2 s2 = np.sin(2*np.pi*t*f1+fi) + np.sin(2*np.pi*t*f2+fi) py.subplot(3,1,1) py.plot(s2,'.-') y,fs2 = resample(s2,fs,p=1,q=2) py.subplot(3,1,2) py.plot(y,'.-') py.show()

Filtry IIR. Zadania Przepróbkowywanie. Filtry IIR

Filtry IIR. Zadania Przepróbkowywanie. Filtry IIR Filtry IIR Filtry IIR mają zazwyczaj dużo niższe rzędy przy osiągach takich jak FIR z dużo wyższymi rzędami. W matlabie mamy zaimplementowane kilka funkcji do projektowania óptymalnych pod różnymi względami

Bardziej szczegółowo

Wprowadzenie. Spis treści. Analiza_sygnałów_-_ćwiczenia/Filtry

Wprowadzenie. Spis treści. Analiza_sygnałów_-_ćwiczenia/Filtry Analiza_sygnałów_-_ćwiczenia/Filtry Spis treści 1 Wprowadzenie 2 Filtry cyfrowe: powtórka z wykładu 2.1 Działanie filtra w dziedzinie czasu 2.2 Nazewnictwo 2.3 Przejście do dziedziny częstości 2.3.1 Działanie

Bardziej szczegółowo

Laboratorium nr 4: Porównanie filtrów FIR i IIR. skończonej odpowiedzi impulsowej (FIR) zawsze stabilne, mogą mieć liniową charakterystykę fazową

Laboratorium nr 4: Porównanie filtrów FIR i IIR. skończonej odpowiedzi impulsowej (FIR) zawsze stabilne, mogą mieć liniową charakterystykę fazową Teoria Sygnałów sprawozdanie z zajęć laboratoryjnych Zajęcia z dnia 07.01.2009 Prowadzący: dr inż. Stanisław Nuckowski Sprawozdanie wykonał: Tomasz Witka Laboratorium nr 4: Porównanie filtrów FIR i IIR

Bardziej szczegółowo

Filtrowanie a sploty. W powyższym przykładzie proszę zwrócić uwagę na efekty brzegowe. Wprowadzenie Projektowanie filtru Zadania

Filtrowanie a sploty. W powyższym przykładzie proszę zwrócić uwagę na efekty brzegowe. Wprowadzenie Projektowanie filtru Zadania Filtrowanie a sploty idea x=[2222222222] %sygnałstochastycznyodługości5próbek h=[1111]/4; %Filtruśredniającypo4sąsiednichelementach y=conv(h,x)%zaaplikowaniefiltruhdosygnałux W powyższym przykładzie proszę

Bardziej szczegółowo

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem: PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Przetwarzanie sygnałów Ćwiczenie 5 Filtry o nieskończonej odpowiedzi impulsowej (NOI) Spis treści 1 Wprowadzenie 1 1.1 Filtry jednobiegunowe....................... 1 1.2 Filtry wąskopasmowe........................

Bardziej szczegółowo

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH Generowanie podstawowych przebiegów okresowych sawtooth() przebieg trójkątny (wierzhołki +/-1, okres 2 ) square() przebieg kwadratowy (okres 2 ) gauspuls()przebieg sinusoidalny

Bardziej szczegółowo

Podstawy Przetwarzania Sygnałów

Podstawy Przetwarzania Sygnałów Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech

Bardziej szczegółowo

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej:

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej: 1. FILTRY CYFROWE 1.1 DEFIICJA FILTRU W sytuacji, kiedy chcemy przekształcić dany sygnał, w inny sygnał niezawierający pewnych składowych np.: szumów mówi się wtedy o filtracji sygnału. Ogólnie Filtracją

Bardziej szczegółowo

x(n) x(n-1) x(n-2) D x(n-n+1) h N-1

x(n) x(n-1) x(n-2) D x(n-n+1) h N-1 Laboratorium Układy dyskretne LTI projektowanie filtrów typu FIR Z1. apisać funkcję y = filtruj(x, h), która wyznacza sygnał y będący wynikiem filtracji sygnału x przez filtr FIR o odpowiedzi impulsowej

Bardziej szczegółowo

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20). SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy

Bardziej szczegółowo

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Przetwarzanie sygnałów Ćwiczenie 3 Filtry o skończonej odpowiedzi impulsowej (SOI) Spis treści 1 Filtracja cyfrowa podstawowe wiadomości 1 1.1 Właściwości filtru w dziedzinie czasu............... 1 1.2

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

8. Realizacja projektowanie i pomiary filtrów IIR

8. Realizacja projektowanie i pomiary filtrów IIR 53 8. Realizacja projektowanie i pomiary filtrów IIR Cele ćwiczenia Realizacja na zestawie TMX320C5515 ezdsp prostych liniowych filtrów cyfrowych. Pomiary charakterystyk amplitudowych zrealizowanych filtrów

Bardziej szczegółowo

Liniowe układy scalone. Filtry aktywne w oparciu o wzmacniacze operacyjne

Liniowe układy scalone. Filtry aktywne w oparciu o wzmacniacze operacyjne Liniowe układy scalone Filtry aktywne w oparciu o wzmacniacze operacyjne Wiadomości ogólne (1) Zadanie filtrów aktywnych przepuszczanie sygnałów znajdujących się w pewnym zakresie częstotliwości pasmo

Bardziej szczegółowo

SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI

SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI 1 ĆWICZENIE VI SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI (00) Celem pracy jest poznanie sposobu fizycznej realizacji filtrów cyfrowych na procesorze sygnałowym firmy Texas Instruments TMS320C6711

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1-

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Filtry cyfrowe cz. Zastosowanie funkcji okien do projektowania filtrów SOI Nierównomierności charakterystyki amplitudowej filtru cyfrowego typu SOI można

Bardziej szczegółowo

Filtry FIR i biblioteka DSPLIB

Filtry FIR i biblioteka DSPLIB Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Filtry FIR i biblioteka DSPLIB Wstęp Na poprzednim wykładzie napisaliśmy algorytm

Bardziej szczegółowo

5 Filtry drugiego rzędu

5 Filtry drugiego rzędu 5 Filtry drugiego rzędu Cel ćwiczenia 1. Zrozumienie zasady działania i charakterystyk filtrów. 2. Poznanie zalet filtrów aktywnych. 3. Zastosowanie filtrów drugiego rzędu z układem całkującym Podstawy

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

Zadanie: Filtr adaptywny

Zadanie: Filtr adaptywny Spis treści 1 Zadanie: Filtr adaptywny 1.1 Przygotuj sygnały: 1.2 Symulacja sieci 1.3 Wykresy 1.4 Szkielet rozwiązania: 1.5 Pytania Zadanie: Filtr adaptywny W tym zadaniu symulujemy działanie filtra, który

Bardziej szczegółowo

Laboratorium Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przetwarzaniem sygnałów w MATLAB. 2. Program ćwiczenia. Przykład 1 Wprowadź

Laboratorium Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przetwarzaniem sygnałów w MATLAB. 2. Program ćwiczenia. Przykład 1 Wprowadź Podstawy Informatyki 1 Laboratorium 9 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przetwarzaniem sygnałów w MATLAB 2. Program ćwiczenia Przykład 1 Wprowadź fo = 4; %frequency of the sine wave

Bardziej szczegółowo

Spis treści. Widmo mocy. Obliczanie mocy sygnału. Analiza_sygnałów_-_ćwiczenia/Fourier_4

Spis treści. Widmo mocy. Obliczanie mocy sygnału. Analiza_sygnałów_-_ćwiczenia/Fourier_4 Analiza_sygnałów_-_ćwiczenia/Fourier_4 Spis treści 1 Widmo mocy 1.1 Obliczanie mocy sygnału 1.1.1 Zadanie 1: Moc i energia sygnału w dziedzinie czasu 1.1.2 Zadanie 2: Moc i energia sygnału w dziedzinie

Bardziej szczegółowo

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Konstrukcje i Technologie w Aparaturze Elektronicznej.

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Konstrukcje i Technologie w Aparaturze Elektronicznej. Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Konstrukcje i Technologie w Aparaturze Elektronicznej Ćwiczenie nr 5 Temat: Przetwarzanie A/C. Implementacja

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1C400027 Temat ćwiczenia:

Bardziej szczegółowo

Temat: Filtracja cyfrowa okresowych sygnałów deterministycznych Ćwiczenie 3

Temat: Filtracja cyfrowa okresowych sygnałów deterministycznych Ćwiczenie 3 CYFROWE PRZETWARZANIE SYGNAŁÓW Laboratorium Inżynieria Biomedyczna, studia stacjonarne pierwszego stopnia imei Instytut Metrologii, Elektroniki i Informatyki Temat: Filtracja cyfrowa okresowych sygnałów

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

BADANIE FILTRÓW. Instytut Fizyki Akademia Pomorska w Słupsku

BADANIE FILTRÓW. Instytut Fizyki Akademia Pomorska w Słupsku BADANIE FILTRÓW Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z właściwościami filtrów. Zagadnienia teoretyczne. Filtry częstotliwościowe Filtrem nazywamy układ o strukturze czwórnika, który przepuszcza

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport morski Semestr II Ćw. 2 Filtry analogowe układy całkujące i różniczkujące Wersja opracowania

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1C400027 Temat ćwiczenia:

Bardziej szczegółowo

Temat: Filtracja cyfrowa okresowych sygnałów deterministycznych Ćwiczenie 3

Temat: Filtracja cyfrowa okresowych sygnałów deterministycznych Ćwiczenie 3 CYFROWE PRZETWARZANIE SYGNAŁÓW Laboratorium Informatyka, studia stacjonarne drugiego stopnia imei Instytut Metrologii, Elektroniki i Informatyki Temat: Filtracja cyfrowa okresowych sygnałów deterministycznych

Bardziej szczegółowo

Technika audio część 2

Technika audio część 2 Technika audio część 2 Wykład 12 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Wprowadzenie do filtracji

Bardziej szczegółowo

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt.

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt. 1 Kodowanie podpasmowe Kompresja Danych Streszczenie Studia Dzienne Wykład 13, 18.05.2006 1.1 Transformaty, próbkowanie i filtry Korzystamy z faktów: Każdą funkcję okresową można reprezentować w postaci

Bardziej szczegółowo

PORÓWNANIE METOD PROJEKTOWANIA FILTRÓW CYFROWYCH

PORÓWNANIE METOD PROJEKTOWANIA FILTRÓW CYFROWYCH POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS No 93 Electrical Engineering 2018 DOI 10.21008/j.1897-0737.2018.93.0029 Dominik MATECKI * PORÓWNANIE METOD PROJEKTOWANIA FILTRÓW CYFROWYCH W artykule zostały

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego

Bardziej szczegółowo

Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem.

Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem. Znowu prosta zasada - zbierzmy wszystkie zagadnienia z tych 3ech kartkówek i opracujmy - może się akurat przyda na dopytkę i uda się zaliczyć labki :) (dodatkowo można opracowania z tych rzeczy z doc ów

Bardziej szczegółowo

13.2. Filtry cyfrowe

13.2. Filtry cyfrowe Bibliografia: 1. Chassaing Rulph, Digital Signal Processing and Applications with the C6713 and C6416 DSK, Wiley-Interscience 2005. 2. Borodziewicz W., Jaszczak K., Cyfrowe Przetwarzanie sygnałów, Wydawnictwo

Bardziej szczegółowo

A3 : Wzmacniacze operacyjne w układach liniowych

A3 : Wzmacniacze operacyjne w układach liniowych A3 : Wzmacniacze operacyjne w układach liniowych Jacek Grela, Radosław Strzałka 2 kwietnia 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1.

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów Biomedycznych

Laboratorium Przetwarzania Sygnałów Biomedycznych Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 3 Analiza sygnału o nieznanej strukturze Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik Politechnika Warszawska,

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

A-2. Filtry bierne. wersja

A-2. Filtry bierne. wersja wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne

Bardziej szczegółowo

KOMPUTEROWE SYSTEMY POMIAROWE

KOMPUTEROWE SYSTEMY POMIAROWE KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST - ITwE Semestr zimowy Wykład nr 12 Prawo autorskie Niniejsze

Bardziej szczegółowo

Analiza właściwości filtrów dolnoprzepustowych

Analiza właściwości filtrów dolnoprzepustowych Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.

Bardziej szczegółowo

Filtry elektroniczne sygnałów ciągłych - cz.1

Filtry elektroniczne sygnałów ciągłych - cz.1 Filtry elektroniczne sygnałów ciągłych - cz.1 Wprowadzenie Podstawowe pojęcia Klasyfikacje, charakterystyki częstotliwościowe filtrów Właściwości filtrów w dziedzinie czasu Realizacje elektroniczne filtrów

Bardziej szczegółowo

Analiza szeregów czasowych: 4. Filtry liniowe

Analiza szeregów czasowych: 4. Filtry liniowe Analiza szeregów czasowych: 4. Filtry liniowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Filtry liniowe W dziedzinie fourierowskiej filtruje się bardzo prosto: oblicza się iloczyn

Bardziej szczegółowo

Celem tych ćwiczeń jest zapoznanie się z klasyfikacją za pomocą sieci neuronowych.

Celem tych ćwiczeń jest zapoznanie się z klasyfikacją za pomocą sieci neuronowych. Spis treści 1 Wstęp 1.1 Importy 2 Zbiór uczący 3 Klasyfikacja 3.1 Rysunki dodatkowe 4 Polecenia dodatkowe Wstęp Celem tych ćwiczeń jest zapoznanie się z klasyfikacją za pomocą sieci neuronowych. Importy

Bardziej szczegółowo

Laboratorium: Projektowanie pasywnych i aktywnych filtrów analogowych

Laboratorium: Projektowanie pasywnych i aktywnych filtrów analogowych Laboratorium: Projektowanie pasywnych i aktywnych filtrów analogowych Autorzy: Karol Kropidłowski Jan Szajdziński Michał Bujacz 1. Cel ćwiczenia 1. Cel laboratorium: Zapoznanie się i przebadanie podstawowych

Bardziej szczegółowo

Zaawansowane algorytmy DSP

Zaawansowane algorytmy DSP Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Zaawansowane algorytmy DSP Wstęp Cztery algorytmy wybrane spośród bardziej zaawansowanych

Bardziej szczegółowo

Filtry cyfrowe. h(n) odpowiedź impulsowa. Filtr cyfrowy. Procesory sygnałowe (DSP), układy programowalne

Filtry cyfrowe. h(n) odpowiedź impulsowa. Filtr cyfrowy. Procesory sygnałowe (DSP), układy programowalne Filtry cyfrowe Procesory sygnałowe (DSP), układy programowalne x(n) Filtr cyfrowy y(n) h(n) odpowiedź impulsowa x(n) y(n) y(n) = x(n) h(n) 1 Filtry cyfrowe Po co filtrujemy sygnały? Aby uzyskać: redukcję

Bardziej szczegółowo

Wykonawcy: Data Wydział Elektryczny Studia dzienne Nr grupy:

Wykonawcy: Data Wydział Elektryczny Studia dzienne Nr grupy: POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 2 Temat: Projektowanie i analiza

Bardziej szczegółowo

Klasyczna rekonstrukcja obrazu (Beamforming)

Klasyczna rekonstrukcja obrazu (Beamforming) Spis treści 1 Klasyczna rekonstrukcja obrazu (Beamforming) 1.1 Dane RF 1.2 Opóźnienia nadawczo-odbiorcze 1.3 Rekonstrukcja obrazu 1.3.1 Zakres dynamiki 1.3.2 Filtrowanie obrazu 1.4 Obraz B-mode 1.5 Położenie

Bardziej szczegółowo

Detekcja zespołów QRS w sygnale elektrokardiograficznym

Detekcja zespołów QRS w sygnale elektrokardiograficznym Detekcja zespołów QRS w sygnale elektrokardiograficznym 1 Wprowadzenie Zadaniem algorytmu detekcji zespołów QRS w sygnale elektrokardiograficznym jest określenie miejsc w sygnale cyfrowym w których znajdują

Bardziej szczegółowo

Ćwiczenia z przetwarzania tablic 2D

Ćwiczenia z przetwarzania tablic 2D Ćwiczenia z przetwarzania tablic 2D Wyświetlanie tablic 2D Jako wstęp do przetwarzania obrazów w pythonie przećwiczmy podstawowe operacje na dwuwymiarowych tablicach numpy w postaci których będziemy takie

Bardziej szczegółowo

PROCESORY SYGNAŁOWE - LABORATORIUM. Ćwiczenie nr 04

PROCESORY SYGNAŁOWE - LABORATORIUM. Ćwiczenie nr 04 PROCESORY SYGNAŁOWE - LABORATORIUM Ćwiczenie nr 04 Obsługa buforów kołowych i implementacja filtrów o skończonej i nieskończonej odpowiedzi impulsowej 1. Bufor kołowy w przetwarzaniu sygnałów Struktura

Bardziej szczegółowo

Filtracja. Krzysztof Patan

Filtracja. Krzysztof Patan Filtracja Krzysztof Patan Wprowadzenie Działanie systemu polega na przetwarzaniu sygnału wejściowego x(t) na sygnał wyjściowy y(t) Równoważnie, system przetwarza widmo sygnału wejściowego X(jω) na widmo

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI

LABORATORIUM ELEKTRONIKI INSTYTUT NAWIGACJI MOSKIEJ ZAKŁD ŁĄCZNOŚCI I CYBENETYKI MOSKIEJ AUTOMATYKI I ELEKTONIKA OKĘTOWA LABOATOIUM ELEKTONIKI Studia dzienne I rok studiów Specjalności: TM, IM, PHiON, AT, PM, MSI ĆWICZENIE N 10

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA

WOJSKOWA AKADEMIA TECHNICZNA WOJSKOWA AKADEMIA TECHNICZNA LABORATORIUM CYFROWE PRZETWARZANIE SYGNAŁÓW Stopień, imię i nazwisko prowadzącego Imię oraz nazwisko słuchacza Grupa szkoleniowa Data wykonania ćwiczenia dr inż. Andrzej Wiśniewski

Bardziej szczegółowo

Wykresy i interfejsy użytkownika

Wykresy i interfejsy użytkownika Wrocław, 07.11.2017 Wstęp do informatyki i programowania: Wykresy i interfejsy użytkownika Wydział Matematyki Politechniki Wrocławskiej Andrzej Giniewicz Dzisiaj na zajęciach... Instrukcje sterujące Biblioteka

Bardziej szczegółowo

Analiza szeregów czasowych: 2. Splot. Widmo mocy.

Analiza szeregów czasowych: 2. Splot. Widmo mocy. Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata

Bardziej szczegółowo

Analiza obrazów - sprawozdanie nr 2

Analiza obrazów - sprawozdanie nr 2 Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która

Bardziej szczegółowo

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej 1. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje

Bardziej szczegółowo

Generowanie sygnałów na DSP

Generowanie sygnałów na DSP Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Generowanie sygnałów na DSP Wstęp Dziś w programie: generowanie sygnałów za pomocą

Bardziej szczegółowo

Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej

Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej Politechnika Łódzka Instytut Systemów Inżynierii Elektrycznej Laboratorium komputerowych systemów pomiarowych Ćwiczenie 4 Filtracja sygnałów dyskretnych 1. Opis stanowiska Ćwiczenie jest realizowane w

Bardziej szczegółowo

Przetwarzanie sygnałów z czasem ciągłym

Przetwarzanie sygnałów z czasem ciągłym Przetwarzanie sygnałów z czasem ciągłym Model systemowy układu p( t ) r ( t) wejście Układ wyjście p( t ) pobudzenie r ( t) reakcja Układ wykonuje pewną operację { i } na sygnale wejściowym p t (pobudzeniu),

Bardziej szczegółowo

Analiza właściwości filtra selektywnego

Analiza właściwości filtra selektywnego Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..

Bardziej szczegółowo

Analiza szeregów czasowych: 2. Splot. Widmo mocy.

Analiza szeregów czasowych: 2. Splot. Widmo mocy. Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata

Bardziej szczegółowo

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................

Bardziej szczegółowo

Zadania z rysowania i dopasowania funkcji

Zadania z rysowania i dopasowania funkcji Spis treści 1 Zadania z rysowania i dopasowania funkcji 1.1 Znajdowanie miejsca zerowego funkcji 1.2 Wczytywanie danych i wykres 1.3 Dopasowywanie krzywej do danych i wykres 1.3.1 Wskazówki Zadania z rysowania

Bardziej szczegółowo

FFT i dyskretny splot. Aplikacje w DSP

FFT i dyskretny splot. Aplikacje w DSP i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata

Bardziej szczegółowo

Ćwiczenie - 7. Filtry

Ćwiczenie - 7. Filtry LABOATOIUM ELEKTONIKI Ćwiczenie - 7 Filtry Spis treści 1 el ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Transmitancja filtru dolnoprzepustowego drugiego rzędu............. 2 2.2 Aktywny filtr dolnoprzepustowy

Bardziej szczegółowo

4. Funkcje. Przykłady

4. Funkcje. Przykłady 4. Funkcje Przykłady 4.1. Napisz funkcję kwadrat, która przyjmuje jeden argument: długość boku kwadratu i zwraca pole jego powierzchni. Używając tej funkcji napisz program, który obliczy pole powierzchni

Bardziej szczegółowo

Cyfrowe przetwarzanie sygnałów. Wykład 7. Projektowanie filtrów cyfrowych. dr inż. Robert Kazała

Cyfrowe przetwarzanie sygnałów. Wykład 7. Projektowanie filtrów cyfrowych. dr inż. Robert Kazała Cyfrowe przetwarzanie sygnałów Wykład 7 Projektowanie filtrów cyfrowych dr inż. Robert Kazała 1 Literatura The Scientist and Engineer's Guide to Digital Signal Processing, Steven W. Smith - www.dspguide.com

Bardziej szczegółowo

Rys. 1. Wzmacniacz odwracający

Rys. 1. Wzmacniacz odwracający Ćwiczenie. 1. Zniekształcenia liniowe 1. W programie Altium Designer utwórz schemat z rys.1. Rys. 1. Wzmacniacz odwracający 2. Za pomocą symulacji wyznaczyć charakterystyki częstotliwościowe (amplitudową

Bardziej szczegółowo

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D.

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D. CPS 6 DYSKRETE PRZEKSZTAŁCEIE FOURIERA C.D. Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: Przesunięcie w czasie okresowego ciągu wejściowego

Bardziej szczegółowo

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZENIE 7. Splot liniowy i kołowy sygnałów

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZENIE 7. Splot liniowy i kołowy sygnałów Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZEIE 7 Splot liniowy i kołowy sygnałów 1. Cel ćwiczenia Operacja splotu jest jedną z najczęściej wykonywanych operacji na sygnale. Każde przejście

Bardziej szczegółowo

Równania różniczkowe zwyczajne

Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne Zajmiemy się teraz problemem numerycznego rozwiązywania równań różniczkowych zwyczajnych o postaci: z warunkeim początkowym. Zauważmy że przykładowe równanie różniczkowe

Bardziej szczegółowo

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie: Obwody prądu sinusoidalnego jednofazowego Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres

Bardziej szczegółowo

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 10. Dyskretyzacja

Bardziej szczegółowo

Technika analogowa. Problematyka ćwiczenia: Temat ćwiczenia:

Technika analogowa. Problematyka ćwiczenia: Temat ćwiczenia: Technika analogowa Problematyka ćwiczenia: Pomiędzy urządzeniem nadawczym oraz odbiorczym przesyłany jest sygnał użyteczny w paśmie 10Hz 50kHz. W trakcie odbioru sygnału po stronie odbiorczej stwierdzono

Bardziej szczegółowo

FILTRACJE W DZIEDZINIE CZĘSTOTLIWOŚCI

FILTRACJE W DZIEDZINIE CZĘSTOTLIWOŚCI FILTRACJE W DZIEDZINIE CZĘSTOTLIWOŚCI ( frequency domain filters) Każdy człon F(u,v) zawiera wszystkie wartości f(x,y) modyfikowane przez wartości członów wykładniczych Za wyjątkiem trywialnych przypadków

Bardziej szczegółowo

WZMACNIACZE OPERACYJNE

WZMACNIACZE OPERACYJNE WZMACNIACZE OPERACYJNE Indywidualna Pracownia Elektroniczna Michał Dąbrowski asystent: Krzysztof Piasecki 25 XI 2010 1 Streszczenie Celem wykonywanego ćwiczenia jest zbudowanie i zapoznanie się z zasadą

Bardziej szczegółowo

APARATURA BADAWCZA I DYDAKTYCZNA

APARATURA BADAWCZA I DYDAKTYCZNA APARATURA BADAWCZA I DYDAKTYCZNA Badanie filtrów analogowych FILIP KAGANKIEWICZ DOKTORANT, POLITECHNIKA WARSZAWSKA, WYDZIAŁ INŻYNIERII PRODUKCJI Słowa kluczowe: filtry, analogowe, aktywne, dolnoprzepustowe,

Bardziej szczegółowo

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe. Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu

Bardziej szczegółowo

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW.

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW. CZWÓRNK jest to obwód elektryczny o dowolnej wewnętrznej strukturze połączeń elementów, mający wyprowadzone na zewnątrz cztery zaciski uporządkowane w dwie pary, zwane bramami : wejściową i wyjściową,

Bardziej szczegółowo

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform

Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. March 20, 2013 Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. Sygnał i system Sygnał jest opisem

Bardziej szczegółowo

Katedra Elektrotechniki Teoretycznej i Informatyki

Katedra Elektrotechniki Teoretycznej i Informatyki Katedra Elektrotechniki Teoretycznej i Informatyki Przedmiot: Zintegrowane Pakiety Obliczeniowe W Zastosowaniach InŜynierskich Numer ćwiczenia: 7,8 Temat: Signal Processing Toolbox - filtry cyfrowe, transmitancja

Bardziej szczegółowo

Przetwarzanie i transmisja danych multimedialnych. Wykład 9 Kodowanie podpasmowe. Przemysław Sękalski.

Przetwarzanie i transmisja danych multimedialnych. Wykład 9 Kodowanie podpasmowe. Przemysław Sękalski. Przetwarzanie i transmisja danych multimedialnych Wykład 9 Kodowanie podpasmowe Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Wykład opracowano

Bardziej szczegółowo

Charakterystyka amplitudowa i fazowa filtru aktywnego

Charakterystyka amplitudowa i fazowa filtru aktywnego 1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji

Bardziej szczegółowo

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Marcin Polkowski (251328) 15 marca 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Techniczny i matematyczny aspekt ćwiczenia 2 3 Pomiary - układ RC

Bardziej szczegółowo

POŁÓWKOWO-PASMOWE FILTRY CYFROWE

POŁÓWKOWO-PASMOWE FILTRY CYFROWE Krzysztof Sozański POŁÓWKOWOPASMOWE FILTRY CYFROWE W pracy przedstawiono połówkowopasmowe filtry cyfrowe. Opisano dwa typy filtrów: pierwszy z zastosowaniem filtrów typu FIR oraz drugi typu IIR. Filtry

Bardziej szczegółowo

ćw. Analiza zmiennoprądowa i parametryczna Data wykonania: Data oddania:

ćw. Analiza zmiennoprądowa i parametryczna Data wykonania: Data oddania: Laboratorium Komputerowe Wspomaganie Projektowania Układów Elektronicznych Jarosław Gliwiński, Paweł Urbanek 1. Cel ćwiczenia ćw. Analiza zmiennoprądowa i parametryczna Data wykonania: 04.04.08 Data oddania:

Bardziej szczegółowo

Widmo akustyczne radia DAB i FM, porównanie okien czasowych Leszek Gorzelnik

Widmo akustyczne radia DAB i FM, porównanie okien czasowych Leszek Gorzelnik Widmo akustycznych sygnałów dla radia DAB i FM Pomiary widma z wykorzystaniem szybkiej transformacji Fouriera FFT sygnału mierzonego w dziedzinie czasu wykonywane są w skończonym czasie. Inaczej mówiąc

Bardziej szczegółowo