P. Litewka Efektywny element skończony o dużej krzywiźnie , 45 , 3 , 45 , 45 , 45 , 45 , 9

Wielkość: px
Rozpocząć pokaz od strony:

Download "P. Litewka Efektywny element skończony o dużej krzywiźnie , 45 , 3 , 45 , 45 , 45 , 45 , 9"

Transkrypt

1 P. Litwa Eftywny lmnt sończony o użj rzywiźni

2 P. Litwa Eftywny lmnt sończony o użj rzywiźni ji. ij Powyższa postać macirzy sztywności zostani wyorzystana w zaganiniach ynamii i statczności. Liczn przprowazon tsty numryczn wyazały bowim ż w obliczniach statyi można stosować barzij uproszczoną postać macirzy sztywności lmntu z wyraźnym poziałm na pomacirz związan z wpływm zginania ścinania i ściśliwości: gzi: K K K K K K EJ K B A S A AS S. a D D 7 8 D 8 D natomiast poszczgóln macirz słaniow mają prostą liczbową postać: K B symtria

3 P. Litwa Eftywny lmnt sończony o użj rzywiźni 7 symtria / 8 / 7/ / 7/ / 77 A K symtria S K tria 8 sym A K tria sym - S K / tria sym - / / 78 AS K

4 P. Litwa Eftywny lmnt sończony o użj rzywiźni Powyższa macirz sztywności opowiaa zminionmu wtorowi przmiszczń lmntu: T q u v φ u v φ gzi: u u i i i. Porównano lmnty macirzy sztywności: ołanj.7 K wilomianowj w w K la cztrch przypaów: ij. K [ ] i uproszczonj. [ ] Przypa A: Przypa B: Przypa C: Przypa D: W wszystich przypaach przyjęto: łu rępy h/ R mały ąt rozwarcia π/8. łu cini h/ R mały ąt rozwarcia π/8. łu rępy h/ R uży ąt rozwarcia π/. łu cini h/ R uży ąt rozwarcia π/. promiń rzywizny R m mouł Younga E współczynni Poissona ν7 współczynni ścinania κ. Wynii przstawiono w postaci proporcji β w ij t.. Tabla. ij ij t ij w Tabli. oraz β w ij t ij w Tabli i j β przypa A przypa B przypa C przypa D

5 P. Litwa Eftywny lmnt sończony o użj rzywiźni Tabla. i j β przypa A przypa B przypa C przypa D W wszystich rozpatrywanych przypaach wioczna jst ialna nimal zbiżność lmntów macirzy sztywności wilomianowj o lmntów macirzy trygonomtrycznj lpsza la małych ątów rozwarcia lmntu oraz la płnijszj postaci wilomianowj niż la więszych ątów i uproszczonj wrsji macirzy... Wryfiacja lmntu wilomianowgo w zaaniach statyi Przyła. Analizuj się łu obustronni utwirzony obciążony w zworniu siłą supioną przstawiony na Rys... N C Rys.. Do obliczń przyjmuj się następując an: mouł Younga E Pa współczynni Poissona ν promiń rzywizny R m 78

6 P. Litwa Eftywny lmnt sończony o użj rzywiźni charatrystyi przroju ha m h A / R przypa A hb m h B / R przypa B hc m h C / R przypa C hd m h D / R przypa D κ prostoąt całowity ąt rozwarcia łuu π/. Dla poszczgólnych przypaów baana jst zbiżność wartości przmiszcznia prominiowgo obliczango la rosnącj liczby lmntów o ołanj wartości przmiszcznia obliczonj przy wyorzystaniu lmntu trygonomtryczngo x. Wynii w vc postaci proporcji vc v przstawiono w Tabli.. Tabla. Cx lmntów przypa A przypa B przypa C przypa D Dla porównania przprowazono poobn oblicznia wyorzystując trzy rozaj liniowgo lmntu sończongo: a całowango analityczni macirz sztywności w Załączniu : Tabla. lmntów przypa A przypa B przypa C przypa D

7 P. Litwa Eftywny lmnt sończony o użj rzywiźni b w tórym w słaniu nrgii sprężystj związanym z ścinanim użyto całowania zruowango macirz sztywności w Załączniu : Tabla. lmntów przypa A przypa B przypa C przypa D c w tórym w słaniach nrgii sprężystj związanych z ścinanim i siłami osiowymi użyto całowania zruowango macirz sztywności w Załączniu : Tabla. lmntów przypa A przypa B przypa C przypa D Przyła. Analizuj się łu wsporniowy obciążony na ońcu siłą supioną przstawiony na Rys... N C Rys.. Do obliczń przyjmuj się następując an: mouł Younga E Pa współczynni Poissona ν 8

8 P. Litwa Eftywny lmnt sończony o użj rzywiźni promiń rzywizny R m charatrystyi przroju ha m h A / R przypa A hb m h B / R przypa B hc m h C / R przypa C hd m h D / R przypa D κ prostoąt całowity ąt rozwarcia łuu π/. Dla poszczgólnych przypaów baana jst zbiżność wartości przmiszczń ońca wspornia: obwoowgo u C prominiowgo oraz całowitgo ąta obrotu przroju ϕ C obliczanych la rosnącj liczby lmntów o ołanych wartości przmiszczń obliczonych przy wyorzystaniu lmntu trygonomtryczngo u Cx x oraz ϕ Cx. Wynii w postaci proporcji uc vc ϕ C uc vc oraz ϕc u v ϕ przstawiono w Tablach.7.8 i.. Cx Tabla.7 Cx Cx lmntów przypa A przypa B przypa C przypa D u C Tabla.8 lmntów przypa A przypa B przypa C przypa D

9 P. Litwa Eftywny lmnt sończony o użj rzywiźni Tabla. lmntów przypa A przypa B przypa C przypa D ϕ C Dla porównania przprowazono poobn oblicznia wyorzystując trzy rozaj liniowgo lmntu sończongo: a całowango analityczni: Tabla. lmntów przypa A przypa B przypa C przypa D Tabla. lmntów przypa A przypa B przypa C przypa D Tabla. lmntów przypa A przypa B przypa C przypa D u C ϕ C

10 P. Litwa Eftywny lmnt sończony o użj rzywiźni b w tórym w słaniu nrgii sprężystj związanym z ścinanim użyto całowania zruowango: Tabla. lmntów przypa A przypa B przypa C przypa D Tabla. lmntów przypa A przypa B przypa C przypa D Tabla. lmntów przypa A przypa B przypa C przypa D u C ϕ C c w tórym w słaniach nrgii sprężystj związanych z ścinanim i siłami osiowymi użyto całowania zruowango: Tabla. lmntów przypa A przypa B przypa C przypa D u C

11 P. Litwa Eftywny lmnt sończony o użj rzywiźni Tabla.7 lmntów przypa A przypa B przypa C przypa D Tabla.8 lmntów przypa A przypa B przypa C przypa D ϕ C Wynii obliczń la lmntu wilomianowgo przstawion w Przyłaach. i. wyazują barzo szybą zbiżność o rozwiązań ołanych wyznaczonych przy użyciu ołango lmntu przstawiongo w Rozzial. Dotyczy to wszystich rozpatrywanych przypaów proporcji h/r. Na postawi przstawionych obliczń można stwirzić ż opracowany lmnt wilomianowy ni wyazuj ni pożąanych ftów bloay sztywnościowj shar locing i mmbranowj mmbran locing. Przy zmnijszaniu wysoości przroju h można wprawzi zauważyć pogorszni się zbiżności wyniów w Przyłazi. al wynii zawsz szybo ążą o rozwiązania ścisłgo. Dla porównania la lmntu liniowgo całowango analityczni wiać ż zmnijszani proporcji h/r ma fatalny wpływ na wynii. Jst to wyraźny przyła zjawisa bloay. Oblicznia z uwzglęninim całowania zruowango wsazują ż jst to bloaa ścinania połączona z bloaą mmbranową gyż opiro zastosowani tj mtoy o obu słaniów ścinani i ściśliwość aj poprawn wynii. Można równiż zauważyć ż lmnt wilomianowy aj wynii szybcij zbiżn o rozwiązań ścisłych niż lmnt liniowy z całowanim zruowanym. 8

12 P. Litwa Eftywny lmnt sończony o użj rzywiźni Przyła. Analizuj się cini ołowy łu wyniosły obustronni utwirzony przstawiony na Rys... P Rys.. Do obliczń użyto następujących anych: 7 mouł Younga E psi 7 GPa współczynni Poissona ν promiń rzywizny łuu R. in 7 m przrój prostoątny h b in in 7 m 8 m całowity ąt rozwarcia łuu 7π/. Oblicza się ugięci v po siłą P. Wynii w postaci ilorazu proporcji P / v i ołanj wartości tj proporcji P / v x lbf / in N / m poanj w [] przstawiono w Tabli.. Tabla. lmntów P / v P / v x

13 P. Litwa Eftywny lmnt sończony o użj rzywiźni Przyła. Analizuj się cini pirściń ołowy ścisany woma siłami przstawiony na Rys..a. P P / P Rys..a Rys..b Do obliczń użyto następujących anych: mouł Younga E lbf / in 7 GPa współczynni Poissona ν promiń rzywizny łuu R in 8 m przrój prostoątny h b in in 87 m m siła P lbf N. Oblicza się przmiszczni prominiow v puntu przyłożnia siły P i jgo wartość porównuj się z wartością ołaną vx in. Wynii zstawiono w Tabli.. Z uwagi na symtrię ułau rozważa się ćwiartę pirścinia Rys..b. Tabla. lmntów v v x 8 8 Wynii przstawion w Przyłaach. oraz. wsazują na wysoą ftywność lmntu wilomianowgo. Dotyczą on przypaów łuów cinich. W związu z tym taa zbiżność wyniów numrycznych o rozwiązań ołanych jst równiż potwirznim fatu ż opracowany lmnt ni wyazuj pasożytniczych zjawis numrycznych bloay ścinania i mmbranowj. Obliczon przyłay są barzo często przstawian w litraturz latgo analizując prac np. [ ] można stwirzić ż lmnt sończony przstawiony w ninijszj pracy jst onurncyjny w porównaniu o lmntów wyorzystujących funcj ształtu o stałych współczynniach. 8

P. Litewka Efektywny element skończony o dużej krzywiźnie

P. Litewka Efektywny element skończony o dużej krzywiźnie 4.5. Macierz mas Macierz mas elementu wyprowadzić można według (.4) wykorzystując wielomianowe funkcje kształtu (4. 4.). W tym przypadku wzór ten przyjmie postać: [ m~ ] 6 6 ~ ~ ~ ~ ~ ~ gdzie: m = [ N

Bardziej szczegółowo

Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab)

Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab) Mtoda Elmntów Skończonych w Modlowaniu Układów Mchatronicznych Układy prętow (Scilab) str.1 I. MES 1D układy prętow. Podstawow informacj Istotą mtody lmntów skończonych jst sposób aproksymacji cząstkowych

Bardziej szczegółowo

Rozwiązanie równania różniczkowego MES

Rozwiązanie równania różniczkowego MES Rozwiązani równania różniczkowgo MES Jrzy Pamin -mail: jpamin@l5.pk.du.pl Instytut Tchnologii Informatycznych w Inżynirii Lądowj Wydział Inżynirii Lądowj Politchniki Krakowskij Strona domowa: www.l5.pk.du.pl

Bardziej szczegółowo

Zagadnienie statyki kratownicy płaskiej

Zagadnienie statyki kratownicy płaskiej Zagadnini statyki kratownicy płaskij METODY OBLICZENIOWE Budownictwo, studia I stopnia, smstr 6 Instytut L-5, Wydział Inżynirii Lądowj, Politchnika Krakowska Ewa Pabisk () Równania MES dla ustrojów prętowych

Bardziej szczegółowo

MES dla ustrojów prętowych (statyka)

MES dla ustrojów prętowych (statyka) MES dla ustrojów prętowych (statyka) Jrzy Pamin -mail: jpamin@l5.pk.du.pl Piotr Pluciński -mail: pplucin@l5.pk.du.pl Instytut Tchnologii Informatycznych w Inżynirii Lądowj Wydział Inżynirii Lądowj Politchniki

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE Część 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3. 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3.. Metoda trzech momentów Rozwiązanie wieloprzęsłowych bele statycznie niewyznaczalnych można ułatwić w znaczącym

Bardziej szczegółowo

Przykład 1 modelowania jednowymiarowego przepływu ciepła

Przykład 1 modelowania jednowymiarowego przepływu ciepła Przykład 1 modlowania jdnowymiarowgo przpływu cipła 1. Modl przpływu przz ścianę wilowarstwową Ściana składa się trzch warstw o różnych grubościach wykonana z różnych matriałów. Na jdnj z ścian zwnętrznych

Bardziej szczegółowo

PROTOKÓŁ POMIAROWY LABORATORIUM OBWODÓW I SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia

PROTOKÓŁ POMIAROWY LABORATORIUM OBWODÓW I SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia PROTOKÓŁ POMAROWY LABORATORM OBWODÓW SYGNAŁÓW ELEKTRYCNYCH Grupa Podgrupa Numr ćwicznia 4 Nazwisko i imię Data wykonania ćwicznia Prowadzący ćwiczni 3. Podpis 4. Data oddania 5. sprawozdania Tmat CWÓRNK

Bardziej szczegółowo

W-24 (Jaroszewicz) 22 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Cząstka w studni potencjału. przykłady efektu tunelowego

W-24 (Jaroszewicz) 22 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Cząstka w studni potencjału. przykłady efektu tunelowego Kyongju, Kora, April 999 W-4 (Jaroszwicz) slajdy Na podstawi przntacji prof. J. Rutowsigo Fizya wantowa 3 Cząsta w studni potncjału sończona studnia potncjału barira potncjału barira potncjału o sończonj

Bardziej szczegółowo

Ć w i c z e n i e K 4

Ć w i c z e n i e K 4 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Podstawy analizy wypadów drogowych Instrucja do ćwiczenia 1 Wyznaczenie prędości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Spis treści 1. CEL ĆWICZENIA... 3. WPROWADZENIE...

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Pomiary napięć przemiennych

Pomiary napięć przemiennych LABORAORIUM Z MEROLOGII Ćwiczenie 7 Pomiary napięć przemiennych . Cel ćwiczenia Celem ćwiczenia jest poznanie sposobów pomiarów wielości charaterystycznych i współczynniów, stosowanych do opisu oresowych

Bardziej szczegółowo

A. Cel ćwiczenia. B. Część teoretyczna

A. Cel ćwiczenia. B. Część teoretyczna A. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z wsaźniami esploatacyjnymi eletronicznych systemów bezpieczeństwa oraz wyorzystaniem ich do alizacji procesu esplatacji z uwzględnieniem przeglądów

Bardziej szczegółowo

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH.. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Rozwiązując układy niewyznaczalne dowolnie obciążone, bardzo często pomijaliśmy wpływ sił normalnych i

Bardziej szczegółowo

Przejścia międzypasmowe

Przejścia międzypasmowe Pzjścia iędzypasow Funcja diltyczna Pzjścia iędzypasow związan są z polayzacją cuy ltonowj wwnątz dzni atoowyc - są odpowidzialn za część funcji diltycznj ε Wóćy do foalizu funcji diltycznj: ε las N (

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

Q n. 1 1 x. el = i. L [m] q [kn/m] P [kn] E [kpa], A [m 2 ] n-1 n. Sławomir Milewski

Q n. 1 1 x. el = i. L [m] q [kn/m] P [kn] E [kpa], A [m 2 ] n-1 n. Sławomir Milewski Ćwiczni a: Statyka rozciągango pręta - intrpolacja liniowa Dany jst pręt o długości L, zamocowany na lwym końcu, obciążony w sposób jdnorodny ciągły (obciążni q) i skupiony (siła P na prawym swobodnym

Bardziej szczegółowo

Uogólnione wektory własne

Uogólnione wektory własne Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

WPŁYW PARAMETRÓW OŚRODKA SPRĘŻYSTO-LEPKIEGO NA KONWERGENCJĘ POWIERZCHNIOWĄ PROSTOKĄTNEGO CHODNIKA NA PODSTAWIE BADAŃ MODELOWYCH

WPŁYW PARAMETRÓW OŚRODKA SPRĘŻYSTO-LEPKIEGO NA KONWERGENCJĘ POWIERZCHNIOWĄ PROSTOKĄTNEGO CHODNIKA NA PODSTAWIE BADAŃ MODELOWYCH Górnictwo i Goinżyniria Rok 32 Zszyt 1 28 Agniszka Maj* WPŁYW PARAMETRÓW OŚRODKA SPRĘŻYSTO-LEPKIEGO NA KONWERGENCJĘ POWIERZCHNIOWĄ PROSTOKĄTNEGO CHODNIKA NA PODSTAWIE BADAŃ MODELOWYCH 1. Wstęp Obsrwacj

Bardziej szczegółowo

Analiza nośności poziomej pojedynczego pala

Analiza nośności poziomej pojedynczego pala Poradni Inżyniera Nr 16 Atualizacja: 09/016 Analiza nośności poziomej pojedynczego pala Program: Pli powiązany: Pal Demo_manual_16.gpi Celem niniejszego przewodnia jest przedstawienie wyorzystania programu

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

długość całkowita: L m moment bezwładności (względem osi y): J y cm 4 moment bezwładności: J s cm 4

długość całkowita: L m moment bezwładności (względem osi y): J y cm 4 moment bezwładności: J s cm 4 .9. Stalowy ustrój niosący. Poład drewniany spoczywa na dziewięciu belach dwuteowych..., swobodnie podpartych o rozstawie... m. Beli wyonane są ze stali... Cechy geometryczne beli: długość całowita: L

Bardziej szczegółowo

A4: Filtry aktywne rzędu II i IV

A4: Filtry aktywne rzędu II i IV A4: Filtry atywne rzędu II i IV Jace Grela, Radosław Strzała 3 maja 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, tórych używaliśmy w obliczeniach: 1. Związe między stałą czasową

Bardziej szczegółowo

Wrocław 2003 STATECZNOŚĆ. STATYKA 2 - projekt 1 zadanie 2

Wrocław 2003 STATECZNOŚĆ. STATYKA 2 - projekt 1 zadanie 2 Wrocław 00 STATECZNOŚĆ STATYKA - projet zadanie . Treść zadania Dla ray o scheacie statyczny ja na rysunu poniżej należy : - Sprawdzić czy uład jest statycznie niezienny - Wyznaczyć siły osiowe w prętach

Bardziej szczegółowo

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Analiza płyt i powłok MES

Analiza płyt i powłok MES Analiza płyt i powłok MES Jerzy Pamin e-mails: JPamin@L5.pk.edu.pl Podziękowania: M. Radwańska, A. Wosatko ANSYS, Inc. http://www.ansys.com Tematyka zajęć Klasyfikacja modeli i elementów skończonych Elementy

Bardziej szczegółowo

Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych

Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 3 Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych Daniel Sworek gr. KB2 Rok akademicki

Bardziej szczegółowo

Metody probabilistyczne Rozwiązania zadań

Metody probabilistyczne Rozwiązania zadań Metody robabilistyczne Rozwiązania zadań 6. Momenty zmiennych losowych 8.11.2018 Zadanie 1. Poaż, że jeśli X Bn, to EX n. Odowiedź: X rzyjmuje wartości w zbiorze {0, 1,..., n} z rawdoodobieństwami zadanymi

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Wyboczenie ściskanego pręta

Wyboczenie ściskanego pręta Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia

Bardziej szczegółowo

x y x y y 2 1-1

x y x y y 2 1-1 Mtod komputrow : wrzsiń 5 Zadani. Obliczć u(.5) stosując intrpolację kwadratową Lagrang a dla danch z tabli. i i 5 u( i )..5. 5. 7. Zadani.Dlapunktów =, =, =obliczćfunkcjębazowąintrpolacjihrmitah, ().

Bardziej szczegółowo

ZL - STATYSTYKA - Zadania do oddania

ZL - STATYSTYKA - Zadania do oddania ZL - STATYSTYKA - Zadania do oddania Parametr = liczba trzycyfrowa dwie ostatnie cyfry to dwie ostatnie cyfry numeru indesu pierwsza cyfra to pierwsza cyfra liczby liter pierwszego imienia. Poszczególne

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Równania różniczkowe Numeryczne rozwiązywanie równań różniczkowych zwyczajnych

Modelowanie i obliczenia techniczne. Równania różniczkowe Numeryczne rozwiązywanie równań różniczkowych zwyczajnych Moelowanie i obliczenia echniczne Równania różniczowe Numeryczne rozwiązywanie równań różniczowych zwyczajnych Przyła ułau ynamicznego E Uła ynamiczny R 0 Zachozi porzeba wyznaczenia: C u C () i() ur ir

Bardziej szczegółowo

Nasyp z geosyntetycznym wzmocnieniem podstawy posadowiony na pionowych elementach nośnych

Nasyp z geosyntetycznym wzmocnieniem podstawy posadowiony na pionowych elementach nośnych Nasyp z geosyntetycznym wzmocnieniem podstawy posadowiony na pionowych elementach nośnych Dr inż. Angelia Duszyńsa Politechnia Gdańsa, Wydział Inżynierii Lądowej i Środowisa Mgr inż. Monia Maasewicz-Dziecinia

Bardziej szczegółowo

ANALIZA STATYCZNA i WYMIAROWANIE KONSTRUKCJI RAMY

ANALIZA STATYCZNA i WYMIAROWANIE KONSTRUKCJI RAMY ANALIZA STATYCZNA i WYMIAROWANIE KONSTRUKCJI RAMY 11 10 9 8 7 6 5 4 1 1 WĘZŁY: Nr: X [m]: Y [m]: Nr: X [m]: Y [m]: 1,7 1,41 7 1,6,17,968 1,591 8 1,07,46,658 1,759 9 0,688,54 4,4 1,916 10 0,46,609 5,00,061

Bardziej szczegółowo

INTERAKCJA OBCIĄŻEŃ W UKŁADZIE DWÓCH SZYB O RÓŻNYCH SZTYWNOŚCIACH POŁĄCZONYCH SZCZELNĄ WARSTWĄ GAZOWĄ

INTERAKCJA OBCIĄŻEŃ W UKŁADZIE DWÓCH SZYB O RÓŻNYCH SZTYWNOŚCIACH POŁĄCZONYCH SZCZELNĄ WARSTWĄ GAZOWĄ Budownictwo 16 Zbigniew Respondek INTERAKCJA OBCIĄŻEŃ W UKŁADZIE DWÓCH SZYB O RÓŻNYCH SZTYWNOŚCIACH POŁĄCZONYCH SZCZELNĄ WARSTWĄ GAZOWĄ W elemencie złożonym z dwóch szklanych płyt połączonych szczelną

Bardziej szczegółowo

NUMERYCZNA SYMULACJA STOPNIOWEGO USZKADZANIA SIĘ LAMINATÓW KOMPOZYTOWYCH NUMERICAL SIMULATION OF PROGRESSIVE DAMAGE IN COMPOSITE LAMINATES

NUMERYCZNA SYMULACJA STOPNIOWEGO USZKADZANIA SIĘ LAMINATÓW KOMPOZYTOWYCH NUMERICAL SIMULATION OF PROGRESSIVE DAMAGE IN COMPOSITE LAMINATES JANUSZ GERMAN, ZBIGNIEW MIKULSKI NUMERYCZNA SYMULACJA STOPNIOWEGO USZKADZANIA SIĘ LAMINATÓW KOMPOZYTOWYCH NUMERICAL SIMULATION OF PROGRESSIVE DAMAGE IN COMPOSITE LAMINATES S t r e s z c z e n i e A b s

Bardziej szczegółowo

Jakobiany. Kinematykę we współrzędnych możemy potraktować jako operator przekształcający funkcje czasu

Jakobiany. Kinematykę we współrzędnych możemy potraktować jako operator przekształcający funkcje czasu Wstęp do Robotyki c W. Szynkiewicz, 29 1 Jakobiany Kinematykę we współrzędnych możemy potraktować jako operator przekształcający funkcje czasu ( t )z(t)=k(x(t)) Ponieważ funkcje w powyższym równaniu są

Bardziej szczegółowo

PARCIE GRUNTU. Przykłady obliczeniowe. Zadanie 1.

PARCIE GRUNTU. Przykłady obliczeniowe. Zadanie 1. MECHANIA GRUNTÓW ćwicznia, dr inż. Irnusz Dyka irunk studiów: Budownictwo Rok III, s. V Zadani. PARCIE GRUNTU Przykłady obliczniow Przdstawion zostały wyniki obliczń parcia czynngo i birngo (odporu) oraz

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne

Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne Modelowanie rzeczywistości- JAK? Modelowanie przez zjawisa przybliżone Modelowanie poprzez zjawisa uproszczone Modelowanie przez analogie Modelowanie matematyczne Przyłady modelowania Modelowanie przez

Bardziej szczegółowo

ANALIZA WARUNKÓW KONSOLIDACJI TORFÓW PRZECIĄŻONYCH WARSTWĄ POPIOŁÓW

ANALIZA WARUNKÓW KONSOLIDACJI TORFÓW PRZECIĄŻONYCH WARSTWĄ POPIOŁÓW Tomasz SZCZYGIELSKI Zygmunt MEYER ANALIZA WARUNKÓW KONSOLIDACJI TORFÓW PRZECIĄŻONYCH WARSTWĄ POPIOŁÓW. Wprowadzenie Celem pracy jest analiza możliwości wyorzystania ubocznych produtów spalania nazywanych

Bardziej szczegółowo

1 LWM. Defektoskopia ultradźwiękowa. Sprawozdanie powinno zawierać:

1 LWM. Defektoskopia ultradźwiękowa. Sprawozdanie powinno zawierać: L Defetosoia ultraźwięowa Srawozanie owinno zawierać:. Króti ois aaratury i metoy.. Rysune słua z zwymiarowanym ołożeniem wa. L Elastootya ynii baań elastootycznych Rzą izochromy m Siła na ońcu źwigni

Bardziej szczegółowo

Ćwiczenie nr 1: Wahadło fizyczne

Ćwiczenie nr 1: Wahadło fizyczne Wydział PRACOWNA FZYCZNA WFi AGH mię i nazwiso 1.. Temat: Ro Grupa Zespół Nr ćwiczenia Data wyonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 1: Wahadło fizyczne Cel

Bardziej szczegółowo

Projekt Metoda Elementów Skończonych. COMSOL Multiphysics 3.4

Projekt Metoda Elementów Skończonych. COMSOL Multiphysics 3.4 Projekt Metoda Elementów Skończonych w programie COMSOL Multiphysics 3.4 Wykonali: Dawid Trawiński Wojciech Sochalski Wydział: BMiZ Kierunek: MiBM Semestr: V Rok: 2015/2016 Prowadzący: dr hab. inż. Tomasz

Bardziej szczegółowo

Równanie Fresnela. napisał Michał Wierzbicki

Równanie Fresnela. napisał Michał Wierzbicki napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)

Bardziej szczegółowo

Temat ćwiczenia: POMIARY W OBWODACH ELEKTRYCZNYCH PRĄDU STAŁEGO. A Lp. U[V] I[mA] R 0 [ ] P 0 [mw] R 0 [ ] 1. U 0 AB= I Z =

Temat ćwiczenia: POMIARY W OBWODACH ELEKTRYCZNYCH PRĄDU STAŁEGO. A Lp. U[V] I[mA] R 0 [ ] P 0 [mw] R 0 [ ] 1. U 0 AB= I Z = Laboratorium Teorii Obwodów Temat ćwiczenia: LBOTOM MD POMY W OBWODCH LKTYCZNYCH PĄD STŁGO. Sprawdzenie twierdzenia o źródle zastępczym (tw. Thevenina) Dowolny obwód liniowy, lub część obwodu, jeśli wyróżnimy

Bardziej szczegółowo

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE ORAZ ŚREDNIE 1. Procenty i proporcje DEFINICJA 1. Jeden procent (1%) pewnej liczby a to setna część tej liczby, tórą oznacza się: 1% a, przy czym 1% a = 1 p a, zaś

Bardziej szczegółowo

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu

Bardziej szczegółowo

7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu. Wymiary:

7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu. Wymiary: 7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu Wymiary: B=1,2m L=4,42m H=0,4m Stan graniczny I Stan graniczny II Obciążenie fundamentu odporem gruntu OBCIĄŻENIA: 221,02 221,02 221,02

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE

WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE ĆWICZENIE 4 WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE Wprowadzenie Pręt umocowany na końcach pod wpływem obciążeniem ulega wygięciu. własnego ciężaru lub pod Rys. 4.1. W górnej warstwie pręta następuje

Bardziej szczegółowo

UZUPEŁNIENIA DO WYKŁADÓW A-C

UZUPEŁNIENIA DO WYKŁADÓW A-C UZUPEŁNIENIA DO WYKŁADÓW A-C Objaśnienia: 1. Uzupełnienia sładają się z dwóch części właściwych uzupełnień do treści wyładowych, zwyle zawierających wyprowadzenia i nietóre definicje oraz Zadań i problemów.

Bardziej szczegółowo

Ćwiczenie 5. Pomiary parametrów sygnałów napięciowych. Program ćwiczenia:

Ćwiczenie 5. Pomiary parametrów sygnałów napięciowych. Program ćwiczenia: Ćwiczenie 5 Pomiary parametrów sygnałów napięciowych Program ćwiczenia: 1. Pomiar parametrów sygnałów napięciowych o ształcie sinusoidalnym, prostoątnym i trójątnym: a) Pomiar wartości sutecznej, średniej

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Producji Laboratorium Inżynierii Jaości KWIWiJ, II-go st. Ćwiczenie nr 4 Temat: Komputerowo wspomagane SPC z wyorzystaniem

Bardziej szczegółowo

Zadania do rozdziału 5

Zadania do rozdziału 5 Zadania do rozdziału 5 Zad.5.1. Udowodnij, że stosując równię pochyłą o dającym się zmieniać ącie nachylenia α można wyznaczyć współczynni tarcia statycznego µ o. ozwiązanie: W czasie zsuwania się po równi

Bardziej szczegółowo

5. Indeksy materiałowe

5. Indeksy materiałowe 5. Indeksy materiałowe 5.1. Obciążenia i odkształcenia Na poprzednich zajęciach poznaliśmy różne możliwe typy obciążenia materiału. Na bieżących, skupimy się na zagadnieniu projektowania materiałów tak,

Bardziej szczegółowo

Sprawdzenie stanów granicznych użytkowalności.

Sprawdzenie stanów granicznych użytkowalności. MARCIN BRAŚ SGU Sprawzenie stanów granicznych użytkowalności. Wymiary belki: szerokość przekroju poprzecznego: b w := 35cm wysokość przekroju poprzecznego: h:= 70cm rozpiętość obliczeniowa przęsła: :=

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko

Bardziej szczegółowo

9.0. Wspornik podtrzymujący schody górne płytowe

9.0. Wspornik podtrzymujący schody górne płytowe 9.0. Wspornik podtrzymujący schody górne płytowe OBCIĄŻENIA: 55,00 55,00 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P(Tg): P2(Td): a[m]: b[m]: Grupa: A "" Zmienne γf=,0 Liniowe 0,0 55,00 55,00

Bardziej szczegółowo

Rys Wykres kosztów skrócenia pojedynczej czynności. k 2. Δk 2. k 1 pp. Δk 1 T M T B T A

Rys Wykres kosztów skrócenia pojedynczej czynności. k 2. Δk 2. k 1 pp. Δk 1 T M T B T A Ostatnim elementem przykładu jest określenie związku pomiędzy czasem trwania robót na planowanym obiekcie a kosztem jego wykonania. Związek ten określa wzrost kosztów wykonania realizacji całego przedsięwzięcia

Bardziej szczegółowo

6. ZWIĄZKI FIZYCZNE Wstęp

6. ZWIĄZKI FIZYCZNE Wstęp 6. ZWIĄZKI FIZYCZN 1 6. 6. ZWIĄZKI FIZYCZN 6.1. Wstęp Aby rozwiązać jakiekolwiek zadanie mechaniki ośrodka ciągłego musimy dysponować 15 niezależnymi równaniami, gdyż tyle mamy niewiadomych: trzy składowe

Bardziej szczegółowo

OCENA JAKOŚCI PROCESU LOGISTYCZNEGO PRZEDSIĘBIORSTWA PRZEMYSŁOWEGO METODĄ UOGÓLNIONEGO PARAMETRU CZĘŚĆ II

OCENA JAKOŚCI PROCESU LOGISTYCZNEGO PRZEDSIĘBIORSTWA PRZEMYSŁOWEGO METODĄ UOGÓLNIONEGO PARAMETRU CZĘŚĆ II B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 2 2004 Anna DOBROWOLSKA* Jan MIKUŚ* OCENA JAKOŚCI PROCESU LOGISTYCZNEGO PRZEDSIĘBIORSTWA PRZEMYSŁOWEGO METODĄ UOGÓLNIONEGO PARAMETRU CZĘŚĆ II Przedstawiono

Bardziej szczegółowo

Optymalne rozmieszczanie tłumików lepkosprężystych na ramie płaskiej. Maciej Dolny Piotr Cybulski

Optymalne rozmieszczanie tłumików lepkosprężystych na ramie płaskiej. Maciej Dolny Piotr Cybulski Optymaln rozmiszczani tłumików lpkosprężystych na rami płaskij Macij Dolny Piotr Cybulski Poznań 20 Spis trści. Wprowadzni 3.. Cl opracowania...3.2. Znaczni tłumików drgań.3 2. Omówini sposobu rozwiązania

Bardziej szczegółowo

METODA PROJEKTOWANIA REJONU ZMIANY KIERUNKU TRASY KOLEJOWEJ

METODA PROJEKTOWANIA REJONU ZMIANY KIERUNKU TRASY KOLEJOWEJ Problemy Kolejnictwa Zeszyt 5 97 Prof. dr hab. inż. Władysław Koc Politechnia Gdańsa METODA PROJEKTOWANIA REJONU ZMIANY KIERUNKU TRASY KOLEJOWEJ SPIS TREŚCI. Wprowadzenie. Ogólna ocena sytuacji geometrycznej

Bardziej szczegółowo

n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa

n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa Równanie Bessela Będziemy rozważać następujące równanie Bessela x y xy x ν )y 0 ) gdzie ν 0 jest pewnym parametrem Rozwiązania równania ) nazywamy funkcjami Bessela rzędu ν Sprawdzamy, że x 0 jest regularnym

Bardziej szczegółowo

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07) Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością

Bardziej szczegółowo

Wyznaczanie modułu Younga metodą strzałki ugięcia

Wyznaczanie modułu Younga metodą strzałki ugięcia Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych

Bardziej szczegółowo

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego Politechnia Łódza FTIMS Kierune: Informatya ro aademici: 2008/2009 sem. 2. Termin: 16 III 2009 Nr. ćwiczenia: 413 Temat ćwiczenia: Wyznaczanie długości fali świetlnej za pomocą spetrometru siatowego Nr.

Bardziej szczegółowo

Pręt nr 4 - Element żelbetowy wg PN-EN :2004

Pręt nr 4 - Element żelbetowy wg PN-EN :2004 Budynek wielorodzinny - Rama żelbetowa strona nr z 7 Pręt nr 4 - Element żelbetowy wg PN-EN 992--:2004 Informacje o elemencie Nazwa/Opis: element nr 4 (belka) - Brak opisu elementu. Węzły: 2 (x=4.000m,

Bardziej szczegółowo

f = 2 śr MODULACJE

f = 2 śr MODULACJE 5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania

Bardziej szczegółowo

Rodzaje obciążeń, odkształceń i naprężeń

Rodzaje obciążeń, odkształceń i naprężeń Rodzaje obciążeń, odkształceń i naprężeń 1. Podział obciążeń i odkształceń Oddziaływania na konstrukcję, w zależności od sposobu działania sił, mogą być statyczne lun dynamiczne. Obciążenia statyczne występują

Bardziej szczegółowo

Metoda Różnic Skończonych (MRS)

Metoda Różnic Skończonych (MRS) Metoda Różnic Skończonych (MRS) METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek () Równania różniczkowe zwyczajne

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyi i Informatyi Stosowanej Aademia Górniczo-Hutnicza Wyład 12 M. Przybycień (WFiIS AGH Metody Lagrange a i Hamiltona... Wyład 12

Bardziej szczegółowo

1. METODA PRZEMIESZCZEŃ

1. METODA PRZEMIESZCZEŃ .. METODA PRZEMIESZCZEŃ.. Obliczanie sił wewnętrznych od obciążenia zewnętrznego q = kn/m P= kn Rys... Schemat konstrukcji φ φ u Rys... Układ podstawowy metody przemieszczeń Do wyliczenia mamy niewiadome:

Bardziej szczegółowo

PROGRAMOWANIE KWADRATOWE

PROGRAMOWANIE KWADRATOWE PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej

Bardziej szczegółowo

1. RACHUNEK WEKTOROWY

1. RACHUNEK WEKTOROWY 1 RACHUNEK WEKTOROWY 1 Rozstrzygnąć, czy możliwe jest y wartość sumy dwóch wetorów yła równa długości ażdego z nich 2 Dane są wetory: a i 3 j 2 ; 4 j = + = Oliczyć: a+, a, oraz a 3 Jai ąt tworzą dwa jednaowe

Bardziej szczegółowo

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby

Bardziej szczegółowo

Elektroniczne systemy bezpieczeństwa mogą występować w trzech rodzajach struktur. Są to struktury typu: - skupionego, - rozproszonego, - mieszanego.

Elektroniczne systemy bezpieczeństwa mogą występować w trzech rodzajach struktur. Są to struktury typu: - skupionego, - rozproszonego, - mieszanego. A. Cl ćwicznia Clm ćwicznia jst zapoznani się z wskaźnikami nizawodnościowymi lktronicznych systmów bzpiczństwa oraz wykorzystanim ich do optymalizacji struktury nizawodnościowj systmu.. Część tortyczna

Bardziej szczegółowo

Transformaty. Kodowanie transformujace

Transformaty. Kodowanie transformujace Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut L-5, Wydział Inżynierii Lądowej,

Bardziej szczegółowo

OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO-SYMETRYCZNYCH

OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO-SYMETRYCZNYCH Politechnika Poznańska Wyział Buownictwa i InŜynierii Śroowiska Instytut onstrukcji Buowlanych Zakła echaniki Buowli Stuia Stacjonarne II Stopnia I rok Semestr II / OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOACH

Bardziej szczegółowo

2009 ZARZĄDZANIE. LUTY 2009

2009 ZARZĄDZANIE. LUTY 2009 Wybran zstawy gzaminacyjn kursu Matmatyka na Wydzial ZF Uniwrsyttu Ekonomiczngo w Wrocławiu w latach 009 06 Zstawy dotyczą trybu stacjonarngo Niktór zstawy zawirają kompltn rozwiązania Zakrs matriału w

Bardziej szczegółowo

Badanie i obliczanie kąta skręcenia wału maszynowego

Badanie i obliczanie kąta skręcenia wału maszynowego Zakład Podstaw Konstrukcji i Budowy Maszyn Instytut Podstaw Budowy Maszyn Wydział Samochodów i Maszyn Roboczych Politechnika Warszawska dr inż. Szymon Dowkontt Laboratorium Podstaw Konstrukcji Maszyn Instrukcja

Bardziej szczegółowo

Materiały dydaktyczne. Matematyka. Semestr III. Wykłady

Materiały dydaktyczne. Matematyka. Semestr III. Wykłady Materiały dydatyczne Matematya Semestr III Wyłady Aademia Morsa w Szczecinie ul. Wały Chrobrego - 70-500 Szczecin WIII RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE PIERWSZEGO RZĘDU. Pojęcia wstępne. Równania różniczowe

Bardziej szczegółowo

ń ę ń ę ń ę ń ę ę ę ę ę ź ń ź Ś ę Ł ń ę ę ń ę ń ę ę ę ę ę ę ź ę ę Ż ę ŚĆ ę Ż ń ń ę ń ę ę ę ę ę ź ę ę Ś Ś Ś Ś ź ę ń ę ę Ź ń Ś Ś ę ń ę ę ę ę ę ź ń ŚĆ Ś ń ń ń Ą ń ę ę ŚĆ ę Ż ę ń ę ę ę ę ę ź ń Ś Ś ź Ś Ł ę

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

.pl KSIĄŻKA ZNAKU. Portal Kulturalny Warmii i Mazur. www.eświatowid.pl. Przygotował: Krzysztof Prochera. Zatwierdził: Antoni Czyżyk

.pl KSIĄŻKA ZNAKU. Portal Kulturalny Warmii i Mazur. www.eświatowid.pl. Przygotował: Krzysztof Prochera. Zatwierdził: Antoni Czyżyk Portalu Kulturalngo Warmii i Mazur www.światowid Przygotował: Krzysztof Prochra... Zatwirdził: Antoni Czyżyk... Elbląg, dn. 4.12.2014 Płna forma nazwy prawnj: www.światowid Formy płnj nazwy prawnj nalży

Bardziej szczegółowo

ENERGETYCZNE KRYTERIUM STANÓW GRANICZNYCH DLA MATERIAŁÓW KOMÓRKOWYCH

ENERGETYCZNE KRYTERIUM STANÓW GRANICZNYCH DLA MATERIAŁÓW KOMÓRKOWYCH Strona z 9 ENERGETYCZNE KRYTERUM STANÓW GRANCZNYC DA MATERAŁÓW KOMÓRKOWYC Piotr Kordzikowki Małgorzata Janu-Michalka Ryzard B. Pęchrki Katdra Wytrzymałości Matriałów ntytut Mchaniki Budowli Wydział nżynirii

Bardziej szczegółowo

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin

Bardziej szczegółowo

SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie

SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie DEFINICJE OGÓLNE I WIELKOŚCI CHARAKTERYSTYCZNE WENTYLATORA WENTYLATOR maszyna wirnikowa, która otrzymuje energię mechaniczną za pomocą jednego wirnika lub kilku wirników zaopatrzonych w łopatki, użytkuje

Bardziej szczegółowo

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY.

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. ĆWICZENIE 5 SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. Wprowadzenie Odkształcenie, którego doznaje ciało pod działaniem

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Rozciąganie/ ściskanie prętów prostych Naprężenia i odkształcenia, statyczna próba rozciągania i ściskania, właściwości mechaniczne, projektowanie elementów obciążonych osiowo.

Bardziej szczegółowo

= 2 42EI 41EI EI 2 P=15 M=10 M=10 3EI. q=5. Pret s-p. Pret s-p. Pret s-p. Pret s-p. Pret s-l.

= 2 42EI 41EI EI 2 P=15 M=10 M=10 3EI. q=5. Pret s-p. Pret s-p. Pret s-p. Pret s-p. Pret s-l. Dane wyjściowe do obliczeń kf=0 ks=20 3 EI 2 2EI EI P=5 M=0 3EI M=0 q=5 EI 5 6 8 2 Dobór układu podstawowego metody przemieszczeń n = 2 3 Pret s-p 2 Pret s-p Pret s-p Pret s-p Pret s-l Pret p-s 5 6 Wyznaczenie

Bardziej szczegółowo

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g. zakres rozszerzony

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g. zakres rozszerzony WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g zares rozszerzony 1. Wielomiany bardzo zna pojęcie jednomianu jednej zmiennej; potrafi wsazać jednomiany podobne; potrafi

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIŁ INŻYNIERII MECHNICZNEJ INSTYTUT EKSPLOTCJI MSZYN I TRNSPORTU ZKŁD STEROWNI ELEKTROTECHNIK I ELEKTRONIK ĆWICZENIE: E2 POMIRY PRĄDÓW I NPIĘĆ W

Bardziej szczegółowo

Q strumień objętości, A przekrój całkowity, Przedstawiona zależność, zwana prawem filtracji, została podana przez Darcy ego w postaci równania:

Q strumień objętości, A przekrój całkowity, Przedstawiona zależność, zwana prawem filtracji, została podana przez Darcy ego w postaci równania: Filtracja to zjawiso przepływu płynu przez ośrode porowaty (np. wody przez grunt). W więszości przypadów przepływ odbywa się ruchem laminarnym, wyjątiem może być przepływ przez połady grubego żwiru lub

Bardziej szczegółowo