Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych"

Transkrypt

1 Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 3 Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych Daniel Sworek gr. KB2 Rok akademicki 10/11 Semestr 2, II

2 SPIS TREŚCI: 1. Dane do ćwiczenia Cel ćwiczenia Obliczenie sił wewnętrznych w stanie błonowym Powłoka stożkowa Powłoka walcowa Obliczenie współczynników podatności oraz wartości sił nadliczbowych Powłoka stożkowa powłoka walcowa Powłoka walcowa ława pierścieniowa Obliczenie całkowitych sił wewnętrznych stan zgięciowy Powłoka stożkowa Powłoka walcowa Porównanie wykresów sił wewnętrznych w stanie błonowym i zgięciowym Grupa: KB2 Daniel Sworek strona - 2 -

3 1. Dane do ćwiczenia Wysokość powłoki stożkowej [m] f= Wysokość ściany walcowej [m] h= 5,50 Promień ściany walcowej [m] r= 8,00 Grubość powłoki stożkowej [m] t 1= 0,105 Grubość ściany walcowej [m] t 2= Szerokość ławy pierścieniowej [m] b= Wysokość ławy pierścieniowej [m] h b= 0,80 Ciężar właściwy cieczy [kn/m 3 ] γ c= 11,0 Ciężar właściwy betonu [kn/m 3 ] γ= 25,0 Moduł Young'a [GPa] E= 35 Współczynnik Poissona [-] ν= 0,17 Sztywność podłoża [kn/m 3 ] C= Obciążenie śniegiem [kn/m 2 ] p= 0,80 Obciążenie ciężarem własnym [kn/m 2 ] g=γ t 1= 2,63 Obciążenie parciem cieczy [kn/m 2 ] p c=γ c h= 60,5 Schemat układu wraz z danymi Grupa: KB2 Daniel Sworek strona - 3 -

4 2. Cel ćwiczenia Dla układu przedstawionego powyżej: 1) Obliczyć siły wewnętrzne w stanie błonowym: - siły normalne południkowe i równoleżnikowe w powłoce stożkowej od obciążenia śniegiem p i ciężarem własnym g (ciężar właściwy γ), - siły normalne obwodowe w powłoce walcowej od obciążenia hydrostatycznego przy maksymalnym napełnieniu cieczą o ciężarze właściwym γ c ; 2) Obliczyć współczynniki podatności oraz siły nadliczbowe w połączeniach: - powłoka stożkowa powłoka walcowa, - powłoka walcowa ława fundamentowa na podłożu podatnym o sztywności C; 3) Obliczyć całkowite siły wewnętrzne (w stanie błonowym i zgięciowym): - siły normalne południkowe i równoleżnikowe oraz momenty zginające południkowe w powłoce stożkowej, - siły normalne obwodowe oraz momenty zginające południkowe w powłoce walcowej; 4) Sporządzić porównawcze wykresy sił wewnętrznych obliczonych w punktach 1) i 3). 3. Obliczenie sił wewnętrznych w stanie błonowym 3.1. Powłoka stożkowa Długość tworzącej powłoki stożkowej: Sztywność powłoki stożkowej: Współczynnik zanikania: = = + =8,0 + =8, , = ,17 =3476,89 = 8,46 0, tan = 3 1 0,17 tan =1,23 18,97 Siła normalna południkowa: = 2 sin 2,63 2 sin cos= 2 sin 18,97 0,80 2 sin 18,97 cos18,97= 16,024 Siła normalna równoleżnikowa: = cot cot cos= 2,63 cot 18,97 0,80 cot 18,97 cos18,97= 28,661 Grupa: KB2 Daniel Sworek strona - 4 -

5 SIŁY W STANIE BŁONOWYM od obciążenia ciężarem własnym oraz śniegiem x [m] n φ0 [kn/m] n ϑ0 [kn/m] -4,05-7,15-8,10-14,31-12,15-21,46-16,21-28,62-20,26-35,77-24,31-42,93-28, ,41-57,24-36,46-64,39-40,51-71,55-44,57-78,70 Z uwagi na symetrię powłoki stożkowej, wykresy wykonano dla jej połowy. Siła południkowa w stanie błonowym[kn/m] -45,0-44, ,0-36,05-32, ,04-25,0-24, ,0-16,02-12, ,01-5,0-4, ,82 Siła równoleżnikowa w stanie błonowym[kn/m] ,65-64,49-57,32-50,16-42,99-35,83-28, ,33-7,17 Grupa: KB2 Daniel Sworek strona - 5 -

6 3.2. Powłoka walcowa Sztywność powłoki walcowej: Współczynnik zanikania: Siła normalna obwodowa: = = ,17 =46929,17 = = 1 8, ,17 =0,92 = =11,0 8,0 =88,0 SIŁA W STANIE BŁONOWYM od parcia hydrostatycznego x' [m] n φ0 [kn/m] 44,00 88, , ,00 264,00 3,50 308,00 4, ,50 396,00 5, ,50 484,00 Z uwagi na symetrię powłoki walcowej, wykresy wykonano dla jej połowy. Rzędna wysokości powłoki walcowej 3,00 3,50 4,00 4,50 5,00 5,50 Siła obwodowa w stanie błonowym[kn/m] 5 44,00 88, , , , , ,00 50 Grupa: KB2 Daniel Sworek strona - 6 -

7 4. Obliczenie współczynników podatności oraz wartości sił nadliczbowych 4.1. Powłoka stożkowa powłoka walcowa Schemat podstawowy: Rozpór stożka: = cos= 44,07 cos18,97=41,68 / Równania kanoniczne: =0 =0 + + =0 + + =0 Gdzie współczynniki podatności składają się z następujących części: = =0 Grupa: KB2 Daniel Sworek strona - 7 -

8 Wyznaczenie współczynników podatności: a) Dla dolnej krawędzi powłoki stożkowej: = 2 cos 2 8,46 = 1, ,105 cos 18,97=2, = = sin= 1, ,89 sin18,97=7, = = 1, ,89 =3, = cot + 2 cos = = cot18, ,105 78,82 0,17 44, ,68 8,46 + 1, ,105 cos 18,97 =1, = cot sin= 2 cot 18,97 = ,105 28,661 0,17 16, ,17 78,82+44, ,68 1, ,89 sin18,97=2, b) Dla górnej krawędzi powłoki walcowej: 1 = 2 = ,17 0,92 =1, = = 1 2 = 1 = 1, ,17 0,92 = 1 = ,17 0,92 =2, = = = 8,0 11, = 8, Podstawiając wyliczone współczynniki do równań kanonicznych otrzymamy: 1, , , , , =0 1, , , , , , =0 Po zsumowaniu poszczególnych elementów równania kanoniczne przyjmują postać: 4, , , =0 5, , , =0 Rozwiązanie układu równań kanonicznych ma postać (wartości sił brzegowych): = 18,38 / = 4,57 / Grupa: KB2 Daniel Sworek strona - 8 -

9 Ćwiczenie projektowe 3 Obliczanie sił wewnętrznych w powłokach zbiorników osiowo-symetrycznych 4.2. Powłoka walcowa ława pierścieniowa Schemat podstawowy: Moment bezwładności przekroju ławy względem osi x : = h 12 = 0,80 =64 12 Moment bezwładności podstawy ławy względem osi 0 na jednostkę długości: Równania kanoniczne: = 1,0 12 = 1,0 12 =0,28125 / =0 =0 + + =0 + + =0 Gdzie współczynniki podatności składają się z następujących części: + Ł + + Ł + + Ł =0 + Ł + Ł Ł =0 Wyznaczenie współczynników podatności: a) Dla górnej krawędzi ławy pierścieniowej: Ł = Ł Ł = = Ł = h +4 = h +4 = +4 = 8,0 0, , , =3, ,0 0, , , =4, , , , =5, Ł Ł = = Grupa: KB2 Daniel Sworek strona - 9 -

10 b) Dla dolnej krawędzi powłoki walcowej: 1 = 2 = ,17 0,92 =1, = = 1 2 = 1 = 1, ,17 0,92 = 1 = ,17 0,92 =2, = h = 8,0 5,50 11, = 4, = 8,0 11,0 = =8, Podstawiając wyliczone współczynniki do równań kanonicznych otrzymamy: 1, , , , , =0 1, , , , , =0 Po zsumowaniu poszczególnych elementów równania kanoniczne przyjmują postać: 1, , , =0 8, , , =0 Rozwiązanie układu równań kanonicznych ma postać (wartości sił brzegowych): =29,34 / =5,90 / 5. Obliczenie całkowitych sił wewnętrznych stan zgięciowy 5.1. Powłoka stożkowa Siła normalna południkowa: = + + = 2 cos cos+ 4 = 2 Siła normalna równoleżnikowa: = + + = 2 Moment zginający południkowy: = + Gdzie: cot sin cos = 2 2 sin cos+ 4 = sin sin = 2 sin+ 4 = += 16,44+41,68=25,23 / = /sin= /sin18,97=8,46 3,076 =/=8,46 3,076/=6,88 2,5 = cos=8,0 8,46 3,076 cos18,97=3,076 cos18,97=2,91 Grupa: KB2 Daniel Sworek strona

11 SIŁY W STANIE ZGIĘCIOWYM: n φ, n ϑ, M φ x [m] S [m] r 0 [m] η=s/λ [-] Siła południkowa [kn/m] Siła równoleżnikowa [kn/m] Mom. południkowy [knm/m] n φ0 n φp' n φm1 n φ n ϑ0 n ϑp' n ϑm1 n ϑ M φp' M φm1 M φ 8,46 6, ,69 0,73 6,25-4, ,01-7, , ,92 1,45 5,63-8,10 0, ,04-14,31 0,160-0,138-14, ,15 2,18 5,00-12,15 0,188-0,141-12,11-21,46 0,161-0,343-21, ,38 2,91 4,38-16,21 0,173-0,260-16,29-28,62-0,467-0,422-29,51-0, ,62 3,64 3,75-20,26-0,131-0,294-20,68-35,77-2,707 0,398-38,08-0,14 0,16 2 3,85 4,36 3,13-24, ,30-42,93-7,399 3,656-46,67 1 0,21 0,22 3,08 5,09-28,36-2,580 1,072-29, ,928 10,979-52,03 0,49 8 0,58 2,31 5,82 1,88-32,41-4,319 3,196-33,53-57,24-10, ,57 1,47-0,48 0,99 1,54 6,54-36,46-4,083 5,942-34,60-64,39 22,767 22,345-19,28 2,74-0,99 0,77 7,27 0,63-40,51 2,702 6,850-30,96-71,55 121,769-16,425 33,80 3,16-3,61-0,45 8,00-44,57 22, ,11-78,70 308, ,98 1-4,83-4,82 Wykresy sił wewnętrznych od sił nadliczbowych P 1 oraz M 1 : Siła południkowa od sił nadliczbowych P1, M1 [kn/m] -4,0-2,0 2,0 4, ,42-0,99-1,51-1,12 1,86 6,0 8,0 1 9,55 12,0 14,0 16,0 18,0 2 22,0 22,46 24,0 Siła równoleżnikowa od sił nadliczbowych P1, M ,18-0,89-2,31-3,74-1,95 10, ,11 105, ,68 18 Grupa: KB2 Daniel Sworek strona

12 Wykresy sił wewnętrznych w stanie zgięciowym (stan błonowy + stan od sił nadliczbowych P 1 oraz M 1 ): Siła południkowa w stanie zgięciowym [kn/m] -38,0-36,0-34,0-32, ,0-26,0-24,0-25,30-33,53-29,87-34,60-30,96-22, ,0-16,0-14,0-12,0-1 -8,0-6,0-8,04-12,11-16,29-20,68-22,11-4,0-4,01-2,0 2 2,0 Siła równoleżnikowa w stanie zgięciowym ,13-14,29-21,65-29,51-38,08-46,67-46, , ,28 33, ,98 Moment zginający południkowy [knm/m] -5,0-4,5-4,62-4,0-3,5-3,0-2,5-2,0-1,5-1,0-0,5-0,48 0,5 1, ,21 0,54 0,93 0,91 1,5 Grupa: KB2 Daniel Sworek strona

13 5.2. Powłoka walcowa Siła normalna obwodowa: = = 6 1 cos = 6 1 cos = 6 1 cos sin Moment zginający południkowy: = = sin = cos +sin Gdzie: = 6 1 cos sin = sin = cos+sin = 18,38 / = 4,57 / =29,34 / =5,90 / SIŁY W STANIE ZGIĘCIOWYM: n φ, M x x' x=h-x' n φ0 n φp1 n φp2 n φm1 n φm2 n φ M xp1 M xp2 M xm1 M xm2 M x [m] [m] [kn/m] [knm/m] 5,50 271,67-0,97-63,14 0,65 208,20 0 0,184-4, ,46 5,00 44,00 153,24 0,40-17,88 0,72 180,47 5,587 0,312-3, ,93 4,50 88,00 65,01 3,58 4,89 0,41 161,89 6,302 0,422-2,571-0,127 4,03 4, ,51 9,16 12,62-0,65 165,64 4,892 0,415-1,350-0,202 3,75 3,50 176,00-11,70 17,02 12,29-2,87 190,74 3,016 0, ,38 3, ,17 25,30 8,86-6,53 229,46 1,461-0, ,211 3,00 264,00-15,85 29,00 5,11-11,31 270,96 0,450-2,332 0, ,68 3,50 308,00-10,67 18,68-15,69 302, ,815 0,198 0,641-4,05 4, ,74-19,96 0,51-16,10 310,70-0,260-7,808 0,158 1,723-6,19 4,50 396,00-2,24-103,77-0,32-6,24 283,42-0, ,100 3,282-6,94 5, ,59-0,56 22,83 217,42-0,195-8, ,986-4,08 5,50 484,00 0,61-433,63-0,51 80,59 131,06-0, ,902 5,80 Grupa: KB2 Daniel Sworek strona

14 Wykresy dla siły normalnej obwodowej: Rzędna wysokości powłoki walcowej 3,00 3,50 4,00 4,50 5,00 5,50-2 Siła obwodowa od sił nadliczbowych P1 i M1 [kn/m] 2 0,59-9,31-10,74-8,41-5,23-2,56-0,81 0, , , , ,53 22 Rzędna wysokości powłoki walcowej ,04 Siła obwodowa od sił nadliczbowych P2 i M2 [kn/m] , , ,32 1,12 3,98 8,51 14,15 18,77 17,69 2, ,00 3,50 4,00 4,50 5,00 5,50 Rzędna wysokości powłoki walcowej 3,00 3,50 4,00 4,50 5,00 5,50 Siła obwodowa w stanie zgięciowym [kn/m] , ,20 180,47 161,89 165,64 190,74 229,46 217, ,96 302,57 310,70 283,42 32 Grupa: KB2 Daniel Sworek strona

15 Wykresy dla momentu zginającego południkowego: Moment południkowy od sił nadliczbowych P1 i M1 [knm/m] Rzędna wysokości powłoki walcowej -5,0-4,5-4,62-4,0-3,5-3,0-2,5-2,0-1,5-1,0-0,5 0,62 0,13-0,10-0,16-0,15-0,10 0,5 1,0 1,5 2,0 2,5 3,0 3,5 1,68 3,73 3,54 2,51 1,43 4,0 3,00 3,50 4,00 4,50 5,00 5,50 Moment południkowy od sił nadliczbowych P2 i M2 [knm/m] Rzędna wysokości powłoki walcowej 3,00 3,50 4,00 4,50 5,00 5,50-7,0-6,0-5,0-6,09-6,78-4,0-3,0-4,17-3,93-2,0-2,29-1,0 1,0 0,16 0,30 0,21-0,14-0,93 2,0 3,0 4,0 5,0 5,90 6,0 Rzędna wysokości powłoki walcowej 3,00 3,50 4,00 4,50 5,00 5,50-7,0 Moment południkowy w stanie zgięciowym [knm/m] -6,0-5,0-6,19-6,94-4,0-4,46 1,93-4,05-4,08-3,0-2,0-1,0-1,68 1,0 2,0 3,0 2,38 4,0 5,0 4,03 3,75 5,80 6,0 Grupa: KB2 Daniel Sworek strona

16 6. Porównanie wykresów sił wewnętrznych w stanie błonowym i zgięciowym -46,0-44,0-42,0 Siła południkowa [kn/m] - porównanie wyników -4-38,0-36,0-34,0-32, ,0-26,0-24,0-22,0 Siła południkowa w stanie zgięciowym -2-18,0-16,0-14,0-12,0-1 -8,0-6,0-4,0-2,0 2,0 Siła południkowa w stanie błonowym -8-6 Siła równoleżnikowa- porównanie wyników Siła równoleżnikowa w stanie zgięciowym Siła równoleżnikowa w stanie błonowym 18 Siła obwodowa [knm/m]- porównanie wyników Rzędna wysokości powłoki walcowej 3,00 3,50 4,00 4,50 5,00 5, Siła obwodowa w stanie zgięciowym Siła obwodowa w stanie błonowym Grupa: KB2 Daniel Sworek strona

OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH

OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH Sporządził: Bartosz Pregłowski Grupa : II Rok akadem: 2004/2005 OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH

Bardziej szczegółowo

Konstrukcje betonowe Wykład, cz. II

Konstrukcje betonowe Wykład, cz. II Konstrukcje betonowe Wykład, cz. II Dr inż. Jacek Dyczkowski Studia stacjonarne, KB, II stopień, rok I, semestr I 1 K. Kopuły Rys. K-1 [5] 2 Obciążenia i siły od ciężaru własnego kopuły, pokazanej na rys.

Bardziej szczegółowo

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI Katedra Mechaniki Konstrukcji Wydział Budownictwa i Inżynierii Środowiska Politechniki Białostockiej... (imię i nazwisko)... (grupa, semestr, rok akademicki) ĆWICZENIE PROJEKTOWE NR Z MECHANIKI BUDOWLI

Bardziej szczegółowo

PROJEKT NR 1 METODA PRZEMIESZCZEŃ

PROJEKT NR 1 METODA PRZEMIESZCZEŃ POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr

Bardziej szczegółowo

Chłodnie kominowe CHŁODNIE KOMINOWE

Chłodnie kominowe CHŁODNIE KOMINOWE Chłodnie kominowe CHŁODNIE KOMINOWE 1. WSTĘP... 2 2. KLASYFIKACJA I WYBÓR TYPU CHŁODNI... 4 3. OBCIĄŻENIA CHŁODNI KOMINOWYCH... 5 5. SŁUPY SKOŚNE... 5 6. FUNDAMENT PIERŚCIENIOWY... 7 KONSTRUKCJA... 8 1.

Bardziej szczegółowo

Projekt nr 4. Dynamika ujęcie klasyczne

Projekt nr 4. Dynamika ujęcie klasyczne Projekt nr 4 Dynamika POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 4 Dynamika ujęcie klasyczne Konrad Kaczmarek

Bardziej szczegółowo

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%: Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny

Bardziej szczegółowo

Przykład 4.2. Sprawdzenie naprężeń normalnych

Przykład 4.2. Sprawdzenie naprężeń normalnych Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m

Bardziej szczegółowo

Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeo dobieram wstępne przekroje prętów.

Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeo dobieram wstępne przekroje prętów. 2kN/m -20 C D 5kN 0,006m A B 0,004m +0 +20 3 0,005rad E 4 2 4 [m] Układ prętów ma dwie tarcze i osiem reakcji w podporach. Stopieo statycznej niewyznaczalności SSN= 2, ponieważ, przy dwóch tarczach powinno

Bardziej szczegółowo

7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu. Wymiary:

7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu. Wymiary: 7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu Wymiary: B=1,2m L=4,42m H=0,4m Stan graniczny I Stan graniczny II Obciążenie fundamentu odporem gruntu OBCIĄŻENIA: 221,02 221,02 221,02

Bardziej szczegółowo

Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1

Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1 Część 6. ZADANIA - POWTÓRKA 6. 6. ZADANIA - POWTÓRKA Zadanie Wykorzystując metodę przemieszczeń znaleźć wykres momentów zginających dla ramy z rys. 6.. q = const. P [m] Rys. 6.. Rama statycznie niewyznaczalna

Bardziej szczegółowo

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1 1.. 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1.1. Wstęp echanika budowli stanowi dział mechaniki technicznej zajmującej się statyką, dynamiką,

Bardziej szczegółowo

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania Przykład. Wyznaczyć linię ugięcia osi belki z uwzględnieniem wpływu ściskania. Przedstawić wykresy sił przekrojowych, wyznaczyć reakcje podpór oraz ekstremalne naprężenia normalne w belce. Obliczenia wykonać

Bardziej szczegółowo

Pręt nr 1 - Element żelbetowy wg. EN :2004

Pręt nr 1 - Element żelbetowy wg. EN :2004 Pręt nr 1 - Element żelbetowy wg. EN 1992-1-1:2004 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x800

Bardziej szczegółowo

KOMINY MUROWANE. Przekroje trzonu wymiaruje się na stan graniczny użytkowania. Sprawdzenie należy wykonać:

KOMINY MUROWANE. Przekroje trzonu wymiaruje się na stan graniczny użytkowania. Sprawdzenie należy wykonać: KOMINY WYMIAROWANIE KOMINY MUROWANE Przekroje trzonu wymiaruje się na stan graniczny użytkowania. Sprawdzenie należy wykonać: w stadium realizacji; w stadium eksploatacji. KOMINY MUROWANE Obciążenia: Sprawdzenie

Bardziej szczegółowo

6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH

6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH Część 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6. 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6.. Wyznaczanie przemieszczeń z zastosowaniem równań pracy wirtualnej w układach prętowych W metodzie pracy

Bardziej szczegółowo

Zbrojenie konstrukcyjne strzemionami dwuciętymi 6 co 400 mm na całej długości przęsła

Zbrojenie konstrukcyjne strzemionami dwuciętymi 6 co 400 mm na całej długości przęsła Zginanie: (przekrój c-c) Moment podporowy obliczeniowy M Sd = (-)130.71 knm Zbrojenie potrzebne górne s1 = 4.90 cm 2. Przyjęto 3 16 o s = 6.03 cm 2 ( = 0.36%) Warunek nośności na zginanie: M Sd = (-)130.71

Bardziej szczegółowo

Obliczanie układów statycznie niewyznaczalnych metodą sił.

Obliczanie układów statycznie niewyznaczalnych metodą sił. POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt wykonał: Krzysztof Wójtowicz Konsultacje: dr inż. Przemysław Litewka Obliczanie układów statycznie niewyznaczalnych

Bardziej szczegółowo

Wyboczenie ściskanego pręta

Wyboczenie ściskanego pręta Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia

Bardziej szczegółowo

METODA SIŁ KRATOWNICA

METODA SIŁ KRATOWNICA Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..

Bardziej szczegółowo

10.0. Schody górne, wspornikowe.

10.0. Schody górne, wspornikowe. 10.0. Schody górne, wspornikowe. OBCIĄŻENIA: Grupa: A "obc. stałe - pł. spocznik" Stałe γf= 1,0/0,90 Q k = 0,70 kn/m *1,5m=1,05 kn/m. Q o1 = 0,84 kn/m *1,5m=1,6 kn/m, γ f1 = 1,0, Q o = 0,63 kn/m *1,5m=0,95

Bardziej szczegółowo

Pomiar siły parcie na powierzchnie płaską

Pomiar siły parcie na powierzchnie płaską Pomiar siły parcie na powierzchnie płaską Wydawać by się mogło, że pomiar wartości parcia na powierzchnie płaską jest technicznie trudne. Tak jest jeżeli wyobrazimy sobie pomiar na ściankę boczną naczynia

Bardziej szczegółowo

Pręt nr 1 - Element żelbetowy wg. PN-B-03264

Pręt nr 1 - Element żelbetowy wg. PN-B-03264 Pręt nr 1 - Element żelbetowy wg. PN-B-03264 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x900 (Beton

Bardziej szczegółowo

ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI

ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Łukasz Faściszewski, gr. KBI2, sem. 2, Nr albumu: 75 201; rok akademicki 2010/11. ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Stateczność ram wersja komputerowa 1. Schemat statyczny ramy i dane materiałowe

Bardziej szczegółowo

Raport obliczeń ścianki szczelnej

Raport obliczeń ścianki szczelnej Wrocław, dn.: 5.4.23 Raport obliczeń ścianki szczelnej Zadanie: "Przykład obliczeniowy z książki akademickiej "Fundamentowanie - O.Puła, Cz. Rybak, W.Sarniak". Profil geologiczny. Piasek pylasty - Piasek

Bardziej szczegółowo

15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin

15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze w

Bardziej szczegółowo

Liczba godzin Liczba tygodni w tygodniu w semestrze

Liczba godzin Liczba tygodni w tygodniu w semestrze 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze

Bardziej szczegółowo

Mechanika i Budowa Maszyn

Mechanika i Budowa Maszyn Mechanika i Budowa Maszyn Materiały pomocnicze do ćwiczeń Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Andrzej J. Zmysłowski Andrzej J. Zmysłowski Wyznaczanie sił wewnętrznych w belkach

Bardziej szczegółowo

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli

Bardziej szczegółowo

WRAŻLIWOŚĆ POWŁOKI CYLINDRYCZNEJ NA ZMIANĘ GRUBOŚCI

WRAŻLIWOŚĆ POWŁOKI CYLINDRYCZNEJ NA ZMIANĘ GRUBOŚCI Budownictwo 16 Halina Kubiak, Maksym Grzywiński WRAŻLIWOŚĆ POWŁOKI CYLINDRYCZNEJ NA ZMIANĘ GRUBOŚCI Wstęp Zadaniem analizy wrażliwości konstrukcji jest opisanie zależności pomiędzy odpowiedzią determinowaną

Bardziej szczegółowo

OBLICZENIA STATYCZNO WYTRZYMAŁOŚCIOWE ( wyciąg z obliczeń stron... )

OBLICZENIA STATYCZNO WYTRZYMAŁOŚCIOWE ( wyciąg z obliczeń stron... ) PROJEKT BUDOWLANY PIERWSZEGO ETAPU REALIZACJI ODCINKA ZACHODNIEGO II LINII METRA W WARSZAWIE TUNEL SZLAKOWY D07 TOM II PROJEKT ARCHITEKTONICZNO-BUDOWLANY TOM II/3 KONSTRUKCJA WENTYLATORNI V07 Z POMPOWNIĄ

Bardziej szczegółowo

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 1 Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Siła skupiona Mechanika teoretyczna Wykłady nr 5 Obliczanie sił wewnętrznych w belkach przykłady 1 2 Moment skupiony Obciążenie ciągłe równomierne 3 4 Obciążenie ciągłe liniowo zmienne Obciążenie ciągłe

Bardziej szczegółowo

1. METODA PRZEMIESZCZEŃ

1. METODA PRZEMIESZCZEŃ .. METODA PRZEMIESZCZEŃ.. Obliczanie sił wewnętrznych od obciążenia zewnętrznego q = kn/m P= kn Rys... Schemat konstrukcji φ φ u Rys... Układ podstawowy metody przemieszczeń Do wyliczenia mamy niewiadome:

Bardziej szczegółowo

Schöck Isokorb typu K-HV, K-BH, K-WO, K-WU

Schöck Isokorb typu K-HV, K-BH, K-WO, K-WU Schöck Isokorb typu,,, Schöck Isokorb typu Spis treści Strona Połączenia dla balkonu obniżonego względem stropu 72 Połączenia dla balkonu podwyższonego względem stropu/wskazówki montażowe 73 Połączenia

Bardziej szczegółowo

Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3

Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3 Z1/7. NLIZ RM PŁSKIH ZNI 3 1 Z1/7. NLIZ RM PŁSKIH ZNI 3 Z1/7.1 Zadanie 3 Narysować wykresy sił przekrojowych w ramie wspornikowej przedstawionej na rysunku Z1/7.1. Następnie sprawdzić równowagę sił przekrojowych

Bardziej szczegółowo

ZBIORNIKI CYLINDRYCZNE POZIOME

ZBIORNIKI CYLINDRYCZNE POZIOME ZBIORNIKI CYLINDRYCZNE POZIOME Zastosowanie: przemysł chemiczny, energetyczny, spożywczy i rolnictwo. Wielkość: pojemność 2 100m 3, średnica: 1.0 3.0 m, (ograniczeniem wymiarów jest skrajnia drogowa zbiorniki

Bardziej szczegółowo

1. Obliczenia sił wewnętrznych w słupach (obliczenia wykonane zostały uproszczoną metodą ognisk)

1. Obliczenia sił wewnętrznych w słupach (obliczenia wykonane zostały uproszczoną metodą ognisk) Zaprojektować słup ramy hali o wymiarach i obciążeniach jak na rysunku. DANE DO ZADANIA: Rodzaj stali S235 tablica 3.1 PN-EN 1993-1-1 Rozstaw podłużny słupów 7,5 [m] Obciążenia zmienne: Śnieg 0,8 [kn/m

Bardziej szczegółowo

Ćwiczenie nr 3. Obliczanie układów statycznie niewyznaczalnych metodą sił.

Ćwiczenie nr 3. Obliczanie układów statycznie niewyznaczalnych metodą sił. Ewa Kloczkowska, KBI 1, rok akademicki 006/007 Ćwiczenie nr 3 Obliczanie układów statycznie niewyznaczalnych metodą sił. Dla układu prętowego przedstawionego na rysunku naleŝy: 1) Obliczyć i wykonać wykresy

Bardziej szczegółowo

Pręt nr 4 - Element żelbetowy wg PN-EN :2004

Pręt nr 4 - Element żelbetowy wg PN-EN :2004 Budynek wielorodzinny - Rama żelbetowa strona nr z 7 Pręt nr 4 - Element żelbetowy wg PN-EN 992--:2004 Informacje o elemencie Nazwa/Opis: element nr 4 (belka) - Brak opisu elementu. Węzły: 2 (x=4.000m,

Bardziej szczegółowo

Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995

Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014)

Bardziej szczegółowo

OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA

OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA POLECHNA POZNAŃSA WYDZAŁ BUDOWNCWA NŻYNER ŚRODOWSA NSYU ONSRUCJ BUDOWLANYCH ZAŁAD ECHAN BUDOWL OBLCZANE RA EODĄ PRZEESZCZEŃ WERSJA OPUEROWA Ćwiczenie projektowe nr z echani budowli Wykonał: aciej BYCZYŃS

Bardziej szczegółowo

0,195 kn/m 2. 0,1404 kn/m 2. 0,837 kn/m 2 1,4 1,1718 kn/m 2

0,195 kn/m 2. 0,1404 kn/m 2. 0,837 kn/m 2 1,4 1,1718 kn/m 2 1.1 Dach drewniany krokwiowy o rozpiętości osiowej 13,44 m a) Obciążenia stałe wg PN-82/B-02001: blachodachówka (wraz z konstrukcją drewnianą) 0,350 kn/m 2 0,385 kn/m 2 wełna mineralna miękka 18cm 0,6kN/m

Bardziej szczegółowo

OPIS TECHNICZNY KONSTRUKCJI I OBLICZENIA.

OPIS TECHNICZNY KONSTRUKCJI I OBLICZENIA. OPIS TECHNICZNY KONSTRUKCJI I OBLICZENIA. Założenia przyjęte do wykonania projektu konstrukcji: - III kategoria terenu górniczego, drgania powierzchni mieszczą się w I stopniu intensywności, deformacje

Bardziej szczegółowo

Obliczanie układów statycznie niewyznaczalnych. metodą sił

Obliczanie układów statycznie niewyznaczalnych. metodą sił Politechnika Poznańska Instytut Konstrukcji Budowlanych Zakład echaniki Budowli Obliczanie układów statycznie niewyznaczalnych metodą sił. Rama Dla układu pokazanego poniŝej naleŝy: - Oblicz i wykonać

Bardziej szczegółowo

OBLICZENIA STATYCZNO - WYTRZYMAŁOŚCIOWE

OBLICZENIA STATYCZNO - WYTRZYMAŁOŚCIOWE OLICZENI STTYCZNO - WYTRZYMŁOŚCIOWE 1. ZESTWIENIE OCIĄśEŃ N IEG SCHODOWY Zestawienie obciąŝeń [kn/m 2 ] Opis obciąŝenia Obc.char. γ f k d Obc.obl. ObciąŜenie zmienne (wszelkiego rodzaju budynki mieszkalne,

Bardziej szczegółowo

Hale o konstrukcji słupowo-ryglowej

Hale o konstrukcji słupowo-ryglowej Hale o konstrukcji słupowo-ryglowej SCHEMATY KONSTRUKCYJNE Elementy konstrukcji hal z transportem podpartym: - prefabrykowane, żelbetowe płyty dachowe zmonolityzowane w sztywne tarcze lub przekrycie lekkie

Bardziej szczegółowo

Rys. 1. Elementy zginane. KONSTRUKCJE BUDOWLANE PROJEKTOWANIE BELEK DREWNIANYCH 2013 2BA-DI s.1 WIADOMOŚCI OGÓLNE

Rys. 1. Elementy zginane. KONSTRUKCJE BUDOWLANE PROJEKTOWANIE BELEK DREWNIANYCH 2013 2BA-DI s.1 WIADOMOŚCI OGÓLNE WIADOMOŚCI OGÓLNE O zginaniu mówimy wówczas, gdy prosta początkowo oś pręta ulega pod wpływem obciążenia zakrzywieniu, przy czym włókna pręta od strony wypukłej ulegają wydłużeniu, a od strony wklęsłej

Bardziej szczegółowo

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Doświadczalne sprawdzenie zasady superpozycji Numer ćwiczenia: 8 Laboratorium

Bardziej szczegółowo

OBLICZENIA STATYCZNO WYTRZYMAŁOŚCIOWE. 1. Założenia obliczeniowe. materiały:

OBLICZENIA STATYCZNO WYTRZYMAŁOŚCIOWE. 1. Założenia obliczeniowe. materiały: II. OBLICZENIA STATYCZNO WYTRZYMAŁOŚCIOWE 1. Założenia obliczeniowe. materiały: elementy żelbetowe: beton C25/30, stal A-IIIN mury konstrukcyjne: bloczki Silka gr. 24 cm kl. 20 mury osłonowe: bloczki Ytong

Bardziej szczegółowo

Z1/1. ANALIZA BELEK ZADANIE 1

Z1/1. ANALIZA BELEK ZADANIE 1 05/06 Z1/1. NLIZ LK ZNI 1 1 Z1/1. NLIZ LK ZNI 1 Z1/1.1 Zadanie 1 Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/1.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej

Bardziej szczegółowo

e = 1/3xH = 1,96/3 = 0,65 m Dla B20 i stali St0S h = 15 cm h 0 = 12 cm 958 1,00 0,12 F a = 0,0029x100x12 = 3,48 cm 2

e = 1/3xH = 1,96/3 = 0,65 m Dla B20 i stali St0S h = 15 cm h 0 = 12 cm 958 1,00 0,12 F a = 0,0029x100x12 = 3,48 cm 2 OBLICZENIA STATYCZNE POZ.1.1 ŚCIANA PODŁUŻNA BASENU. Projektuje się baseny żelbetowe z betonu B20 zbrojone stalą St0S. Grubość ściany 12 cm. Z = 0,5x10,00x1,96 2 x1,1 = 21,13 kn e = 1/3xH = 1,96/3 = 0,65

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

Zadanie: Zaprojektować w budynku jednorodzinnym (wg wykonanego projektu) filar murowany w ścianie zewnętrznej na parterze.

Zadanie: Zaprojektować w budynku jednorodzinnym (wg wykonanego projektu) filar murowany w ścianie zewnętrznej na parterze. Zadanie: Zaprojektować w budynku jednorodzinnym (wg wykonanego projektu) filar murowany w ścianie zewnętrznej na parterze. Zawartość ćwiczenia: 1. Obliczenia; 2. Rzut i przekrój z zaznaczonymi polami obciążeń;

Bardziej szczegółowo

Projektuje się płytę żelbetową wylewaną na mokro, krzyżowo-zbrojoną. Parametry techniczne:

Projektuje się płytę żelbetową wylewaną na mokro, krzyżowo-zbrojoną. Parametry techniczne: - str.10 - POZ.2. STROP NAD KLATKĄ SCHODOWĄ Projektuje się płytę żelbetową wylewaną na mokro, krzyżowo-zbrojoną. Parametry techniczne: 1/ Grubość płyty h = 15cm 2/ Grubość otulenia zbrojenia a = 2cm 3/

Bardziej szczegółowo

Analiza obudowy wykopu z jednym poziomem kotwienia

Analiza obudowy wykopu z jednym poziomem kotwienia Przewodnik Inżyniera Nr 6 Aktualizacja: 02/2016 Analiza obudowy wykopu z jednym poziomem kotwienia Program powiązany: Ściana analiza Plik powiązany: Demo_manual_06.gp2 Niniejszy rozdział przedstawia problematykę

Bardziej szczegółowo

LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie 8 WYBOCZENIE PRĘTÓW ŚCISKANYCH Cel ćwiczenia

LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie 8 WYBOCZENIE PRĘTÓW ŚCISKANYCH Cel ćwiczenia LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Ćwiczenie 8 WYBOCZENIE RĘTÓW ŚCISKANYCH 8.1. Ce ćwiczenia Ceem ćwiczenia jest doświadczane wyznaczenie siły krytycznej pręta ściskanego podpartego przegubowo na obu

Bardziej szczegółowo

Analiza obudowy wykopu z pięcioma poziomami kotwienia

Analiza obudowy wykopu z pięcioma poziomami kotwienia Przewodnik Inżyniera Nr 7 Aktualizacja: 02/2016 Analiza obudowy wykopu z pięcioma poziomami kotwienia Program powiązany: Ściana analiza Plik powiązany: Demo_manual_07.gp2 Niniejszy rozdział przedstawia

Bardziej szczegółowo

PN-B-03004:1988. Kominy murowane i żelbetowe. Obliczenia statyczne i projektowanie

PN-B-03004:1988. Kominy murowane i żelbetowe. Obliczenia statyczne i projektowanie KOMINY PN-B-03004:1988 Kominy murowane i żelbetowe. Obliczenia statyczne i projektowanie Normą objęto kominy spalinowe i wentylacyjne, żelbetowe oraz wykonywane z cegły, kształtek ceramicznych lub betonowych.

Bardziej szczegółowo

PROJEKT STOPY FUNDAMENTOWEJ

PROJEKT STOPY FUNDAMENTOWEJ TOK POSTĘPOWANIA PRZY PROJEKTOWANIU STOPY FUNDAMENTOWEJ OBCIĄŻONEJ MIMOŚRODOWO WEDŁUG WYTYCZNYCH PN-EN 1997-1 Eurokod 7 Przyjęte do obliczeń dane i założenia: V, H, M wartości charakterystyczne obciążeń

Bardziej szczegółowo

KONSTRUKCJE DREWNIANE I MUROWE

KONSTRUKCJE DREWNIANE I MUROWE POLITECHNIKA BIAŁOSTOCKA WBiIŚ KATEDRA KONSTRUKCJI BUDOWLANYCH ZAJĘCIA 5 KONSTRUKCJE DREWNIANE I MUROWE Mgr inż. Julita Krassowska 1 CHARAKTERYSTYKI MATERIAŁOWE drewno lite sosnowe klasy C35: - f m,k =

Bardziej szczegółowo

SILOSY NA MATERIAŁY SYPKIE

SILOSY NA MATERIAŁY SYPKIE SILOSY NA MATERIAŁY SYPKIE Prezentowane materiały są utworami w rozumieniu prawa autorskiego i podlegają jego ochronie. Zabronione jest ich kopiowanie w całości lub we fragmencie i dalsze rozpowszechnianie

Bardziej szczegółowo

Moduł. Ścianka szczelna

Moduł. Ścianka szczelna Moduł Ścianka szczelna 870-1 Spis treści 870. ŚCIANKA SZCZELNA... 3 870.1. WIADOMOŚCI OGÓLNE... 3 870.2. OPIS OGÓLNY PROGRAMU... 4 870.2.1. Parcia na ścianę wywołane naziomem i obciążeniem liniowym...

Bardziej szczegółowo

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia

Bardziej szczegółowo

Schemat statyczny płyty: Rozpiętość obliczeniowa płyty l eff,x = 3,24 m Rozpiętość obliczeniowa płyty l eff,y = 5,34 m

Schemat statyczny płyty: Rozpiętość obliczeniowa płyty l eff,x = 3,24 m Rozpiętość obliczeniowa płyty l eff,y = 5,34 m 5,34 OLICZENI STTYCZNE I WYMIROWNIE POZ.2.1. PŁYT Zestawienie obciążeń rozłożonych [kn/m 2 ]: Lp. Opis obciążenia Obc.char. f k d Obc.obl. 1. TERKOT 0,24 1,35 -- 0,32 2. WYLEWK CEMENTOW 5CM 2,10 1,35 --

Bardziej szczegółowo

Obliczenia wstępne dźwigara głównego

Obliczenia wstępne dźwigara głównego Katedra Mostów i Kolei Obliczenia wstępne dźwigara głównego Materiały dydaktyczne dla kursu Mosty dr inż. Mieszko KUŻAWA 23.03.2017 r. Zawartość raportu z ćwiczenia projektowego 1. Założenia a) Przedmiot,

Bardziej szczegółowo

Algorytm do obliczeń stanów granicznych zginanych belek żelbetowych wzmocnionych wstępnie naprężanymi taśmami CFRP

Algorytm do obliczeń stanów granicznych zginanych belek żelbetowych wzmocnionych wstępnie naprężanymi taśmami CFRP Algorytm do obliczeń stanów granicznych zginanych belek żelbetowych wzmocnionych wstępnie naprężanymi taśmami CFRP Ekran 1 - Dane wejściowe Materiały Beton Klasa betonu: C 45/55 Wybór z listy rozwijalnej

Bardziej szczegółowo

- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - ŻELBET

- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - ŻELBET - 1 - Kalkulator Elementów Żelbetowych 2.1 OBLICZENIA WYTRZYMAŁOŚCIOWE - ŻELBET Użytkownik: Biuro Inżynierskie SPECBUD 2001-2010 SPECBUD Gliwice Autor: mgr inż. Jan Kowalski Tytuł: Poz.4.1. Elementy żelbetowe

Bardziej szczegółowo

POŁĄCZENIA ŚRUBOWE I SPAWANE Dane wstępne: Stal S235: f y := 215MPa, f u := 360MPa, E:= 210GPa, G:=

POŁĄCZENIA ŚRUBOWE I SPAWANE Dane wstępne: Stal S235: f y := 215MPa, f u := 360MPa, E:= 210GPa, G:= POŁĄCZENIA ŚRUBOWE I SPAWANE Dane wstępne: Stal S235: f y : 25MPa, f u : 360MPa, E: 20GPa, G: 8GPa Współczynniki częściowe: γ M0 :.0, :.25 A. POŁĄCZENIE ŻEBRA Z PODCIĄGIEM - DOCZOŁOWE POŁĄCZENIE KATEGORII

Bardziej szczegółowo

Statyka płynów - zadania

Statyka płynów - zadania Zadanie 1 Wyznaczyć rozkład ciśnień w cieczy znajdującej się w stanie spoczynku w polu sił ciężkości. Ponieważ na cząsteczki cieczy działa wyłącznie siła ciężkości, więc składowe wektora jednostkowej siły

Bardziej szczegółowo

1. Połączenia spawane

1. Połączenia spawane 1. Połączenia spawane Przykład 1a. Sprawdzić nośność spawanego połączenia pachwinowego zakładając osiową pracę spoiny. Rysunek 1. Przykład zakładkowego połączenia pachwinowego Dane: geometria połączenia

Bardziej szczegółowo

9.0. Wspornik podtrzymujący schody górne płytowe

9.0. Wspornik podtrzymujący schody górne płytowe 9.0. Wspornik podtrzymujący schody górne płytowe OBCIĄŻENIA: 55,00 55,00 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P(Tg): P2(Td): a[m]: b[m]: Grupa: A "" Zmienne γf=,0 Liniowe 0,0 55,00 55,00

Bardziej szczegółowo

Pomoce dydaktyczne: normy: [1] norma PN-EN 1991-1-1 Oddziaływania na konstrukcje. Oddziaływania ogólne. Ciężar objętościowy, ciężar własny, obciążenia użytkowe w budynkach. [] norma PN-EN 1991-1-3 Oddziaływania

Bardziej szczegółowo

Widok ogólny podział na elementy skończone

Widok ogólny podział na elementy skończone MODEL OBLICZENIOWY KŁADKI Widok ogólny podział na elementy skończone Widok ogólny podział na elementy skończone 1 FAZA I odkształcenia od ciężaru własnego konstrukcji stalowej (odkształcenia powiększone

Bardziej szczegółowo

OBLICZENIA ŚCIAN. Zestawienie ciężarów ścian na poszczególnych kondygnacjach. 1 cegła pełna 18*0,25*0,12*0,065*(8*2*13) 7,301 1,35 9,856

OBLICZENIA ŚCIAN. Zestawienie ciężarów ścian na poszczególnych kondygnacjach. 1 cegła pełna 18*0,25*0,12*0,065*(8*2*13) 7,301 1,35 9,856 OBLICZENIA ŚCIAN Zestawienie ciężarów ścian na poszczególnych kondygnacjach Ściana zewnętrzna z cegły ceramicznej pełnej t = 51 cm, I kondygnacji Ciężar 1m ściany: Lp Warstwa ściany Obliczenia charakterystyczna

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

Mosty ćwiczenie projektowe obliczenia wstępne

Mosty ćwiczenie projektowe obliczenia wstępne Wydział Budownictwa Lądowego i Wodnego Katedra Mostów i Kolei Mosty ćwiczenie projektowe obliczenia wstępne Dr inż. Mieszko KUŻAWA 0.03.015 r. III. Obliczenia wstępne dźwigara głównego Podstawowe parametry

Bardziej szczegółowo

Zbiornik cylindryczny na wodę

Zbiornik cylindryczny na wodę Zbiornik cylindryczny na wodę Dane : wysokość zbiornika (bez przekrycia) głębokość zagłębienia w gruncie (głębokość posadowienia) h średnica zewnętrzna zbiornika, ciężar objętościowy wody, przekrycie:

Bardziej szczegółowo

Pale fundamentowe wprowadzenie

Pale fundamentowe wprowadzenie Poradnik Inżyniera Nr 12 Aktualizacja: 09/2016 Pale fundamentowe wprowadzenie Celem niniejszego przewodnika jest przedstawienie problematyki stosowania oprogramowania pakietu GEO5 do obliczania fundamentów

Bardziej szczegółowo

Parametry geotechniczne gruntów ustalono na podstawie Metody B Piasek średni Stopień zagęszczenia gruntu niespoistego: I D = 0,7.

Parametry geotechniczne gruntów ustalono na podstawie Metody B Piasek średni Stopień zagęszczenia gruntu niespoistego: I D = 0,7. .11 Fundamenty.11.1 Określenie parametrów geotechnicznych podłoża Rys.93. Schemat obliczeniowy dla ławy Parametry geotechniczne gruntów ustalono na podstawie Metody B Piasek średni Stopień zagęszczenia

Bardziej szczegółowo

Zakres wiadomości na II sprawdzian z mechaniki gruntów:

Zakres wiadomości na II sprawdzian z mechaniki gruntów: Zakres wiadomości na II sprawdzian z mechaniki gruntów: Wytrzymałość gruntów: równanie Coulomba, parametry wytrzymałościowe, zależność parametrów wytrzymałościowych od wiodących cech geotechnicznych gruntów

Bardziej szczegółowo

Geometria powłoki, wg publikacji dr inż. Wiesław Baran

Geometria powłoki, wg publikacji dr inż. Wiesław Baran Geometria powłoki, wg publikacji dr inż. Wiesław Baran Gładką i regularną powierzchnię środkową S powłoki można opisać za pomocą funkcji wektorowej (rys. 2.1) dwóch współrzędnych krzywoliniowych u 1 i

Bardziej szczegółowo

Wytrzymałość drewna klasy C 20 f m,k, 20,0 MPa na zginanie f v,k, 2,2 MPa na ścinanie f c,k, 2,3 MPa na ściskanie

Wytrzymałość drewna klasy C 20 f m,k, 20,0 MPa na zginanie f v,k, 2,2 MPa na ścinanie f c,k, 2,3 MPa na ściskanie Obliczenia statyczno-wytrzymałościowe: Pomost z drewna sosnowego klasy C27 dla dyliny górnej i dolnej Poprzecznice z drewna klasy C35 lub stalowe Balustrada z drewna klasy C20 Grubość pokładu górnego g

Bardziej szczegółowo

Wewnętrzny stan bryły

Wewnętrzny stan bryły Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez

Bardziej szczegółowo

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z

Bardziej szczegółowo

Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża

Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża D.1 e używane w załączniku D (1) Następujące symbole występują w Załączniku D: A' = B' L efektywne obliczeniowe pole powierzchni

Bardziej szczegółowo

OBLICZENIA STATYCZNO WYTRZYMAŁOŚCIOWE MOSTU NAD RZEKĄ ORLA 1. ZałoŜenia obliczeniowe

OBLICZENIA STATYCZNO WYTRZYMAŁOŚCIOWE MOSTU NAD RZEKĄ ORLA 1. ZałoŜenia obliczeniowe OBLICZENIA STATYCZNO WYTRZYMAŁOŚCIOWE MOSTU NAD RZEKĄ ORLA. ZałoŜenia obliczeniowe.. Własciwości fizyczne i mechaniczne materiałów R - wytrzymałość obliczeniowa elementów pracujących na rozciąganie i sciskanie

Bardziej szczegółowo

10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej.

10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej. 10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej. OBCIĄŻENIA: 6,00 6,00 4,11 4,11 1 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P1(Tg): P2(Td): a[m]: b[m]: Grupa:

Bardziej szczegółowo

POZ. 1 ZESTAWIENIE OBCIĄŻEŃ Stropy pod lokalami mieszkalnymi przy zastosowaniu płyt WPS

POZ. 1 ZESTAWIENIE OBCIĄŻEŃ Stropy pod lokalami mieszkalnymi przy zastosowaniu płyt WPS OBLICZENIA STATYCZNE DO AKTUALIZACJI PROJEKTÓW BUDOWLANYCH REMONTU ELEWACJI WRAZ Z BALKONAMI I NAPRAWĄ RYS ORAZ REMONTU PIWNIC W BUDYNKU MIESZKALNYM PRZY UL. ŻELAZNEJ 64 r/ KROCHMALNEJ TOM I POZ. 1 ZESTAWIENIE

Bardziej szczegółowo

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika

Bardziej szczegółowo

SKRĘCANIE WAŁÓW OKRĄGŁYCH

SKRĘCANIE WAŁÓW OKRĄGŁYCH KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami

Bardziej szczegółowo

Parcie na powierzchnie płaską

Parcie na powierzchnie płaską Parcie na powierzchnie płaską Jednostką parcia jest [N]. Wynika z tego, że parcie jest to siła. Powtórzmy, parcie jest to siła. Siła z jaką oddziaływuje ciecz na ścianki naczynia, w którym się znajduje.

Bardziej szczegółowo

3. Wstępny dobór parametrów przekładni stałej

3. Wstępny dobór parametrów przekładni stałej 4,55 n1= 3500 obr/min n= 1750 obr/min N= 4,55 kw 0,70 1,00 16 37 1,41 1,4 8 30,7 1,41 1. Obliczenie momentu Moment na kole n1 obliczam z zależności: 9550 9550 Moment na kole n obliczam z zależności: 9550

Bardziej szczegółowo

Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT. Nr albumu: 79983 Kierunek studiów: Budownictwo Studia I stopnia stacjonarne

Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT. Nr albumu: 79983 Kierunek studiów: Budownictwo Studia I stopnia stacjonarne Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT Nr albumu: 79983 Kierunek studiów: Budownictwo Studia I stopnia stacjonarne PROJEKT WYBRANYCH ELEMENTÓW KONSTRUKCJI ŻELBETOWEJ BUDYNKU BIUROWEGO DESIGN FOR SELECTED

Bardziej szczegółowo

(r) (n) C u. γ (n) kn/ m 3 [ ] kpa. 1 Pπ 0.34 mw ,5 14,85 11,8 23,13 12,6 4,32

(r) (n) C u. γ (n) kn/ m 3 [ ] kpa. 1 Pπ 0.34 mw ,5 14,85 11,8 23,13 12,6 4,32 N r Rodzaj gruntu I /I L Stan gr. K l. Ф u (n) [ ] Ф u (r) [ ] C u (n) kpa γ (n) kn/ m γ (r) kn/m γ' (n) kn/ m N C N N 1 Pπ 0.4 mw - 9.6 6.64-16,5 14,85 11,8,1 1,6 4, Пp 0.19 mw C 15.1 1.59 16 1,0 18,9

Bardziej szczegółowo

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 2 Przykład obliczenia

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 2 Przykład obliczenia Materiały pomocnicze do projektowania z przedmiotu: Wprowadzenie do Techniki Ćwiczenie nr 2 Przykład obliczenia Opracował: dr inż. Andrzej J. Zmysłowski Katedra Podstaw Systemów Technicznych Wydział Organizacji

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Rys. 1. Rozwiązanie zadania rozpoczniemy od wyznaczenia wartość momentów zginających wywołanych działaniem siły 20[kN]. Rys. 2

Rys. 1. Rozwiązanie zadania rozpoczniemy od wyznaczenia wartość momentów zginających wywołanych działaniem siły 20[kN]. Rys. 2 Dynaika Drgania wyuszone nietłuione - Raa /9 Dynaika Drgania wyuszone nietłuione Raa Wyznaczyć siły kinetyczne działające na raę jak na rysunku, obciążoną zienna haronicznie siłą P o. Przyjąć następujące

Bardziej szczegółowo