MAGNETYCZNY REZONANS JĄDROWY WODORU

Wielkość: px
Rozpocząć pokaz od strony:

Download "MAGNETYCZNY REZONANS JĄDROWY WODORU"

Transkrypt

1 MAGNETYCZNY REZONANS JĄDROWY WODORU 1 NMR, ( 2 NMR, 3 NMR) Trzy aktywne izotopy wodoru: % spin ½ Mz ( T) % spin Mz ( T) 3 0 spin ½ Mz ( T)

2 Przykładowe widmo 1 NMR wykonane w roztworze: Widmo protonowe, 1 NMR ( 1 MRJ): Położenie sygnałów (przesunięcie chemiczne, ppm) Wzorzec: tetrametylosilan, Si(C 3 ) 4 0 ppm Typowy zakres przesunięć chemicznych: 0 15 ppm Struktura sygnałów (krotność lub multipletowość, sprzężenie spin-spin) Intensywność sygnałów, intensywność integralna ( całka ) Skala δ ( przesunięć chemicznych ), skala τ = 10 - δ

3 Równocenność / nierównocenność chemiczna atomów Protony (grupy protonów) homotopowe = równocenne chemicznie Protony (grupy protonów) enancjotopowe = równocenne chemicznie (?) Protony (grupy protonów) diastereotopowe = nierównocenne chemicznie Cl Cl Br C F Br C R* równocenne chemicznie (homotopowe) nierównocenne chemicznie (diastereotopowe) równocenne chemicznie (enancjotopowe) nierównocenne chemicznie (!) Metody spektroskopowe i ich zastosowania do identyfikacji związków organicznych Praca zbiorowa pod redakcją W.Zielińskiego i A.Rajcy Wydawnictwa Naukowo-Techniczne, Warszawa, 2000 Spektroskopowe metody identyfikacji związków organicznych R.M.Silverstein, F.X.Webster, D.J.Kiemle Wydawnictwo Naukowe PWN, Warszawa 2007

4 Równocenność / nierównocenność chemiczna atomów Cl Br Cl Cl równocenne (układ A 2 ) Cl Br nierównocenne (układ AB lub AX) Cl Br Br Br??? układ A 2 B lub A 3 Atomy wodorów w grupach C 3 i C 2 w związkach łańcuchowych są chemicznie równocenne ( uśrednienie przesunięć chemicznych) Wyjątek: centrum chiralne obok grupy!!!

5 Równocenność / nierównocenność chemiczna atomów RC 2 C 3 R RC 2 C 2 R' R R' układ A 3 układ A 2 R R ' CRR'R'' C 2 R R '' R układ AB Spektroskopia MRJ w fazie ciekłej, w achiralnym środowisku, nie rozróżnia enancjomerów, a rozróżnia diastereoizomery. (R)(S) = (S)(R), (R)(R) = (S)(S), (R)(S) (S)(S),...

6 Równocenność / nierównocenność chemiczna atomów X X X X X Y X Y równocenne A 2 nierównocenne AB lub AX

7 Równocenność / nierównocenność chemiczna atomów ax ax eq Cl eq Cl CCl eq ax Proces szybki / wolny w skali czasu NMR

8 Równocenność / nierównocenność chemiczna atomów Ukryte wiązanie podwójne O N C 3 C 3 N O N 3 C C 3 N OR 3 C C 3 O N R2 R1 O N R1 R2

9 Rozpuszczalniki stosowane w 1 NMR Aceton-d ppm Acetonitryl-d ppm Benzen-d ppm Chlorek metylenu-d ppm Chloroform-d 7.3 ppm Dimetyloformamid-d 6 (DMF) 2.9 ppm, 8.0 ppm Dimetylosulfotlenek-d 6 (DMSO) 2.6 ppm Metanol-d ppm Woda (D 2 O) 4.8 ppm C3 C 3 3 C Si C 3 (Wg materiałów firmy BRUKER) Wzorzec: tetrametylosilan (TMS), (C 3 ) 4 Si DSS Wzorzec zewnętrzny (external reference) Wzorzec wewnętrzny (internal reference) Wzorzec wtórny (secondary reference) 0.00 ppm ppm TMS C3 C 3 3 C Si C 2 C 2 C 2 SO 3 Na DSS

10 Kilka przesunięć chemicznych 1 NMR (ppm) Elektroujemność podstawnika: C CF 3 -F 4.26 C 3 -Cl 3.05 C 3 -Br 2.68 C 3 -I 2.16 C 3 -OC C 3 -N(C 3 ) C 3 -SC C 3 -Li (C 3 ) 4 Si 0.00 Rząd wiązania: C 3 C C 2 C CC 1.49 C Ilość grup metylowych: C C 3 C C 3 C 2 C C 3 C 2 C(C 3 ) Ilość heteroatomów: C C 3 Cl 3.05 C 2 Cl CCl Atom wodoru przy heteroatomie: O (alif.) 1 5 O (Ar) 4 10 O (kwas) 9 12 S 3 4 N 2 3 5

11 Kilka przesunięć chemicznych 1 NMR (ppm) B o X N O 3.8 O 6.2 O C N N N N N ca elektronów π 20 elektronów π Chaitanya S.Wannere, Paul von Ragué Schleyer, Organic Letters, 5(5), 2003,

12 Zmiany przesunięcia chemicznego 1 NMR wywołane metalem przejściowym: do ± 600 ppm Cl N N Fe 3+ N N 1 NMR (CDCl 3 ) protony pirolowe: ppm proton mezo: ppm protony Ar: ppm (J.Wojaczyński, Praca Doktorska, Wrocław, 1998)

13 D J n J( 1-1 ) Wielkość sprzężenia J( 1-1 ): od 0 do 42 z zazwyczaj nie przekracza kilkunastu z Oddziaływanie spin spin -sprzężenie skalarne J, sprzężenie pośrednie -sprzężenie dipol-dipol D, sprzężenie bezpośrednie Wielkość sprzężenia jest niezależna od natężenia pola magnetycznego Wielkość sprzężenia wyrażamy w hercach (z) Sprzężenia J i D są dodatnie lub ujemne! Uwaga na znak! od a do b od a do b!!! w tym drugim przypadku a może być równe 0!!

14 podczas pomiarów w roztworze sprzężenie D uśrednia się do zera i nie wpływa na strukturę widma B o α D ~ [3cos 2 (α) 1] (r -3 ) α = o D = 0 Sprzężenia J i D są dodatnie lub ujemne! Uwaga na znak! od a do b od a do b!!! w tym drugim przypadku a może być równe 0!! Stałe sprzężenia J: od 0 do z (!!) Sprzężenia J( 1-1 ): od 0 do 42 z; ale znane są sprzężenia rzędu 1000 z i większe!!

15 Sprzężenie pośrednie (skalarne) J sprzężenie geminalne 2 J gem sprzężenie wicynalne 3 J vic sprzężenie dalekiego zasięgu n J 2 J gem 2 J( 1-1 ) 1 J( 13 C- 1 ) 3 J(5-6)

16 Geminalna stała sprzężenia 2 J gem (atom sp 3 ) 2 J gem = (+ 6) (- 20) z (- 12) (- 14) C (- 11) (- 18) C 3 C N N C C 2 C N X (- 3) (- 9) (+ 6) (- 1.4) O O -6.1

17 Geminalna stała sprzężenia 2 J gem (atom sp 2 ) R X C C X = F N Li C R O C C C C O N C C C 3 C Wodorek dodać...

18 Wicynalna stała sprzężenia 3 J vic Zależność Karplusa 3 J = 8.5 cos 2 φ 0.3 (0 90 o ) 3 J = 9.5 cos 2 φ 0.3 ( o ) φ 3 J [z] kąt [ o ] O C C C C C C C C C C C 2 9 z 6 14 z z 4 10 z 3 7 z

19 COO N 2 R COO N 2 R N 2 R COO R O N C N C R C N O C R O C N C R C N O C R O C N C R C N O C R O C N C R C N O C R O C N C R C N O C R O C N C R C N O C R O 3 J( 15 N- 15 N) 3 J( 13 C- 13 C) 3 J( 13 C- 1 ) 3 J( 1-1 ) 3 J( 13 C- 1 ) 3 J( 15 N- 1 ) 3 J = Acos 2 (φ + α) + Bcos(φ + α) + C

20 3 J = Acos 2 (φ + α) + Bcos(φ + α) + C 3 J [z] kąt φ [ o ] A.Ejchart, Scalar Couplings in Structure Determination of Proteins Bulletin of the Polish Academy of Sciences; Chemistry, 47(1) (1999) 1

21 C (- 3) (- 1) z 2 3 z 3 J orto = z 4 J 5 meta = 2 3 z J para = z C 2 C C 2 3 J( 1-1 ) 0 z 4 J( 1-1 ) 0 z 2 J ax-eq = (- 11) (- 13) z 3 J ax-ax = z 3 J ax-eq = 2 5 z 3 J eq-eq = 2 5 z Sprzężenie W ok. 1 z

22 Konstrukcja multipletów Widma NMR dzielą się na widma pierwszego i drugiego rzędu. W widmach pierwszego rzędu: δ >> J brak atomów magnetycznie nierównocennych sprzężenia pomiędzy atomami chemicznie równocennymi nie wpływają na krotność (multipletowość) sygnałów; np. sygnał grupy C 3 jest singletem, znak stałej sprzężenia nie wpływa na strukturę multipletu, δ i J można odczytać wprost z widma W widmach drugiego rzędu: δ J, i / lub są atomy nierównocenne magnetycznie sprzężenia pomiędzy atomami chemicznie równocennymi i znak stałej sprzężenia wpływają na strukturę sygnałów Trudna analiza multipletów

23 C C C C C C C C C

24 C C 3 J = 10 z 10 z 10 z 10 z

25 C C C 2 J = 10 z J = 5 z J = 5 z 10 z 5 z 5 z

26 C C C C J = 10 z J = 5 z J = 2 z 5 z 2 z 10 z

27 C C C 2 J = 10 z J = 2 z J = 2 z 10 z 2 z 2 z

28 C 3 3 C C C 3 Praca domowa: jak wygląda sygnał czerwonego atomu wodoru

29 Przykłady widm protonowych (widma pierwszego rzędu)

30

31

32

33

34

35

36

37 Układ A 3 MNX A 3 M 2 X

38 Nierównocenność protonów w grupie C 2 (widmo w CDCl 3 ) Układ A 3 MNX C 2 3 C C C 3 N N(C 3 ) 2 C 2 3 C C C 3 N 2 ppm

39

40

41

42 Układ AA MM X A 2 M 2 X

43 Widma protonowe drugiego rzędu

44 J δ widmo drugiego rzędu AX AM AB

45 XC 2 -C 2 Y A 2 X 2 A 2 M 2 A 2 B 2

46 -C 2 C 3 A 2 X 3 A 2 B 3

47 J δ widmo drugiego rzędu J J AX δ x δ y AM b AB a J δ = a*b δ x = δ 0 δ/2 δ y = δ 0 + δ/2

48 X J = 7 z Układ spinowy AX 2 AB 2 A δ = 1 ppm (500 z) 5 δ = 0.1 ppm (50 z) δ = 0.02 ppm (10 z) 5 4 δ A δ B = (δ 5 + δ 7 ) / 2! dla δ = 0 ppm pozostanie tylko jedna linia (układ A 3 ) 8 7 δ B 3 2 J AB = (ν 1 - ν 4 ) + (ν 6 ν 8 ) / 3 1

49 NIERÓWNOCENNOŚĆ MAGNETYCZNA Równocenność / nierównocenność magnetyczna: dotyczy atomów równocennych chemicznie Dwa atomy są równocenne magnetycznie, kiedy: są równocenne chemicznie stałe sprzężenia tych atomów z dowolnym innym atomem w cząsteczce są identyczne δ = δ δ = δ A 2 X 2?? X 3 J() 4 J() AA XX (AA BB )

50 Z Z Z Y Z Układ spinowy AA XX (AA BB )

51 A A' N = ν 1,2 ν 1,7 K = ν 3 ν 4 = ν 5 ν 6 M = ν 9 ν 10 = ν 11 ν 12 (2O) 2 = (ν 3 ν 5 ) 2 = (ν 4 ν 6 ) 2 (2P) 2 = (ν 9 ν 11 ) 2 = (ν 10 ν 12 ) 2 X X X' 1,2 7,8 L = [(2O) 2 K 2 ] 0.5 = [(2P) 2 M 2 ] 0.5 N = J AB J AB L = J AB J AB K = J AX J BB M = J AA J BB E. W. Garbisch, Journal of Chemical Education, 45(5), 1968, (6), 1968, (7), 1968,

52 Układ AA MM X A 2 M 2 X

53 Programy do obróbki widm NMR: MestRe-C 2.3a SpinWorks

54 OPTYMALIZACJA POMIARU I BŁĘDY ( 1 NMR)

55 Przygotowanie próbki Próbka o odpowiednim stężeniu, rozpuszczona w odpowiedniej ilości deuterowanego rozpuszczalnika, bez osadu i stałych zanieczyszczeń. Czy można użyć rozpuszczalnika nie deuterowanego? Tak, ale... Brak sygnału deuteru; brak sygnału używanego do regulacji jednorodności pola i do stabilizacji pola. Można ewentualnie użyć sygnału FID-u. CCl 3, C 2 Cl 2... konieczność usuwania sygnału rozpuszczalnika. CCl 4, CS 2, freon... można użyć; ew. zastosować rozpuszczalnik deuterowany w kapilarze. Można użyć mieszanki, np. C 2 Cl 2 /CD 2 Cl 2 w celu minimalizacji kosztów, w specyficznych pomiarach ( 13 C, 15 N, 19 F, 31 P...) Wzorzec: zewnętrzny lub wewnętrzny. Można użyć sygnału resztkowego rozpuszczalnika.

56 Eksperyment impulsowy NMR... czas D1 PW AQ FT SW Parametry eksperymentu: (ozn. BRUKER, VARIAN) ilość powtórzeń (number of scans) NS, nt zwłoka relaksacyjna (relaxation delay) D1 długość impulsu (pulse width) P1, PW czas akwizycji (acquisition time) AQ, at zakres pomiaru (sweep width) SW ilość punktów TD/SI, np/nf

57 Czynniki wpływające na intensywność sygnału próbki stężenie próbki długość impulsu maksymalne wzbudzenie dla impulsu 90 o (w parametrach długość impulsu podana jest w µs! Trzeba sprawdzić parametr pw90!) stopień zrelaksowania próbki, zależny od sumy czasów D1 i AQ (d1 i at); D1 + AQ > 2 3 T 1 z z T1: dla s lub dłużej (!) Typowe parametry: 1 : d1 = 0 s, at = 3 5 s, pw = o B o M x y zaburzenie relaksacja α x y D1 PW AQ α = 0 ο 360 ο

58 Niepełna relaksacja próbki

59 Dobór czułości odbiornika: receiver gain gain gain = n lub 0 39 za mała wartość źle wykorzystana czułość aparatu za duża wartość obcięcie sygnału A t (sek) Jeśli gain = 0 za duży, należy zmniejszyć pw (np. o 50%)

60 Dobór czasu akwizycji (AQ, at) PW D1 AQ at, sw oraz np są zależne od siebie. Zmiana at powoduje zmianę np ( i odwrotnie). Zmiana sw powoduje zmianę at. A sygnał szum t (sek) A t (sek) (ppm)

61 Rozdzielczość spektralna parametr wynikający z SW i ilości punktów wykorzystanych do konstrukcji widma 8 K (8 192 pkt) 32 K ( pkt)

62 Dopełnianie FID-u zerami ( zero-filling ) A sygnał szum A t (sek) t (sek) np (TD) ilość komórek pamięci do rejestracji sygnału fn (SI) - ilość komórek pamięci do konstrukcji widma

63 SW, O1 Sygnał zawinięty SW O1 [z] SW Dobór sw i o1 dla nieznanych rozpuszczalników: 1. sw = 40 ppm; wykonać wstępne widmo (np. nt = 4) 2. Na ekranie wyświetlić zakres, gdzie są sygnały, zastosować polecenie movesw 3. Wykonać dobre widmo 4. Uwaga: nie zostawiać sygnałów poza zakresem sw NT, BS nt wielokrotność 4 lub 8 bs umożliwia kontrolę widma przed zakończeniem pomiaru (bs = 4, 8,...64)

64 Matematyczna obróbka widma (zmiana kształtu sygnału BRUKER) A FT Mnożenie przez funkcję wykładniczą (Expotential Multiplication, EM) y = exp(-at/t a ) t (sek) EM, FT LB = 1 y A t (sek) t (sek) FT Mnożenie przez funkcję Gaussa (Lorentzian-to-Gauss Transformation) y = exp(at/t a -bt 2 /t a 2 )) y A GM, EM, FT LB = -1.2 GB = 0.5 t (sek) t (sek) LB = dla 1 LB = 1 2 dla 13 C EF lub EM i FT A t (sek) LB = -1.2; GB = 0.1 1; GF (Bruker)

65 Matematyczna obróbka widma (funkcje ważące wg VARIAN) A t (sek) Expotential function y = exp(-t. π. lb) lb > 0 y lb > 0 t lb<0 Gaussian function y = exp(-(t/gf) 2 ) gb > 0 exp(-t. π. lb). exp(-(t/gf) 2 ) gb > 0; lb < 0 sinebell y = sin(t. p/2. sb)

66 Jak zastosować funkcje ważące (Varian) ft transformacja Fouriera wft - transformacja Fouriera + funkcje ważące Wartości lb=n, gf=n i sb=n wyłączają funkcje, pomimo polecenia wft (Uwaga na polecenia złożone!) Dwie użyteczne procedury: Poszerzenie linii (zmniejsza szumy, traci się na rozdzielczości. Przydaje się w 13 C NMR) lb = dla 1 NMR lb = 1 2 dla 13 C NMR Następnie transformacja poleceniem wft (gf=n, sb=n) Zwiększenie rozdzielczości najlepiej poleceniem resolv Procedura aktywuje dwie funkcje z parametrami: lb = /(a. SW) oraz gf = b. SW, gdzie a=0.1 i b=0.3. Można grać procedurą zmieniając parametry a i b: resolv(a,b). Zwiększenie rozdzielczości zaburza linię podstawową i fałszuje całkę! Można stosować ręczny dobór parametrów: wstawić wartości lb i gf, i zastosować wft Interaktywne dobieranie funkcji: instrukcja obsługi aparatu.

67 BŁĘDY I IC PRZYCZYNY Przesunięcie chemiczne niedoskonałość wzorca ( wewnętrzny TMS) błąd do ± 0.5 ppm (!!). W precyzyjnych pomiarach należy stosować wzorzec zewnętrzny. efekty stężeniowe, temperatura próbki, asocjacja związku, itp. rozdzielczość spektralna ( z) typowa dokładność δ( 1 ): nie więcej niż ± 0.01 ppm Wartość stałej sprzężenia J rozdzielczość spektralna ( z) (!!!) nakładanie się sygnałów typowa dokładność J: nie więcej niż ± 0.3 z Intensywność integralna: niepełna relaksacja próbki rozdzielczość spektralna zaburzenia linii podstawowej widma, nieprawidłowa faza widma

68 Tematy związane nie tylko z 1 NMR wpływ temperatury na widmo efekt Overhausera presaturacja sygnału (usuwanie sygnału rozpuszczalnika) echo spinowe rezonans podwójny ( homodecoupling )

69 Wpływ temperatury na widmo Ph N N N + N- O C 2 C 3 N O Ph N C 2 C 3 N N + - C 2 C K 303 K 253 K

70 C 3 N 1 C CDCl K C 2 1 1, K 3

71 Badanie odległości między atomami: JĄDROWY EFEKT OVERAUSERA (Nuclear Overhauser Effect, NOE) Efekt Overhausera zmiana intensywności sygnału atomu położonego w pobliżu innego atomu naświetlanego jego częstością rezonansową J(,) = 0 z (duża odległość liczona po wiązaniach) D(,) 0 z (mała odległość liczona poprzez przestrzeń) υ 0

72 I o widmo odniesienia naśw. widmo zaburzone I naśw. I intensywność integralna sygnału niezaburzonego I o intensywność integralna sygnału zaburzonego widmo różnicowe I - I o η współczynnik wzmocnienia η = (I I o )/I o

73 Pomiar efektu Overhausera Widmo odniesienia Widmo naświetlone Widmo naświetlone - widmo odniesienia O (B.Furman et al.)

74 A AX AMX ββ αβ βα αα W widmie NMR obserwowane są bezpośrednio wyłącznie przejścia jednokwantowe

75 ββ αβ 3 4 1,4 2,3 βα 1 αα 2 ββ αβ βα 1,4 2,3 1 αα 1 4 przejścia jednokwantowe 5 przejście dwukwantowe 6 przejście zerokwantowe

76 υ o krótki czas naświetlania: truncated driven NOE (TOE) długi czas naświetlania: steady state NOE selektywny impuls 180 o : transient NOE dη/dt ~ 1/r 6 50% η maksymalna wartość η dla układu 1 1 : 50% duża odległość między atomami mała odległość między atomami czas naświetlania [s]

77 NOE współczynnik wzmocnienia sygnału 1 { 1 } η = (I - I o ) / I o I = I o (1+η) η { 1 } -1 log ωτ c ω częstość rezonansowa 1 τ c czas korelacji cząsteczki

78 50 % 50 % 28 % 50 % -13 % 0 % 28 % -13 % η [%] log ωτ c % 49 % 1 % -0.4 % 49 % 1 % -0.4 % 50 % 0 % α η [%] log ωτ c %

79 NOE wykonanie eksperymentu Próbka: eliminacja zanieczyszczeń paramagnetycznych: kationów metali przejściowych (np. Cr 3+ z chromianki) tlenu atmosferycznego rozpuszczonego w roztworze Odgazowanie próbki: przepuszczanie gazu obojętnego mało skuteczne procedura zamrażanie próżnia rozmrażanie 3 5 razy zastosowanie specjalnej probówki NMR

80 PRESATURACJA SYGNAŁU

81 Uboczny skutek eksperymentu NOE: usunięcie sygnału z widma Widmo odniesienia υ 0 Widmo naświetlone Selektywne naświetlanie: wyrównanie obsadzeń poziomów energetycznych PRESATURACJA SYGNAŁU usuwanie sygnału rozpuszczalnika przez jego selektywne naświetlanie. ZASTOSOWANIE: usuwanie silnego sygnału rozpuszczalnika, np. w próbkach białek i DNA w środowisku 2 O (nie D 2 O!!)

82 PRESATURACJA SYGNAŁU (usuwanie sygnału rozpuszczalnika) 2 O

83 Szerokość sygnału zależy od czasu relaksacji T 2??? Szeroki sygnał = krótki T 2 Wąski sygnał = długi T 2 początek rejestracji sygnału

84 ECO SPINOWE

85 exp(-t / T 2 ) 90 o 180 o τ τ Dwie przyczyny zaniku sygnału: czynniki aparaturowe (niejednorodność pola) relaksacja spin-spin t = 0 τ 2τ Carr-Purcell-Meiboom-Gill D1 90 o (τ 180 o τ) n -FID y x f s s f f po impulsie 90 o po czasie τ s po impulsie 180 o po czasie τ

86 REZONANS PODWÓJNY (homodecoupling, odsprzęganie) ν o ββ βα αβ αα υ 0 υ 0

87

MAGNETYCZNY REZONANS JĄDROWY WODORU

MAGNETYCZNY REZONANS JĄDROWY WODORU MAGNETYZNY REZONANS JĄDROWY WODORU 1 NMR, ( 2 NMR, 3 NMR) Trzy aktywne izotopy wodoru: 1 99.98% spin ½ 500.000 Mz (11.744 T) 2 0.02% spin 1 76.753 Mz (11.744 T) 3 0 spin ½ 533.317 Mz (11.744 T) Przykładowe

Bardziej szczegółowo

Podstawowe oddziaływania w cząsteczkach istotne dla spektroskopii MRJ

Podstawowe oddziaływania w cząsteczkach istotne dla spektroskopii MRJ Podstawowe oddziaływania w cząsteczkach istotne dla spektroskopii MRJ Ekranowanie jądra przez elektrony B ef = B o (1 σ) Oddziaływanie spin spin sprzęŝenie pośrednie (skalarne) J sprzęŝenie bezpośrednie

Bardziej szczegółowo

impulsowy NMR - podsumowanie

impulsowy NMR - podsumowanie impulsowy NMR - podsumowanie impulsy RF obracają wektor namagnesowania o żądany kąt wokół wybranej osi np. x, -x, y, -y (oś obrotu wybiera się przez regulowanie fazy sygnału względem fazy odnośnika, kąt

Bardziej szczegółowo

Spektroskopia Jader 13 C i efekt Overhausera

Spektroskopia Jader 13 C i efekt Overhausera Spektroskopia Jader 13 C i efekt Overhausera Literatura : 1. A. Ejchart, L.Kozerski, Spektrometria Magnetycznego Rezonansu Jądrowego 13 C. PWN, Warszawa 1988 (1981). 2. F.W. Wehrli, T. Wirthlin ; z ang.

Bardziej szczegółowo

NUKLIDY O SPINIE 1/2. Duża zawartość naturalna (%): H (99.98), 19 F (100), 31 P (100) Średnia zawartość naturalna (%):

NUKLIDY O SPINIE 1/2. Duża zawartość naturalna (%): H (99.98), 19 F (100), 31 P (100) Średnia zawartość naturalna (%): UKLIDY O SPIIE 1/2 Duża zawartość naturalna (%): 1 (99.98), 19 F (100), 31 P (100) Średnia zawartość naturalna (%): 29 Si (4.7), 77 Se (7.58), 117 Sn (7.61), 119 Sn (8.58) iska zawartość naturalna (%):

Bardziej szczegółowo

Zastosowanie spektroskopii NMR do badania związków pochodzenia naturalnego

Zastosowanie spektroskopii NMR do badania związków pochodzenia naturalnego Zastosowanie spektroskopii NMR do badania związków pochodzenia naturalnego Literatura W. Zieliński, A. Rajcy, Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych, Wydawnictwa

Bardziej szczegółowo

ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1)

ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1) h S = I(I+) gdzie: I kwantowa liczba spinowa jądra I = 0, ½,, /,, 5/,... itd gdzie: = γ S γ współczynnik żyromagnetyczny moment magnetyczny brak spinu I = 0 spin sferyczny I = _ spin elipsoidalny I =,,,...

Bardziej szczegółowo

MAGNETYCZNY REZONANS JĄDROWY (MRJ) NUCLEAR MAGNETIC RESONANCE (NMR)

MAGNETYCZNY REZONANS JĄDROWY (MRJ) NUCLEAR MAGNETIC RESONANCE (NMR) MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... Program: 1. Podstawy ogólne (zjawisko fizyczne, wykonanie pomiaru, aparatura) 2. Spektroskopia

Bardziej szczegółowo

ekranowanie lokx loky lokz

ekranowanie lokx loky lokz Odziaływania spin pole magnetyczne B 0 DE/h [Hz] bezpośrednie (zeemanowskie) 10 7-10 9 pośrednie (ekranowanie) 10 3-10 6 spin spin bezpośrednie (dipolowe) < 10 5 pośrednie (skalarne) < 10 3 spin moment

Bardziej szczegółowo

Impulsy selektywne selektywne wzbudzenie

Impulsy selektywne selektywne wzbudzenie Impulsy selektywne selektywne wzbudzenie Impuls prostokątny o długości rzędu mikrosekund ( hard ): cały zakres 1 ( 13 C) Fala ciągła (impuls o nieskończonej długości): jedna częstość o Impuls prostokątny

Bardziej szczegółowo

Zastosowanie spektroskopii NMR do określania struktury związków organicznych

Zastosowanie spektroskopii NMR do określania struktury związków organicznych Zastosowanie spektroskopii NMR do określania struktury związków organicznych Atomy zbudowane są z jąder atomowych i powłok elektronowych. Modelowo można stwierdzić, że jądro atomowe jest kulą, w której

Bardziej szczegółowo

FIZYKOCHEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz

FIZYKOCHEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz FIZYKOCEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYC Witold Danikiewicz Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa Interpretacja widm NMR, IR i MS prostych cząsteczek Czyli

Bardziej szczegółowo

SPEKTROSKOPIA NMR. No. 0

SPEKTROSKOPIA NMR. No. 0 No. 0 Spektroskopia magnetycznego rezonansu jądrowego, spektroskopia MRJ, spektroskopia NMR jedna z najczęściej stosowanych obecnie technik spektroskopowych w chemii i medycynie. Spektroskopia ta polega

Bardziej szczegółowo

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,

Bardziej szczegółowo

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: II

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: II SPEKTROSKOPIA NMR PODEJŚIE PRAKTYZNE ZĘŚĆ: II DR INŻ. TOMASZ LASKOWSKI O TO JEST WIDMO? WIDMO NMR wykres ilości kwantów energii promieniowania elektromagnetycznego pochłanianego przez próbkę w funkcji

Bardziej szczegółowo

MAGNETYCZNY REZONANS JĄDROWY (MRJ) NUCLEAR MAGNETIC RESONANCE (NMR)

MAGNETYCZNY REZONANS JĄDROWY (MRJ) NUCLEAR MAGNETIC RESONANCE (NMR) MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... (Początek: 1946 rok) Klasyfikacja technik spektroskopowych NMR: Pomiary próbek gazowych Pomiary

Bardziej szczegółowo

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: III

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: III SPEKTROSKOPIA NMR POEJŚIE PRAKTYZNE ZĘŚĆ: III R INŻ. TOMASZ LASKOWSKI ALGORYTM POSTĘPOWANIA I. Jeżeli dysponujesz wzorem sumarycznym badanego związku, oblicz stopień nienasycenia cząsteczki. Możesz to

Bardziej szczegółowo

Magnetyczny Rezonans Jądrowy (NMR)

Magnetyczny Rezonans Jądrowy (NMR) Magnetyczny Rezonans Jądrowy (NMR) obserwacja zachowania (precesji) jąder atomowych obdarzonych spinem w polu magnetycznym Magnetic Resonance Imaging (MRI) ( obrazowanie rezonansem magnetycznym potocznie

Bardziej szczegółowo

SPEKTROSKOPIA MAGNETYCZNEGO REZONANSU JĄDROWEGO IZOTOPÓW INNYCH NIś 1 H i 13 C

SPEKTROSKOPIA MAGNETYCZNEGO REZONANSU JĄDROWEGO IZOTOPÓW INNYCH NIś 1 H i 13 C SPEKTROSKOPIA MAGETYZEGO REZOASU JĄDROWEGO IZOTOPÓW IY Iś 1 i 13 o moŝna zmierzyć metodami MRJ? e Li Be B O F e a Mg Al Si P S l Ar K a Sc Ti V r Mn Fe o i u Zn Ga Ge As Se Br Kr Rb Sr Y Zr b Mo Tc Ru

Bardziej szczegółowo

H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR...

H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... (Początek: 1946 rok) 1. M.Levitt, Spin Dynamics Basics of Nuclear Magnetic Resonance (Wiley,

Bardziej szczegółowo

Magnetyczny rezonans jądrowy

Magnetyczny rezonans jądrowy Magnetyczny rezonans jądrowy Widmo NMR wykres absorpcji promieniowania magnetycznego od jego częstości Częstość pola wyraża się w częściach na milion (ppm) częstości pola magnetycznego pochłanianego przez

Bardziej szczegółowo

NUCLEAR MAGNETIC RESONANCE (NMR)

NUCLEAR MAGNETIC RESONANCE (NMR) MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... (Początek: 1946 rok) Klasyfikacja technik spektroskopowych NMR: Pomiary próbek gazowych Pomiary

Bardziej szczegółowo

H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR...

H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... (Początek: 1946 rok) 1. M.Levitt, Spin Dynamics Basics of Nuclear Magnetic Resonance (Wiley,

Bardziej szczegółowo

Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR

Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Szczególnym i bardzo charakterystycznym rodzajem oddziaływań międzycząsteczkowych jest wiązanie wodorowe. Powstaje ono między molekułami,

Bardziej szczegółowo

Przesunięcie chemiczne, stałe sprzężenia

Przesunięcie chemiczne, stałe sprzężenia Przesunięcie chemiczne, stałe sprzężenia Widmo fal elektromagnetycznych WŁASNOŚCI MAGNETYCZNE NIEKTÓRYC JĄDER WŁASNOŚCI MAGNETYCZNE NIEKTÓRYC JĄDER Jądro 1 2 3 10 B 11 B 13 C 14 N 15 N 17 O 19 F 31 p 33

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,

Bardziej szczegółowo

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: IV. mgr inż. Marcin Płosiński

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: IV. mgr inż. Marcin Płosiński SPEKTROSKOPIA NMR PODEJŚIE PRAKTYZNE ZĘŚĆ: IV DR INŻ. TOMASZ LASKOWSKI mgr inż. Marcin Płosiński PROLOGOS: ODSPRZĘGANIE SPINÓW (DEOUPLING) ODSPRZĘGANIE SPINÓW Eliminacja zjawiska sprzężenia spinowo-spinowego

Bardziej szczegółowo

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH ZAAWANSWANE METDY USTALANIA BUDWY ZWIĄZKÓW RGANICZNYC Witold Danikiewicz Instytut Chemii rganicznej PAN ul. Kasprzaka /52, 0-22 Warszawa Interpretacja widm NMR, IR i MS prostych cząsteczek Czyli jak powiązać

Bardziej szczegółowo

Wykorzystanie zjawiska rezonansu magnetycznego w medycynie. Mariusz Grocki

Wykorzystanie zjawiska rezonansu magnetycznego w medycynie. Mariusz Grocki Wykorzystanie zjawiska rezonansu magnetycznego w medycynie. Mariusz Grocki [1] WYŚCIG DO TYTUŁU ODKRYWCY. JĄDRO ATOMU W ZEWNĘTRZNYM POLU MAGNETYCZNYM. Porównanie do pola grawitacyjnego. CZYM JEST ZJAWISKO

Bardziej szczegółowo

Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR

Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR 1. Wstęp Związki karbonylowe zawierające w położeniu co najmniej jeden atom wodoru mogą ulegać enolizacji przez przesunięcie protonu

Bardziej szczegółowo

Badania trybologiczne materiałów inżynierskich Wyznaczanie przepuszczalności par wody przez materiały opakowań DWUMIESIĘCZNIK 3/ 2018

Badania trybologiczne materiałów inżynierskich Wyznaczanie przepuszczalności par wody przez materiały opakowań DWUMIESIĘCZNIK 3/ 2018 LABORATORIA APARATURA BADANIA ISSN-1427-5619 3/ 2018 DWUMIESIĘCZNIK Badania trybologiczne materiałów inżynierskich Wyznaczanie przepuszczalności par wody przez materiały opakowań ŚRODOWISKO TECHNIKI I

Bardziej szczegółowo

Wyznaczanie struktury długich łańcuchów RNA za pomocą Jądrowego Rezonansu Magnetycznego. Marta Szachniuk Politechnika Poznańska

Wyznaczanie struktury długich łańcuchów RNA za pomocą Jądrowego Rezonansu Magnetycznego. Marta Szachniuk Politechnika Poznańska Wyznaczanie struktury długich łańcuchów RNA za pomocą Jądrowego Rezonansu Magnetycznego Marta Szachniuk Politechnika Poznańska Plan prezentacji 1. Wprowadzenie do problematyki badań: cel i zasadność projektu.

Bardziej szczegółowo

POŁOŻENIA SYGNAŁÓW PROTONÓW POŁOŻENIA SYGNAŁÓW ATOMÓW WĘGLA

POŁOŻENIA SYGNAŁÓW PROTONÓW POŁOŻENIA SYGNAŁÓW ATOMÓW WĘGLA POŁOŻENIA SYGNAŁÓW PROTONÓW SPEKTROSKOPIA NMR OH, NH alkeny kwasy aromatyczne aldehydy alkiny alkile przy heteroatomach alkile δ ppm 11 10 9 8 7 6 5 4 3 2 1 POŁOŻENIA SYGNAŁÓW ATOMÓW WĘGLA alkeny alkile

Bardziej szczegółowo

INADEQUATE-ID I DYNAMICZNY NMR MEZOJONOWYCH. 3-FENYLO-l-TIO-2,3,4-TRIAZOLO-5-METYUDÓW. Wojciech Bocian, Lech Stefaniak

INADEQUATE-ID I DYNAMICZNY NMR MEZOJONOWYCH. 3-FENYLO-l-TIO-2,3,4-TRIAZOLO-5-METYUDÓW. Wojciech Bocian, Lech Stefaniak INADEQUATEID I DYNAMICZNY NMR MEZOJONOWYCH 3FENYLOlTIO2,3,4TRIAZOLO5METYUDÓW Wojciech Bocian, Lech Stefaniak Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01224 Warszawa PL9800994 WSTĘP Struktury

Bardziej szczegółowo

STEREOCHEMIA ORGANICZNA

STEREOCHEMIA ORGANICZNA STEREOEMIA ORGANINA Sławomir Jarosz Wykład 5 TOPOWOŚĆ Podział grup wg topowości 1. omotopowe (wymienialne operacją symetrii n ) 2. Enancjotopowe (wymienialne przez płaszczyznę σ) 3. Diastereotopowe (niewymienialne

Bardziej szczegółowo

Spektroskopia. Spotkanie drugie UV-VIS, NMR

Spektroskopia. Spotkanie drugie UV-VIS, NMR Spektroskopia Spotkanie drugie UV-VIS, NMR Spektroskopia UV-Vis 2/32 Promieniowanie elektromagnetyczne: Ultrafioletu ~100-350 nm światło widzialne ~350-900 nm Kwanty energii zgodne z róŝnicami poziomów

Bardziej szczegółowo

Interpretacja widm 1 H NMR podstawy i przykłady

Interpretacja widm 1 H NMR podstawy i przykłady INTERPRETACJA WIDM Na ćwiczeniach obowiązuje materiał: zawarty w podręczniku - R. Kocjan Chemia analityczna. Podręcznik dla studentów. Analiza instrumentalna. Tom 2 rozdziały 6.1-6.6 (str. 111 126); 7.1

Bardziej szczegółowo

ZASTOSOWANIE SPEKTROSKOPII NMR W MEDYCYNIE

ZASTOSOWANIE SPEKTROSKOPII NMR W MEDYCYNIE ZASTOSOWANIE SPEKTROSKOPII NMR W MEDYCYNIE LITERATURA 1. K.H. Hausser, H.R. Kalbitzer, NMR in medicine and biology. Structure determination, tomography, in vivo spectroscopy. Springer Verlag. Wydanie polskie:

Bardziej szczegółowo

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm) SPEKTROSKOPIA W PODCZERWIENI Podczerwień bliska: 14300-4000 cm -1 (0,7-2,5 µm) Podczerwień właściwa: 4000-700 cm -1 (2,5-14,3 µm) Podczerwień daleka: 700-200 cm -1 (14,3-50 µm) WIELKOŚCI CHARAKTERYZUJĄCE

Bardziej szczegółowo

1. M.Levitt, Spin Dynamics Basics of Nuclear Magnetic Resonance (Wiley, 2005) 2. T.Claridge High-Resolution NMR Techniques in Organic Chemistry

1. M.Levitt, Spin Dynamics Basics of Nuclear Magnetic Resonance (Wiley, 2005) 2. T.Claridge High-Resolution NMR Techniques in Organic Chemistry 1. M.Levitt, Spin Dynamics Basics of Nuclear Magnetic Resonance (Wiley, 2005) 2. T.Claridge High-Resolution NMR Techniques in Organic Chemistry (Elsevier Science, 1999) 3. H.Friebolin Basic One- and Two-Dimensional

Bardziej szczegółowo

DWUWYMIAROWA SPEKTROSKOPIA NMR (2D NMR)

DWUWYMIAROWA SPEKTROSKOPIA NMR (2D NMR) DWUWYMIARWA SPEKTRSKPIA MR (2D MR) W2D WIDM_2D Przykładowe dwuwymiarowe widmo MR Jednowymiarowy eksperyment MR (1D MR) z z M y y x M x I ~ M FT t A(t 1 ) A(t 2 ) A(t 3 ) A(t n ) I(ν 1 ) I(ν 2 ) I(ν 3 )

Bardziej szczegółowo

Rok Grupa Zespół Metody Rezonansowe WFiIS AGH Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA

Rok Grupa Zespół Metody Rezonansowe WFiIS AGH Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Wydział Imię i nazwisko Rok Grupa Zespół 1. 2. 3. 4. Metody Rezonansowe WFiIS AGH Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Spektroskopia Magnetycznego Rezonansu Jądrowego

Bardziej szczegółowo

IDENTYFIKACJA ZWIĄZKÓW ORGANICZNYCH METODAMI SPEKTROSKOPOWYMI SPEKTROSKOPIA W PODCZERWIENI (IR)

IDENTYFIKACJA ZWIĄZKÓW ORGANICZNYCH METODAMI SPEKTROSKOPOWYMI SPEKTROSKOPIA W PODCZERWIENI (IR) IDENTYFIKACJA ZWIĄZKÓW ORGANICZNYC METODAMI SPEKTROSKOPOWYMI SPEKTROSKOPIA W PODCZERWIENI (IR) Metodą o bardzo dużym znaczeniu w organicznej analizie strukturalnej jest spektroskopia w podczerwieni (spektroskopia

Bardziej szczegółowo

Spektroskopowe metody identyfikacji związków organicznych

Spektroskopowe metody identyfikacji związków organicznych Spektroskopowe metody identyfikacji związków organicznych Wstęp Spektroskopia jest metodą analityczną zajmującą się analizą widm powstających w wyniku oddziaływania promieniowania elektromagnetycznego

Bardziej szczegółowo

PRACOWNIA PODSTAW BIOFIZYKI

PRACOWNIA PODSTAW BIOFIZYKI PRACOWNIA PODSTAW BIOFIZYKI Ćwiczenia laboratoryjne dla studentów III roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Jedno- i dwuwymiarowa spektroskopia NMR w wyznaczaniu

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego (NMR)

Spektroskopia magnetycznego rezonansu jądrowego (NMR) Spektroskopia magnetycznego rezonansu jądrowego (NM) Fizyczne podstawy spektroskopii NM W spektroskopii magnetycznego rezonansu jądrowego używane jest promieniowanie elektromagnetyczne o częstościach z

Bardziej szczegółowo

H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR...

H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... 1. M.Levitt, Spin Dynamics Basics of Nuclear Magnetic Resonance (Wiley, 2005) 2. T.Claridge

Bardziej szczegółowo

ZASADY ZALICZENIA PRZEDMIOTU MBS

ZASADY ZALICZENIA PRZEDMIOTU MBS ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll

Bardziej szczegółowo

Spektroskopia molekularna. Spektroskopia w podczerwieni

Spektroskopia molekularna. Spektroskopia w podczerwieni Spektroskopia molekularna Ćwiczenie nr 4 Spektroskopia w podczerwieni Spektroskopia w podczerwieni (IR) jest spektroskopią absorpcyjną, która polega na pomiarach promieniowania elektromagnetycznego pochłanianego

Bardziej szczegółowo

METODY SPEKTROSKOPOWE

METODY SPEKTROSKOPOWE CHEMIA ORGANICZNA METODY SPEKTROSKOPOWE 2 Chemia organiczna Etap 0. i 1. ZADANIE 1. Analiza spektralna IR, spektroskopia masowa Współczesna organiczna analiza jakościowa w coraz mniejszym stopniu korzysta

Bardziej szczegółowo

PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ

PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ Kierowniczka pracowni: dr hab. Magdalena Pecul-Kudelska, (pok. 417), e-mail mpecul@chem.uw.edu.pl, tel 0228220211 wew 501; Spis ćwiczeń i osoby prowadzące 1.

Bardziej szczegółowo

IM - 6a MAGNETYCZNY REZONANS JĄDROWY. I. Cel ćwiczenia

IM - 6a MAGNETYCZNY REZONANS JĄDROWY. I. Cel ćwiczenia IM - 6a MAGNETYCZNY REZONANS JĄDROWY I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z impulsowymi metodami magnetycznego rezonansu jądrowego. Podczas ćwiczenia student wykonuje pomiary czasów relaksacji

Bardziej szczegółowo

Kombinatoryczna analiza widm 2D-NOESY w spektroskopii Magnetycznego Rezonansu Jądrowego cząsteczek RNA. Marta Szachniuk

Kombinatoryczna analiza widm 2D-NOESY w spektroskopii Magnetycznego Rezonansu Jądrowego cząsteczek RNA. Marta Szachniuk Kombinatoryczna analiza widm 2D-NOESY w spektroskopii Magnetycznego Rezonansu Jądrowego cząsteczek RNA Marta Szachniuk Plan prezentacji Wprowadzenie do tematyki badań Teoretyczny model problemu Złożoność

Bardziej szczegółowo

ĆWICZENIE NR 5 ANALIZA NMR PRODUKTÓW FERMENTACJI ALKOHOLOWEJ

ĆWICZENIE NR 5 ANALIZA NMR PRODUKTÓW FERMENTACJI ALKOHOLOWEJ ĆWICZENIE NR 5 ANALIZA NMR PRODUKTÓW FERMENTACJI ALKOHOLOWEJ Uwaga: Ze względu na laboratoryjny charakter zajęć oraz kontakt z materiałem biologicznym, studenci zobowiązani są uŝywać fartuchów i rękawiczek

Bardziej szczegółowo

Podsumowanie W9. Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2003/04. wykład 12 1

Podsumowanie W9. Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2003/04. wykład 12 1 Podsumowanie W9 Obserwacja przejść rezonansowych wymuszonych przez pole EM jest moŝliwa tylko, gdy istnieje róŝnica populacji. Tymczasem w zakresie fal radiowych poziomy są prawie jednakowo obsadzone.

Bardziej szczegółowo

WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy

WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE 1 Ze względu na rozdzielczość czasową metody, zależną od długości trwania impulsu, spektroskopię dzielimy na: nanosekundową (10-9 s) pikosekundową

Bardziej szczegółowo

FID Free Induction Decay. Rejestracja widm NMR metodą fali ciągłej CW (Continuous Wave)

FID Free Induction Decay. Rejestracja widm NMR metodą fali ciągłej CW (Continuous Wave) Rejestracja widm NMR metodą fali ciągłej W (ontinuous Wave) metodą fali ciągłej ze stopniową zmianą zakresu częstości w spektrometrach W próbka jest umieszczona w polu magnetycznym i naświetlana przy powolnej

Bardziej szczegółowo

Spektroskopia NMR w badaniach struktury i aktywności biomolekuł

Spektroskopia NMR w badaniach struktury i aktywności biomolekuł Spektroskopia NMR w badaniach struktury i aktywności biomolekuł I. Magnetyczny rezonans jądrowy uproszczone podstawy teoretyczne stosowanej metody i aparatura pomiarowa. Jądra atomowe co udowodnił Ernest

Bardziej szczegółowo

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2 PODSTAWY CEMII INŻYNIERIA BIOMEDYCZNA Wykład Plan wykładu II,III Woda jako rozpuszczalnik Zjawisko dysocjacji Równowaga w roztworach elektrolitów i co z tego wynika Bufory ydroliza soli Roztwory (wodne)-

Bardziej szczegółowo

SPEKTROSKOPIA MAGNETYCZNEGO REZONANSU JĄDROWEGO IZOTOPÓW INNYCH NIŻ 1 H i 13 C

SPEKTROSKOPIA MAGNETYCZNEGO REZONANSU JĄDROWEGO IZOTOPÓW INNYCH NIŻ 1 H i 13 C SPEKTRSKPIA MAGETYZEG REZASU JĄDRWEG IZTPÓW IY IŻ 1 i 13 o można zmierzyć metodami MRJ? e Li Be B F e a Mg Al Si P S l Ar K a Sc Ti V r Mn Fe o i u Zn Ga Ge As Se Br Kr Rb Sr Y Zr b Mo Tc Ru Rh Pd Ag d

Bardziej szczegółowo

SN-8 Kwas acetylosalicylowy SE-3 2,4,6-Tribromofenol. SN-10 Bromek izopropylu SE-5 p-nitroacetanilid. SN-11 Bromek izobutylu* SE-7 Fenol

SN-8 Kwas acetylosalicylowy SE-3 2,4,6-Tribromofenol. SN-10 Bromek izopropylu SE-5 p-nitroacetanilid. SN-11 Bromek izobutylu* SE-7 Fenol Materiały pomocnicze z chemii organicznej dla studentów (ocena czystości wybranych preparatów metodą NMR) Ewa Dudziak, Michał Białek 2016 W pliku: Sposób przygotowania próbki Tabele NMR Sygnały typowych

Bardziej szczegółowo

Uniwersytet Jagielloński Collegium Medicum Katedra Chemii Organicznej. Marek Żylewski

Uniwersytet Jagielloński Collegium Medicum Katedra Chemii Organicznej. Marek Żylewski Uniwersytet Jagielloński Collegium Medicum Katedra Chemii Organicznej Marek Żylewski Badania konformacyjne potencjalnych ligandów receptora 5HT1A metodami dwuwymiarowej spektroskopii magnetycznego rezonansu

Bardziej szczegółowo

Spektroskopowe metody identyfikacji związków organicznych / Robert. Spis treści

Spektroskopowe metody identyfikacji związków organicznych / Robert. Spis treści Spektroskopowe metody identyfikacji związków organicznych / Robert M. Silverstein, Francis X. Webster, David J. Kiemle. wyd. 2, dodr. 4. - Warszawa, 2012 Spis treści ROZDZIAŁ 1 SPEKTROMETRIA MAS 1 1.1

Bardziej szczegółowo

Ćwiczenie 3 Pomiar równowagi keto-enolowej metodami spektroskopii IR i NMR

Ćwiczenie 3 Pomiar równowagi keto-enolowej metodami spektroskopii IR i NMR Ćwiczenie 3 Pomiar równowagi keto-enolowej metodami spektroskopii IR i NMR 1. Wstęp Związki karbonylowe zawierające w pozycji α co najmniej jeden atom H wykazują tautomerię polegającą na wymianie tego

Bardziej szczegółowo

impulsowe gradienty B 0 Pulsed Field Gradients (PFG)

impulsowe gradienty B 0 Pulsed Field Gradients (PFG) impulsowe gradienty B 0 Pulsed Field Gradients (PFG) częstość Larmora w polu jednorodnym: w = gb 0 liniowy gradient B 0 : w = g(b 0 + xg x + yg y + zg z ) w spektroskopii gradienty z w obrazowaniu x,y,z

Bardziej szczegółowo

SpinWorks. Manual dla studentów III roku Chemii, licencjat - Spektrochemia

SpinWorks. Manual dla studentów III roku Chemii, licencjat - Spektrochemia SpinWorks Program SpinWorks służy do procesowania widm NMR jedno- i dwuwymiarowych. Umożliwia również symulację widm NMR. SpinWorks jest programem darmowym. Można go pobrać ze strony: www.columbia.edu/cu/chemistry/groups/nmr/spinworks.html.

Bardziej szczegółowo

SPEKTROSKOPIA MAGNETYCZNEGO REZONANSU JĄDROWEGO IZOTOPÓW O SPINIE WIĘKSZYM NIŻ 1/2

SPEKTROSKOPIA MAGNETYCZNEGO REZONANSU JĄDROWEGO IZOTOPÓW O SPINIE WIĘKSZYM NIŻ 1/2 SPEKTRSKPIA MAGETYZEG REZASU JĄDRWEG IZTPÓW SPIIE WIĘKSZYM IŻ 1/2 PDZIAŁ IZTPÓW spin = 1/2 spin > 1/2 duża zawartość naturalna 1, 19 F, 31 P 14 mała zawartość naturalna 3, 13, 15 2, 17, 33 S Jądra o spinie

Bardziej szczegółowo

Analiza Organiczna. Jan Kowalski grupa B dwójka 7(A) Własności fizykochemiczne badanego związku. Zmierzona temperatura topnienia (1)

Analiza Organiczna. Jan Kowalski grupa B dwójka 7(A) Własności fizykochemiczne badanego związku. Zmierzona temperatura topnienia (1) Przykład sprawozdania z analizy w nawiasach (czerwonym kolorem) podano numery odnośników zawierających uwagi dotyczące kolejnych podpunktów sprawozdania Jan Kowalski grupa B dwójka 7(A) analiza Wynik przeprowadzonej

Bardziej szczegółowo

Spektroskopia Magnetycznego Rezonansu Jądrowego (NMR) (NMR Spectroscopy)

Spektroskopia Magnetycznego Rezonansu Jądrowego (NMR) (NMR Spectroscopy) Uniwersytet Jagielloński, Collegium Medicum, Katedra Chemii rganicznej Materiały do seminariów ze spektroskopii Spektroskopia Magnetycznego Rezonansu Jądrowego (NMR) (NMR Spectroscopy) Spektroskopia 1

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 4 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

W latach dwudziestych XX wieku pojawiły się koncepcje teoretyczne, które pozwoliły przewidzieć jądrowy rezonans magnetyczny, przez szereg lat eksperymentatorzy usiłowali bez skutku odkryć to zjawisko doświadczalnie.

Bardziej szczegółowo

Zastosowanie spektroskopii UV/VIS do określania struktury związków organicznych

Zastosowanie spektroskopii UV/VIS do określania struktury związków organicznych Zwiększenie liczby wysoko wykwalifikowanych absolwentów kierunków ścisłych Uniwersytetu Jagiellońskiego POKL.04.01.02-00-097/09-00 Zastosowanie spektroskopii UV/VIS do określania struktury związków organicznych

Bardziej szczegółowo

Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY

Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zasadą działania detektorów pozycyjnie czułych poprzez pomiar prędkości światła w materiale scyntylatora

Bardziej szczegółowo

UKŁAD OKRESOWY PIERWIASTKÓW

UKŁAD OKRESOWY PIERWIASTKÓW UKŁAD OKRESOWY PIERWIASTKÓW Michał Sędziwój (1566-1636) Alchemik Sędziwój - Jan Matejko Pierwiastki chemiczne p.n.e. Sb Sn Zn Pb Hg S Ag C Au Fe Cu (11)* do XVII w. As (1250 r.) P (1669 r.) (2) XVIII

Bardziej szczegółowo

PL B1. Symetryczne czwartorzędowe sole imidazoliowe, pochodne achiralnego alkoholu monoterpenowego oraz sposób ich wytwarzania

PL B1. Symetryczne czwartorzędowe sole imidazoliowe, pochodne achiralnego alkoholu monoterpenowego oraz sposób ich wytwarzania PL 215465 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 215465 (13) B1 (21) Numer zgłoszenia: 398943 (51) Int.Cl. C07D 233/60 (2006.01) C07C 31/135 (2006.01) Urząd Patentowy Rzeczypospolitej

Bardziej szczegółowo

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz. Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz. Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH Witold Danikiewicz Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa CZĘŚĆ I PRZEGLĄD METOD SPEKTRALNYCH Program wykładów Wprowadzenie:

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

Chiralność i spektroskopia MRJ Badanie procesów wymiany (Dynamic NMR, D NMR) Wyznaczanie stałej trwałości kompleksów Technika pomiarowa MRJ: impulsy

Chiralność i spektroskopia MRJ Badanie procesów wymiany (Dynamic NMR, D NMR) Wyznaczanie stałej trwałości kompleksów Technika pomiarowa MRJ: impulsy Chiralność i spektroskopia MRJ Badanie procesów wymiany (Dynamic MR, D MR) Wyznaczanie stałej trwałości kompleksów Technika pomiarowa MRJ: impulsy złoŝone i selektywne Czas relaksacji T 1 Czas relaksacji

Bardziej szczegółowo

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość

Bardziej szczegółowo

METODY SPEKTROSKOPOWE II. UV-VIS od teorii do praktyki Jakub Grynda Katedra Technologii Leków i Biochemii

METODY SPEKTROSKOPOWE II. UV-VIS od teorii do praktyki Jakub Grynda Katedra Technologii Leków i Biochemii METODY SPEKTROSKOPOWE II UV-VIS od teorii do praktyki Jakub Grynda Katedra Technologii Leków i Biochemii Pokój nr 1 w Chemii B Godziny konsultacji: Poniedziałek 11-13 E-mail: jakub.grynda@gmail.com PLAN

Bardziej szczegółowo

spektroskopia IR i Ramana

spektroskopia IR i Ramana spektroskopia IR i Ramana oscylacje (wibracje) 3N-6 lub 3N-5 drgań normalnych nie wszystkie drgania obserwuje się w IR - nieaktywne w IR gdy nie zmienia się moment dipolowy - pasma niektórych drgań mają

Bardziej szczegółowo

Spektroskopia modulacyjna

Spektroskopia modulacyjna Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,

Bardziej szczegółowo

dobry punkt wyjściowy do analizy nieznanego związku

dobry punkt wyjściowy do analizy nieznanego związku spektrometria mas dobry punkt wyjściowy do analizy nieznanego związku cele: wyznaczenie masy cząsteczkowej związku wyznaczenie wzoru empirycznego określenie fragmentów cząsteczki określenie niedoboru wodoru

Bardziej szczegółowo

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR WSTĘP Metody spektroskopowe Spektroskopia bada i teoretycznie wyjaśnia oddziaływania pomiędzy materią będącą zbiorowiskiem

Bardziej szczegółowo

UDA-POKL /09-00

UDA-POKL /09-00 Zastosowanie spektrometrii magnetycznego rezonansu jądrowego do określania struktury związków organicznych (opracowała Anna Kolasa) Szczególną uwagę będziemy poświęcać następującym zagadnieniom: 1. Interpretacja

Bardziej szczegółowo

SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne

SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY ODPOWIEDZI I SCEMAT PUNKTOWANIA POZIOM ROZSZERZONY Zdający otrzymuje punkty tylko za poprawne rozwiązania, precyzyjnie odpowiadające poleceniom zawartym w zadaniach. Odpowiedzi niezgodne z poleceniem (nie

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY ODPOWIEDZI I SCEMAT PUNKTOWANIA POZIOM ROZSZERZONY Zdający otrzymuje punkty tylko za poprawne rozwiązania, precyzyjnie odpowiadające poleceniom zawartym w zadaniach. Odpowiedzi niezgodne z poleceniem (nie

Bardziej szczegółowo

Różnorodne zjawiska w rezonatorze Fala stojąca modu TEM m,n

Różnorodne zjawiska w rezonatorze Fala stojąca modu TEM m,n Różnorodne zjawiska w rezonatorze Fala stojąca modu TEM m,n -z z w płaszczyzna przewężenia Propaguję się jednocześnie dwie fale w przeciwbieżnych kierunkach Dla kierunku 2 kr 2R ( r,z) exp i kz s Φ exp(

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić

Bardziej szczegółowo

analiza chemiczna jakościowa ilościowa

analiza chemiczna jakościowa ilościowa analiza chemiczna jakościowa ilościowa analiza chemiczna klasyczna instrumentalna analiza elementarna, klasyczna analiza anionów i kationów, analiza wagowa, metody miareczkowe chemia = arx separatoria

Bardziej szczegółowo

Ekscyton w morzu dziur

Ekscyton w morzu dziur Ekscyton w morzu dziur P. Kossacki, P. Płochocka, W. Maślana, A. Golnik, C. Radzewicz and J.A. Gaj Institute of Experimental Physics, Warsaw University S. Tatarenko, J. Cibert Laboratoire de Spectrométrie

Bardziej szczegółowo

PL B1. Ciecze jonowe pochodne heksahydrotymolu oraz sposób wytwarzania cieczy jonowych pochodnych heksahydrotymolu

PL B1. Ciecze jonowe pochodne heksahydrotymolu oraz sposób wytwarzania cieczy jonowych pochodnych heksahydrotymolu PL 214104 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 214104 (13) B1 (21) Numer zgłoszenia: 396007 (51) Int.Cl. C07D 233/60 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

ANALITYKA W KONTROLI JAKOŚCI

ANALITYKA W KONTROLI JAKOŚCI ANALITYKA W KONTROLI JAKOŚCI ANALIZA ŚLADÓW METODA ICP-OES Optyczna spektroskopia emisyjna ze wzbudzeniem w indukcyjnie sprzężonej plazmie WYKŁAD 4 Rodzaje widm i mechanizm ich powstania PODSTAWY SPEKTROSKOPII

Bardziej szczegółowo

Jak analizować widmo IR?

Jak analizować widmo IR? Jak analizować widmo IR? Literatura: W. Zieliński, A. Rajca, Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych. WNT. R. M. Silverstein, F. X. Webster, D. J. Kiemle, Spektroskopowe

Bardziej szczegółowo

Inne koncepcje wiązań chemicznych. 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań?

Inne koncepcje wiązań chemicznych. 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań? Inne koncepcje wiązań chemicznych 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań? Model VSEPR wiązanie pary elektronowe dzielone między atomy tworzące wiązanie.

Bardziej szczegółowo

Sprawozdanie z badania potwierdzających tożsamość substancji Oliwa Ozonowana

Sprawozdanie z badania potwierdzających tożsamość substancji Oliwa Ozonowana KATEDRA CHEMII ORGANICZNEJ i STOSOWANEJ Wydział Chemii Uniwersytetu Łódzkiego 91-403 Łódź, ul. Tamka 12 Tel. +42 635 57 69, Fax +42 665 51 62 e-mail: romanski@uni.lodz.pl Sprawozdanie z badania potwierdzających

Bardziej szczegółowo

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH Witold Danikiewicz Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa Listopad 2013 styczeń 2014 Program wykładów Wprowadzenie:

Bardziej szczegółowo

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx

Bardziej szczegółowo

Widma w podczerwieni (IR)

Widma w podczerwieni (IR) Spektroskopowe metody identyfikacji związków organicznych Widma w podczerwieni (IR) dr 2 Widmo w podczerwieni Liczba drgań zależy od liczby atomów w cząsteczce: cząsteczka nieliniowa o n atomach ma 3n-6

Bardziej szczegółowo