Chiralność i spektroskopia MRJ Badanie procesów wymiany (Dynamic NMR, D NMR) Wyznaczanie stałej trwałości kompleksów Technika pomiarowa MRJ: impulsy

Wielkość: px
Rozpocząć pokaz od strony:

Download "Chiralność i spektroskopia MRJ Badanie procesów wymiany (Dynamic NMR, D NMR) Wyznaczanie stałej trwałości kompleksów Technika pomiarowa MRJ: impulsy"

Transkrypt

1 Chiralność i spektroskopia MRJ Badanie procesów wymiany (Dynamic MR, D MR) Wyznaczanie stałej trwałości kompleksów Technika pomiarowa MRJ: impulsy złoŝone i selektywne Czas relaksacji T 1 Czas relaksacji T 2 Technika gradientowa i jej zastosowania Usuwanie sygnału rozpuszczalnika Procesy dyfuzji, DSY MRJ w fazie stałej i ciekłokrystalicznej brazowanie MRJ

2 Chiralność i spektroskopia MRJ + = enancjomery (nierozróŝnialne przez MRJ) optycznie czysty reagent diastereoizomery (rozróŝnialne przez MRJ) ZróŜnicowanie enancjomerów: synteza pochodnych solwatowanie kompleksowanie (sól metalu) kompleksowanie (inkluzja) badanie w chiralnej fazie ciekłokrystalicznej D.Parker, Chem. Rev., 91 (1991) 1441 T,Wenzel, Discrimination of chiral compounds using MR spectroscopy (Wiley 2007)

3 dczynniki uŝywane do syntezy chiralnych pochodnych CDA Chiral Derivatizing Agent X S 2 Cl C 3 C C X = C 3, t-bu, CF 3, Cl d-camphor-10-sulfonyl chloride 2'-methoxy-1,1'-binaphtyl-2-carboxylic acid (MBC) CF 3 2 C 3 C 3 C 3 C C 3 C C 3 CF3 Mosher's acide, MTPA 2-amino-1-methoxymenth-8-ene

4 Chiralne odczynniki solwatujące CSA Chiral Solvating Agent CF 3 CF 3 CF 3 C 3 C Ph C 2 5 Ph Ph (C 3 ) C Cl Cl t-bu Ph P S 3 C Ph P S

5 dczynniki przesunięcia chemicznego CSR Chiral Shift Reagent CLRS Chiral Lanthanide Shift Reagents R R R Eu(pvc) 3 R = tbu Rh Rh R = C 3 Ph Pr(tfc) 3 R = CF 3 Yb(tfc) 3 R = CF 3 R R CF 3 3

6 R R Rh R Rh R R = C 3 CF 3 Ph Ph + Ph - Ph C 3 Tetrazol (rac.) + CSR Tetrazol (+) + CSR Tetrazol (rac.)

7 Chiralne kompleksy inkluzyjne Me Me Me F Cl Br Me + 2 C 2 C Me R C Me R' + 2 C 2 C Me

8 Wykorzystanie heteroatomu jako sondy 19 F MR δ = ppm C 3 X C 3 F C 3 F C F C X C X =, C, Br, I 195 Pt MR 31 P MR δ = ppm 77 Se MR δ = ppm R' Se R Cl P CR CR 199 g MR δ = 6 ppm F Cl P gcl Ph C 3 C C 3 δ = 10 ppm Cl 3 C + C 3 Cl Pt 2 Cl (S, S) (R, S) C C C R R'

9 Chiralność i spektroskopia MRJ Badanie procesów wymiany (Dynamic MR, D MR) Wyznaczanie stałej trwałości kompleksów Technika pomiarowa MRJ: impulsy złoŝone i selektywne Czas relaksacji T 1 Czas relaksacji T 2 Technika gradientowa i jej zastosowania Usuwanie sygnału rozpuszczalnika Procesy dyfuzji, DSY MRJ w fazie stałej i ciekłokrystalicznej brazowanie MRJ

10 Wymiana chemiczna Me k Me Me Me R R Wolna wymiana: widoczne sygnały wszystkich form. Szybka wymiana: widoczne sygnały o uśrednionych przesunięciach chemicznych (δ obs = δ A *X A + δ B *X B ) Pośrednia szybkość wymiany: szerokie linie, kształt sygnału zaleŝny od temperatury próbki (kształt sygnału: f(δ A, δ B, T 2A, T 2B, k, k -1, p A, p B ) Pośrednia szybkość wymiany: δ [z] k J.Sandstrım, Dynamic MR Spectroscopy, Academic Press, London,1982

11 Badanie procesów wymiany (Dynamic MR, D MR) Wolna wymiana: widoczne sygnały wszystkich form. Badanie: widma typu EXSY (wersja 2D i 1D) Szybka wymiana: widoczne sygnały uśrednione Badanie: pomiary czasu relaksacji T 1 Pośrednia szybkość wymiany: analiza kształtu linii Ph Ph + - k + C 3 - C 3 Szybkość wymiany w punkcie koalescencji: k = (π δ) / 2^0.5 = 2.22 δ Pomiar temperatury próbki: Termometr metanolowy; δ Me δ = f(t) Termometr glikolowy ln(kt -1 ) = bt -1 + c # = b S # = 8.31(c ) G # = # - T S # J.Jaźwiński,.Staszewska-Krajewska, J.Mol.Structure, 687 (2004) 23

12 Chiralność i spektroskopia MRJ Badanie procesów wymiany (Dynamic MR, D MR) Wyznaczanie stałej trwałości kompleksów Technika pomiarowa MRJ : impulsy złoŝone i selektywne Czas relaksacji T 1 Czas relaksacji T 2 Technika gradientowa i jej zastosowania Usuwanie sygnału rozpuszczalnika Procesy dyfuzji, DSY MRJ w fazie stałej i ciekłokrystalicznej brazowanie MRJ

13 Stała trwałości kompleksu 1:1 (MRJ, szybka wymiana) L + S = LS [LS] K = = [L][S] [LS] (L o LS)(S o LS) δ obs = X L δ L + X LS δ LS X L + X LS = 1 δ obs δ L = (δ LS δ L ) KL o + KS o [(KL o KS o ) 2 + 2KL o + 2KS o +1] 0.5 2KL o [L o ] wyjściowe stęŝenie ligandu [S o ] wyjściowe stęŝenie substratu [LS] stęŝenie kompleksu w mieszaninie [L] stęŝenie ligandu w mieszaninie [L] = [L o ] [LS] [S] stęŝenie substratu w mieszaninie [S] = [S o ] [LS] K stała trwałości kompleksu 1:1 X L, X LS ułamki molowe ligandu i kompleksu w mieszaninie X L = [L] / [L o ], X LS = [LS] / [L o ] δ L przesuniecie chemiczne L δ obs obserwowana zmiana przesunięcia chemicznego L przesuniecie chemiczne L w LS δ LS L.Fielding, Tetrahedron, 56 (2000) 6151

14 δ obs δ L = (δ LS δ L ) KL o + KS o [(KL o KS o ) 2 + 2KL o + 2KS o +1] 0.5 2KL o δ obs δ L Lo = 100K-1 L o = 10K -1 L o = 0.1K -1 S o /L o Wielkości nieznane: [LS], δ LS D obs = X L D L + X LS D LS (D LS D S ) (1/T 1 ) obs = X L (1/T 1 ) L + X LS (1/T 1 ) LS L.Fielding, Tetrahedron, 56 (2000) 6151

15 Stała trwałości kompleksu 1:1 (protonowanie) metoda endersona - asselbacha B + + = B + [B + ] K = [B] [ + ] δ obs = X B δ B + X B δ B p = pk + log δ B - δ obs δ obs - δ B X B + X B = 1 p [B o ] wyjściowe stęŝenie zasady [B + ] stęŝenie formy protonowanej w mieszaninie [B] stęŝenie zasady w mieszaninie [L] = [L o ] [LS] [ + ] stęŝenie jonu + w mieszaninie (moŝna zmierzyć jako p) K stała trwałości kompleksu 1:1 X L, X LS δ B δ obs δ B ułamki molowe zasady i formy protonowanej w mieszaninie X B = [B] / [B o ], X B = [B] / [B o ] przesuniecie chemiczne B obserwowana zmiana przesunięcia chemicznego przy zmianie p przesuniecie chemiczne B w B (przy duŝym nadmiarze kwasu, p = 1) δ B - δ obs δ obs - δ B pk δ (ppm) Spektrometria Magnetycznego Rezonansu Jądrowego 13 C A.Ejchart, L.Kozerski, PW, Warszawa 1988 (1981) p

16 Technika pomiarowa MRJ : impulsy złoŝone i selektywne Czas relaksacji T 1 Czas relaksacji T 2 Technika gradientowa i jej zastosowania Usuwanie sygnału rozpuszczalnika Procesy dyfuzji, DSY MRJ w fazie stałej i ciekłokrystalicznej brazowanie MRJ

17 Pulsy złoŝone (composite pulse) kompensacja niedoskonałości 90 o 88 o 90 o z y z 180 o x 180 o (y) = 90 o (y) 180 o (x) 90 o (y) y x z z z y y y 90 o (y) x 180 o (x) x 90 o (y) x

18 Impulsy selektywne selektywne wzbudzenie Impuls prostokątny o długości rzędu mikrosekund ( hard ): cały zakres 1 (13C) Fala ciągła (impuls o nieskończonej długości): jedna częstość νo Impuls prostokątny o długości rzędu milisekund ( soft ): zakres kilku kilkunastu z alf - Gaussian T.Claridge, igh-resolution MR Techniques in rganic Chemistry, xford 1999 Profil impulsu prostokątnego w dziedzinie częstoliwości

19 Szerokość wzbudzenia: długość impulsu (~ ms) Wielkość wzbudzenia: moc (amplituda) impulsu Selektywność: profil impulsu

20 C 2 5 C D sel-csy

21 krótki czas naświetlania: truncated driven E (TE) długi czas naświetlania: steady state E selektywny impuls 180 o : transient E 180 o 90 o DPFGSE E

22 C 2 5 C 2 1

23 C 2 5 hjres C 2 1 J( 13 C- 1 ) [z] δ( 13 C) [ppm]

24 Technika pomiarowa MRJ: impulsy złoŝone i selektywne Czas relaksacji T 1 Czas relaksacji T 2 Technika gradientowa i jej zastosowania Usuwanie sygnału rozpuszczalnika Procesy dyfuzji, DSY MRJ w fazie stałej i ciekłokrystalicznej brazowanie MRJ

25 hν emisja spontaniczna (nieefektywna w MRJ) emisja wymuszona czas korelacji τ c : miara ruchliwości cząsteczki czas obrotu cząsteczki o 1 radian Poruszająca się molekuła generuje fale elektromagnetyczne log (T 1 ) log (τ)

26 Pomiar czasu relaksacji T 1 (metoda odwrócenia i powrotu, Inversion Recovery, IRFT) 180 o 90 o τ t z z z z τ 1 τ 2 τ 3 I obs = A + B exp (- τ / T 1 ) τ 4 czas τ

27 Wykorzystanie czasu T 1 log (T 1 ) C 2 CC 2 C 3 [ C 2 ] n a + log (τ) n = 4, 6, 8 Czas relaksacji T 1 (sek.) wolny ligand kompleks z a C 3 C 2 a C [ C 2 ] C C 3 C

28 Me Me k Me Me powrót do stanu równowagi: 180 o ~ exp(- 1/T 1 ) sel 180 o powrót do stanu równowagi: ~ exp(- 1/T 1-2k) Int. czas

29 Technika pomiarowa MRJ : impulsy złoŝone i selektywne Czas relaksacji T 1 Czas relaksacji T 2 Technika gradientowa i jej zastosowania Usuwanie sygnału rozpuszczalnika Procesy dyfuzji, DSY MRJ w fazie stałej i ciekłokrystalicznej brazowanie MRJ

30 Pomiar czasu relaksacji T 2 metodą echa spinowego 90 o 180 o τ τ t z z z z z y y y y τ y x 90 o τ 180o x x x x echo spinowe Zanik sygnału w płaszczyźnie xy: relaksacja spin-spin (T 2 ) niejednorodność pola magnetycznego w sondzie (kompensowana przez echo ) procesy dyfuzji I obs ~ A exp(- 2τ / T 2 ) exp(- adτ 3 ) intensywność sygnału: I obs ~ A exp(- 2τ / T 2 )

31 Technika pomiarowa MRJ : impulsy złoŝone i selektywne Czas relaksacji T 1 Czas relaksacji T 2 Technika gradientowa i jej zastosowania Usuwanie sygnału rozpuszczalnika Procesy dyfuzji, DSY MRJ w fazie stałej i ciekłokrystalicznej brazowanie MRJ

32 Działanie impulsu niejednorodnego pola magnetycznego 90 o G -G

33 Usuwanie zbędnego sygnału z widma (sel.) G - G z z z z y x y 90 o G - G x y x y x sel 180 o z y z y x x

34 Badanie procesów dyfuzji Pulsed Gradient Spin Echo, PGSE τ τ δ G t δ G τ, t const δ - zmienny Zanik sygnału: wywołany dyfuzją molekuł Udział relaksacji T 2 : taki sam dla wszystkich eksperymentów I obs ~ A exp(- a D δ 2 )

35 Szybkości dyfuzji jako dowód kompleksowania F Cl Br mała cząsteczka duŝa szybkość dyfuzji Me Me Me duŝa cząsteczka mała szybkość dyfuzji Me Me F Br Cl Me duŝa cząsteczka mała szybkość dyfuzji

36 Widmo pseudodwuwymiarowe: DSY (Diffusion rdered Spectroscopy) K.Morris, C.Johnson, JACS 115 (1993) 4291

37 Technika pomiarowa MRJ : impulsy złoŝone i selektywne Czas relaksacji T 1 Czas relaksacji T 2 Technika gradientowa i jej zastosowania Usuwanie sygnału rozpuszczalnika Procesy dyfuzji, DSY MRJ w fazie stałej i ciekłokrystalicznej brazowanie MRJ

38 Molekuła w polu magnetycznym Ekranowanie jądra atomu: elipsoida o trzech róŝnych osiach, σ xx, σ yy, σ zz Ekranowanie jądra (przesunięcie chemiczne) zaleŝy od orientacji elipsoidy w polu magnetycznym ( anizotropia przesunięcia chemicznego ) Pomiar w cieczy: σ = (σ xx + σ yy + σ zz ) / 3

39 B o X X Jądra równowaŝne krystalograficznie: te same wartości σ xx, σ yy, σ zz, moŝna przekształcić jedną elipsoidę w drugą operacją symetrii; Jądra równowaŝne magnetycznie: moŝna przekształcić jedną elipsoidę w drugą operacją translacji lub inwersji; ekranowanie jąder zmienia się tak samo w czasie obrotu kryształu jądra nierównowaŝne magnetycznie: ekranowanie inne dla obu jąder w zaleŝności od orientacji kryształu

40 Pomiar MRJ monokryształu usunięcie oddziaływań dipol dipol (np. metodą impulsową) pomiar przesunięcia chemicznego dla róŝnych orientacji kryształu analiza wyników: określenie wartości σ xx, σ yy, σ zz (elipsoidy ekranowania) określenie orientacji elipsoidy względem osi kryształu Postępy w zastosowaniu technik magnetycznego rezonansu jądrowego w chemii Praca zbiorowa pod red. L.Sobczyka, Warszawa, PW 1984

41 Widmo proszkowe MRJ Proszek: zbiór monokryształów, chaotycznie zorientowanych. Pomiar: usunięcie oddziaływań dipol dipol, pomiar przesunięcia chemicznego σ xx σ yy σ zz σ xx = σ yy σ zz Wynik: wartości stałych ekranowania σ xx, σ yy, σ zz. Utrata informacji o orientacji elipsoidy w krysztale. dublet Pake a uclear Magnetic Resonance Concept and Methods, D. Canet, John Wiley & Sons, 1991

42 Widmo wysokiej rozdzielczości w ciele stałym Pomiar: Usunięcie oddziaływań dipol dipol Usunięcie anizotropii przesunięcia chemicznego B o α Metody: D ~ [3cos(α) 1] (r -3 ) specjalne sekwencje impulsów wirowanie pod kątem magicznym (kąt 54 o 44,1, wirowanie z szybkością rzędu kilku kilkunastu kz) efektywna technika: CP MAS MR (Cross Polarization Magic Angle Spinning) spektroskopia 2D MR w ciele stałym: moŝliwa, trudna w optymalizacji, potrzebny dobry spektrometr Zastosowania: Badanie substancji nierozpuszczalnych ZamraŜanie procesów dynamicznych Badanie form polimorficznych C 3 CDCl 3 15 CPMAS (233 K) Przesunięcia 15 (C ppm) - 138

43 + S 15 CP MAS MR 13 C CP MAS MR (Widma: dr B. Kamieński) Szerokości sygnałów: z (ciecz ca. 1 z)

44 Widmo MRJ w fazie ciekłokrystalicznej Pomiar: ciecz faza ciekłokrystaliczna Układ AX: dublety, J AX dublety, J AX + 2D AX Układ A 2 : singlet dublet, 3D AA Jądro o spinie ½: singlet multiplet, Q c Wartość D: zaleŝna od orientacji cząsteczki względem B o i odległości między atomami Wartość Q c : zaleŝna od orientacji cząsteczki względem B o i sprzęŝenia kwadrupolowego F 2 (I = 1) 17 (I = 5/2) uclear Magnetic Resonance Concept and Methods, D. Canet, John Wiley & Sons, 1991

45 Technika pomiarowa MRJ : impulsy złoŝone i selektywne Czas relaksacji T 1 Czas relaksacji T 2 Technika gradientowa i jej zastosowania Usuwanie sygnału rozpuszczalnika Procesy dyfuzji, DSY MRJ w fazie stałej i ciekłokrystalicznej brazowanie MRJ

46 brazowanie MRJ (Imaging) B o B o B o + xb δ (ppm) x (cm) A=f(ν) A=f(x) G

47 brazowanie MRJ (Imaging) B o + xb δ (ppm) x (cm) G G G Pomiar typu 2D: róŝne czasy trwania gradientu czerwonego FID 2D zawiera informacje o obu wymiarach

48 brazowanie MRJ (Imaging) ( 1, 19 F, 31 P) Zastosowania obrazowania: medycyna (zastępuje promienie X) mikroskopia MRJ badanie Ŝywności (woda/olej w ziarnach, owocach,... badanie materiałów porowatych badanie struktury tworzyw sztucznych badanie uszkodzeń i pęknięć dyfuzja w ciele stałym (kosmetyka!) C 6 F 6

Impulsy selektywne selektywne wzbudzenie

Impulsy selektywne selektywne wzbudzenie Impulsy selektywne selektywne wzbudzenie Impuls prostokątny o długości rzędu mikrosekund ( hard ): cały zakres 1 ( 13 C) Fala ciągła (impuls o nieskończonej długości): jedna częstość o Impuls prostokątny

Bardziej szczegółowo

Chiralność i spektroskopia MRJ Badanie procesów wymiany (Dynamic NMR, D NMR) Wyznaczanie stałej trwałości kompleksów Technika pomiarowa MRJ: impulsy

Chiralność i spektroskopia MRJ Badanie procesów wymiany (Dynamic NMR, D NMR) Wyznaczanie stałej trwałości kompleksów Technika pomiarowa MRJ: impulsy Chiralność i spektroskopia MRJ Badanie procesów wymiany (Dynamic MR, D MR) Wyznaczanie stałej trwałości kompleksów Technika pomiarowa MRJ: impulsy złoŝone i selektywne Czas relaksacji T 1 Czas relaksacji

Bardziej szczegółowo

SPEKTROSKOPIA MAGNETYCZNEGO REZONANSU JĄDROWEGO IZOTOPÓW INNYCH NIŻ 1 H i 13 C

SPEKTROSKOPIA MAGNETYCZNEGO REZONANSU JĄDROWEGO IZOTOPÓW INNYCH NIŻ 1 H i 13 C SPEKTRSKPIA MAGETYZEG REZASU JĄDRWEG IZTPÓW IY IŻ 1 i 13 o można zmierzyć metodami MRJ? e Li Be B F e a Mg Al Si P S l Ar K a Sc Ti V r Mn Fe o i u Zn Ga Ge As Se Br Kr Rb Sr Y Zr b Mo Tc Ru Rh Pd Ag d

Bardziej szczegółowo

Technika pomiarowa NMR: impulsy złożone i selektywne Czas relaksacji T 1 Czas relaksacji T 2 Technika gradientowa i jej zastosowania Usuwanie sygnału

Technika pomiarowa NMR: impulsy złożone i selektywne Czas relaksacji T 1 Czas relaksacji T 2 Technika gradientowa i jej zastosowania Usuwanie sygnału Technika pomiarowa NMR: impuls łożone i selektwne Cas relaksacji T 1 Cas relaksacji T 2 Technika gradientowa i jej astosowania Usuwanie sgnału ropuscalnika Proces dfuji, DOSY NMR w faie stałej i ciekłokrstalicnej

Bardziej szczegółowo

MAGNETYCZNY REZONANS JĄDROWY (MRJ) NUCLEAR MAGNETIC RESONANCE (NMR)

MAGNETYCZNY REZONANS JĄDROWY (MRJ) NUCLEAR MAGNETIC RESONANCE (NMR) MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... Program: 1. Podstawy ogólne (zjawisko fizyczne, wykonanie pomiaru, aparatura) 2. Spektroskopia

Bardziej szczegółowo

Magnetyczny Rezonans Jądrowy (NMR)

Magnetyczny Rezonans Jądrowy (NMR) Magnetyczny Rezonans Jądrowy (NMR) obserwacja zachowania (precesji) jąder atomowych obdarzonych spinem w polu magnetycznym Magnetic Resonance Imaging (MRI) ( obrazowanie rezonansem magnetycznym potocznie

Bardziej szczegółowo

DWUWYMIAROWA SPEKTROSKOPIA NMR (2D NMR)

DWUWYMIAROWA SPEKTROSKOPIA NMR (2D NMR) DWUWYMIARWA SPEKTRSKPIA MR (2D MR) W2D WIDM_2D Przykładowe dwuwymiarowe widmo MR Jednowymiarowy eksperyment MR (1D MR) z z M y y x M x I ~ M FT t A(t 1 ) A(t 2 ) A(t 3 ) A(t n ) I(ν 1 ) I(ν 2 ) I(ν 3 )

Bardziej szczegółowo

impulsowe gradienty B 0 Pulsed Field Gradients (PFG)

impulsowe gradienty B 0 Pulsed Field Gradients (PFG) impulsowe gradienty B 0 Pulsed Field Gradients (PFG) częstość Larmora w polu jednorodnym: w = gb 0 liniowy gradient B 0 : w = g(b 0 + xg x + yg y + zg z ) w spektroskopii gradienty z w obrazowaniu x,y,z

Bardziej szczegółowo

SPEKTROSKOPIA MAGNETYCZNEGO REZONANSU JĄDROWEGO IZOTOPÓW INNYCH NIś 1 H i 13 C

SPEKTROSKOPIA MAGNETYCZNEGO REZONANSU JĄDROWEGO IZOTOPÓW INNYCH NIś 1 H i 13 C SPEKTROSKOPIA MAGETYZEGO REZOASU JĄDROWEGO IZOTOPÓW IY Iś 1 i 13 o moŝna zmierzyć metodami MRJ? e Li Be B O F e a Mg Al Si P S l Ar K a Sc Ti V r Mn Fe o i u Zn Ga Ge As Se Br Kr Rb Sr Y Zr b Mo Tc Ru

Bardziej szczegółowo

SPEKTROSKOPIA NMR. No. 0

SPEKTROSKOPIA NMR. No. 0 No. 0 Spektroskopia magnetycznego rezonansu jądrowego, spektroskopia MRJ, spektroskopia NMR jedna z najczęściej stosowanych obecnie technik spektroskopowych w chemii i medycynie. Spektroskopia ta polega

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,

Bardziej szczegółowo

Wykorzystanie zjawiska rezonansu magnetycznego w medycynie. Mariusz Grocki

Wykorzystanie zjawiska rezonansu magnetycznego w medycynie. Mariusz Grocki Wykorzystanie zjawiska rezonansu magnetycznego w medycynie. Mariusz Grocki [1] WYŚCIG DO TYTUŁU ODKRYWCY. JĄDRO ATOMU W ZEWNĘTRZNYM POLU MAGNETYCZNYM. Porównanie do pola grawitacyjnego. CZYM JEST ZJAWISKO

Bardziej szczegółowo

MAGNETYCZNY REZONANS JĄDROWY (MRJ) NUCLEAR MAGNETIC RESONANCE (NMR)

MAGNETYCZNY REZONANS JĄDROWY (MRJ) NUCLEAR MAGNETIC RESONANCE (NMR) MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... (Początek: 1946 rok) Klasyfikacja technik spektroskopowych NMR: Pomiary próbek gazowych Pomiary

Bardziej szczegółowo

ekranowanie lokx loky lokz

ekranowanie lokx loky lokz Odziaływania spin pole magnetyczne B 0 DE/h [Hz] bezpośrednie (zeemanowskie) 10 7-10 9 pośrednie (ekranowanie) 10 3-10 6 spin spin bezpośrednie (dipolowe) < 10 5 pośrednie (skalarne) < 10 3 spin moment

Bardziej szczegółowo

ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1)

ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1) h S = I(I+) gdzie: I kwantowa liczba spinowa jądra I = 0, ½,, /,, 5/,... itd gdzie: = γ S γ współczynnik żyromagnetyczny moment magnetyczny brak spinu I = 0 spin sferyczny I = _ spin elipsoidalny I =,,,...

Bardziej szczegółowo

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,

Bardziej szczegółowo

impulsowy NMR - podsumowanie

impulsowy NMR - podsumowanie impulsowy NMR - podsumowanie impulsy RF obracają wektor namagnesowania o żądany kąt wokół wybranej osi np. x, -x, y, -y (oś obrotu wybiera się przez regulowanie fazy sygnału względem fazy odnośnika, kąt

Bardziej szczegółowo

Spektroskopia Jader 13 C i efekt Overhausera

Spektroskopia Jader 13 C i efekt Overhausera Spektroskopia Jader 13 C i efekt Overhausera Literatura : 1. A. Ejchart, L.Kozerski, Spektrometria Magnetycznego Rezonansu Jądrowego 13 C. PWN, Warszawa 1988 (1981). 2. F.W. Wehrli, T. Wirthlin ; z ang.

Bardziej szczegółowo

SPEKTROSKOPIA MAGNETYCZNEGO REZONANSU JĄDROWEGO IZOTOPÓW O SPINIE WIĘKSZYM NIŻ 1/2

SPEKTROSKOPIA MAGNETYCZNEGO REZONANSU JĄDROWEGO IZOTOPÓW O SPINIE WIĘKSZYM NIŻ 1/2 SPEKTRSKPIA MAGETYZEG REZASU JĄDRWEG IZTPÓW SPIIE WIĘKSZYM IŻ 1/2 PDZIAŁ IZTPÓW spin = 1/2 spin > 1/2 duża zawartość naturalna 1, 19 F, 31 P 14 mała zawartość naturalna 3, 13, 15 2, 17, 33 S Jądra o spinie

Bardziej szczegółowo

MAGNETYCZNY REZONANS JĄDROWY - podstawy

MAGNETYCZNY REZONANS JĄDROWY - podstawy 1 MAGNETYCZNY REZONANS JĄDROWY - podstawy 1. Wprowadzenie. Wstęp teoretyczny..1 Ruch magnetyzacji jądrowej, relaksacja. Liniowa i kołowa polaryzacja pola zmiennego (RF)..3 Metoda echa spinowego 1. Wprowadzenie

Bardziej szczegółowo

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: II

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: II SPEKTROSKOPIA NMR PODEJŚIE PRAKTYZNE ZĘŚĆ: II DR INŻ. TOMASZ LASKOWSKI O TO JEST WIDMO? WIDMO NMR wykres ilości kwantów energii promieniowania elektromagnetycznego pochłanianego przez próbkę w funkcji

Bardziej szczegółowo

ZASADY ZALICZENIA PRZEDMIOTU MBS

ZASADY ZALICZENIA PRZEDMIOTU MBS ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll

Bardziej szczegółowo

IM - 6a MAGNETYCZNY REZONANS JĄDROWY. I. Cel ćwiczenia

IM - 6a MAGNETYCZNY REZONANS JĄDROWY. I. Cel ćwiczenia IM - 6a MAGNETYCZNY REZONANS JĄDROWY I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z impulsowymi metodami magnetycznego rezonansu jądrowego. Podczas ćwiczenia student wykonuje pomiary czasów relaksacji

Bardziej szczegółowo

MAGNETYCZNY REZONANS JĄDROWY WODORU

MAGNETYCZNY REZONANS JĄDROWY WODORU MAGNETYCZNY REZONANS JĄDROWY WODORU 1 NMR, ( 2 NMR, 3 NMR) Trzy aktywne izotopy wodoru: 1 99.98% spin ½ 500.000 Mz (11.744 T) 2 0.02% spin 1 76.753 Mz (11.744 T) 3 0 spin ½ 533.317 Mz (11.744 T) Przykładowe

Bardziej szczegółowo

ZASTOSOWANIE SPEKTROSKOPII NMR W MEDYCYNIE

ZASTOSOWANIE SPEKTROSKOPII NMR W MEDYCYNIE ZASTOSOWANIE SPEKTROSKOPII NMR W MEDYCYNIE LITERATURA 1. K.H. Hausser, H.R. Kalbitzer, NMR in medicine and biology. Structure determination, tomography, in vivo spectroscopy. Springer Verlag. Wydanie polskie:

Bardziej szczegółowo

Magnetyczny rezonans jądrowy

Magnetyczny rezonans jądrowy Magnetyczny rezonans jądrowy Widmo NMR wykres absorpcji promieniowania magnetycznego od jego częstości Częstość pola wyraża się w częściach na milion (ppm) częstości pola magnetycznego pochłanianego przez

Bardziej szczegółowo

Spektroskopowe metody identyfikacji związków organicznych

Spektroskopowe metody identyfikacji związków organicznych Spektroskopowe metody identyfikacji związków organicznych Wstęp Spektroskopia jest metodą analityczną zajmującą się analizą widm powstających w wyniku oddziaływania promieniowania elektromagnetycznego

Bardziej szczegółowo

Zastosowanie spektroskopii NMR do określania struktury związków organicznych

Zastosowanie spektroskopii NMR do określania struktury związków organicznych Zastosowanie spektroskopii NMR do określania struktury związków organicznych Atomy zbudowane są z jąder atomowych i powłok elektronowych. Modelowo można stwierdzić, że jądro atomowe jest kulą, w której

Bardziej szczegółowo

Rozmycie pasma spektralnego

Rozmycie pasma spektralnego Rozmycie pasma spektralnego Rozmycie pasma spektralnego Z doświadczenia wiemy, że absorpcja lub emisja promieniowania przez badaną substancję występuje nie tylko przy częstości rezonansowej, tj. częstości

Bardziej szczegółowo

DOSY (Diffusion ordered NMR spectroscopy)

DOSY (Diffusion ordered NMR spectroscopy) Wykład 8 DOSY (Diffusion ordered NMR spectroscopy) Dyfuzja migracja cząsteczek pod wpływem gradientu stężenia Pierwsze Prawo Ficka: przepływ cząsteczek jest proporcjonalny do gradientu stężenia: J przepływ

Bardziej szczegółowo

FIZYKOCHEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz

FIZYKOCHEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz FIZYKOCEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYC Witold Danikiewicz Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa Interpretacja widm NMR, IR i MS prostych cząsteczek Czyli

Bardziej szczegółowo

Zastosowanie spektroskopii NMR do badania związków pochodzenia naturalnego

Zastosowanie spektroskopii NMR do badania związków pochodzenia naturalnego Zastosowanie spektroskopii NMR do badania związków pochodzenia naturalnego Literatura W. Zieliński, A. Rajcy, Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych, Wydawnictwa

Bardziej szczegółowo

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH ZAAWANSWANE METDY USTALANIA BUDWY ZWIĄZKÓW RGANICZNYC Witold Danikiewicz Instytut Chemii rganicznej PAN ul. Kasprzaka /52, 0-22 Warszawa Interpretacja widm NMR, IR i MS prostych cząsteczek Czyli jak powiązać

Bardziej szczegółowo

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm) SPEKTROSKOPIA W PODCZERWIENI Podczerwień bliska: 14300-4000 cm -1 (0,7-2,5 µm) Podczerwień właściwa: 4000-700 cm -1 (2,5-14,3 µm) Podczerwień daleka: 700-200 cm -1 (14,3-50 µm) WIELKOŚCI CHARAKTERYZUJĄCE

Bardziej szczegółowo

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil Spektroskopia Spotkanie pierwsze Prowadzący: Dr Barbara Gil Temat rozwaŝań Spektroskopia nauka o powstawaniu i interpretacji widm powstających w wyniku oddziaływań wszelkich rodzajów promieniowania na

Bardziej szczegółowo

MAGNETYCZNY REZONANS JĄDROWY WODORU

MAGNETYCZNY REZONANS JĄDROWY WODORU MAGNETYZNY REZONANS JĄDROWY WODORU 1 NMR, ( 2 NMR, 3 NMR) Trzy aktywne izotopy wodoru: 1 99.98% spin ½ 500.000 Mz (11.744 T) 2 0.02% spin 1 76.753 Mz (11.744 T) 3 0 spin ½ 533.317 Mz (11.744 T) Przykładowe

Bardziej szczegółowo

ĆWICZENIE NR 5 ANALIZA NMR PRODUKTÓW FERMENTACJI ALKOHOLOWEJ

ĆWICZENIE NR 5 ANALIZA NMR PRODUKTÓW FERMENTACJI ALKOHOLOWEJ ĆWICZENIE NR 5 ANALIZA NMR PRODUKTÓW FERMENTACJI ALKOHOLOWEJ Uwaga: Ze względu na laboratoryjny charakter zajęć oraz kontakt z materiałem biologicznym, studenci zobowiązani są uŝywać fartuchów i rękawiczek

Bardziej szczegółowo

Fizykochemiczne metody w kryminalistyce. Wykład 7

Fizykochemiczne metody w kryminalistyce. Wykład 7 Fizykochemiczne metody w kryminalistyce Wykład 7 Stosowane metody badawcze: 1. Klasyczna metoda analityczna jakościowa i ilościowa 2. badania rentgenostrukturalne 3. Badania spektroskopowe 4. Metody chromatograficzne

Bardziej szczegółowo

Techniki Jądrowe w Diagnostyce i Terapii Medycznej

Techniki Jądrowe w Diagnostyce i Terapii Medycznej Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 5, 4 kwietnia 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 5 NMR, MRI,

Bardziej szczegółowo

Spektroskopia. Spotkanie drugie UV-VIS, NMR

Spektroskopia. Spotkanie drugie UV-VIS, NMR Spektroskopia Spotkanie drugie UV-VIS, NMR Spektroskopia UV-Vis 2/32 Promieniowanie elektromagnetyczne: Ultrafioletu ~100-350 nm światło widzialne ~350-900 nm Kwanty energii zgodne z róŝnicami poziomów

Bardziej szczegółowo

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz. Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz. Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH Witold Danikiewicz Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa CZĘŚĆ I PRZEGLĄD METOD SPEKTRALNYCH Program wykładów Wprowadzenie:

Bardziej szczegółowo

INADEQUATE-ID I DYNAMICZNY NMR MEZOJONOWYCH. 3-FENYLO-l-TIO-2,3,4-TRIAZOLO-5-METYUDÓW. Wojciech Bocian, Lech Stefaniak

INADEQUATE-ID I DYNAMICZNY NMR MEZOJONOWYCH. 3-FENYLO-l-TIO-2,3,4-TRIAZOLO-5-METYUDÓW. Wojciech Bocian, Lech Stefaniak INADEQUATEID I DYNAMICZNY NMR MEZOJONOWYCH 3FENYLOlTIO2,3,4TRIAZOLO5METYUDÓW Wojciech Bocian, Lech Stefaniak Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01224 Warszawa PL9800994 WSTĘP Struktury

Bardziej szczegółowo

PRACOWNIA PODSTAW BIOFIZYKI

PRACOWNIA PODSTAW BIOFIZYKI PRACOWNIA PODSTAW BIOFIZYKI Ćwiczenia laboratoryjne dla studentów III roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Badanie wygaszania fluorescencji SPQ przez jony chloru

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

Rok Grupa Zespół Metody Rezonansowe WFiIS AGH Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA

Rok Grupa Zespół Metody Rezonansowe WFiIS AGH Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Wydział Imię i nazwisko Rok Grupa Zespół 1. 2. 3. 4. Metody Rezonansowe WFiIS AGH Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Spektroskopia Magnetycznego Rezonansu Jądrowego

Bardziej szczegółowo

WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy

WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE 1 Ze względu na rozdzielczość czasową metody, zależną od długości trwania impulsu, spektroskopię dzielimy na: nanosekundową (10-9 s) pikosekundową

Bardziej szczegółowo

NUCLEAR MAGNETIC RESONANCE (NMR)

NUCLEAR MAGNETIC RESONANCE (NMR) MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... (Początek: 1946 rok) Klasyfikacja technik spektroskopowych NMR: Pomiary próbek gazowych Pomiary

Bardziej szczegółowo

Badania trybologiczne materiałów inżynierskich Wyznaczanie przepuszczalności par wody przez materiały opakowań DWUMIESIĘCZNIK 3/ 2018

Badania trybologiczne materiałów inżynierskich Wyznaczanie przepuszczalności par wody przez materiały opakowań DWUMIESIĘCZNIK 3/ 2018 LABORATORIA APARATURA BADANIA ISSN-1427-5619 3/ 2018 DWUMIESIĘCZNIK Badania trybologiczne materiałów inżynierskich Wyznaczanie przepuszczalności par wody przez materiały opakowań ŚRODOWISKO TECHNIKI I

Bardziej szczegółowo

Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR

Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Szczególnym i bardzo charakterystycznym rodzajem oddziaływań międzycząsteczkowych jest wiązanie wodorowe. Powstaje ono między molekułami,

Bardziej szczegółowo

PRACOWNIA CHEMII. Wygaszanie fluorescencji (Fiz4)

PRACOWNIA CHEMII. Wygaszanie fluorescencji (Fiz4) PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Wygaszanie fluorescencji

Bardziej szczegółowo

analiza chemiczna jakościowa ilościowa

analiza chemiczna jakościowa ilościowa analiza chemiczna jakościowa ilościowa analiza chemiczna klasyczna instrumentalna analiza elementarna, klasyczna analiza anionów i kationów, analiza wagowa, metody miareczkowe chemia = arx separatoria

Bardziej szczegółowo

Powierzchniowo wzmocniona spektroskopia Ramana SERS. (Surface Enhanced Raman Spectroscopy)

Powierzchniowo wzmocniona spektroskopia Ramana SERS. (Surface Enhanced Raman Spectroscopy) Powierzchniowo wzmocniona spektroskopia Ramana SERS (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych powierzchniach niektórych metali (Ag, Au, Cu) dają bardzo intensywny sygnał

Bardziej szczegółowo

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody

Bardziej szczegółowo

Chiralność w fizyce jądrowej. na przykładzie Cs

Chiralność w fizyce jądrowej. na przykładzie Cs Chiralność w fizyce jądrowej 124 na przykładzie Cs Tomasz Marchlewski Uniwersytet Warszawski Seminarium Fizyki Jądra Atomowego 6 kwietnia 2017 1 Słowo chiralność Chiralne obiekty: Obiekty będące swoimi

Bardziej szczegółowo

Podstawowe oddziaływania w cząsteczkach istotne dla spektroskopii MRJ

Podstawowe oddziaływania w cząsteczkach istotne dla spektroskopii MRJ Podstawowe oddziaływania w cząsteczkach istotne dla spektroskopii MRJ Ekranowanie jądra przez elektrony B ef = B o (1 σ) Oddziaływanie spin spin sprzęŝenie pośrednie (skalarne) J sprzęŝenie bezpośrednie

Bardziej szczegółowo

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR WSTĘP Metody spektroskopowe Spektroskopia bada i teoretycznie wyjaśnia oddziaływania pomiędzy materią będącą zbiorowiskiem

Bardziej szczegółowo

O D P O W I E D Ź na zapytania w sprawie SIWZ

O D P O W I E D Ź na zapytania w sprawie SIWZ Uniwersytet im. Adama Mickiewicza w Poznaniu ul. Wieniawskiego 1 61-712 Poznań Pismo: ZP/824/3475/D/10 Poznań dnia: 2010-11-15 Wszyscy Wykonawcy Szanowni Państwo, O D P O W I E D Ź na zapytania w sprawie

Bardziej szczegółowo

XPS (ESCA) X-ray Photoelectron Spectroscopy (Electron Spectroscopy for Chemical Analysis)

XPS (ESCA) X-ray Photoelectron Spectroscopy (Electron Spectroscopy for Chemical Analysis) XPS (ESCA) X-ray Photoelectron Spectroscopy (Electron Spectroscopy for Chemical Analysis) Wykorzystuje miękkie promieniowanie rentgenowskie o E > 100eV, pozwalające na wybicie elektronów z orbitali rdzenia

Bardziej szczegółowo

H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR...

H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... (Początek: 1946 rok) 1. M.Levitt, Spin Dynamics Basics of Nuclear Magnetic Resonance (Wiley,

Bardziej szczegółowo

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)

Bardziej szczegółowo

Spektroskopia. mössbauerowska

Spektroskopia. mössbauerowska Spektroskopia Spektroskopia Mӧssbauerowska mössbauerowska Adrianna Rokosa Maria Dawiec 1. Zarys historyczny 2. Podstawy teoretyczne 3. Efekt Mössbauera 4. Spektroskopia mössbauerowska 5. Zastosowanie w

Bardziej szczegółowo

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH Witold Danikiewicz Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa Listopad 2013 styczeń 2014 Program wykładów Wprowadzenie:

Bardziej szczegółowo

LASERY NA CIELE STAŁYM BERNARD ZIĘTEK

LASERY NA CIELE STAŁYM BERNARD ZIĘTEK LASERY NA CIELE STAŁYM BERNARD ZIĘTEK TEK Lasery na ciele stałym lasery, których ośrodek czynny jest: -kryształem i ciałem amorficznym (również proszkiem), - dielektrykiem i półprzewodnikiem. 2 Podział

Bardziej szczegółowo

Ćwiczenie 3 ANALIZA JAKOŚCIOWA PALIW ZA POMOCĄ SPEKTROFOTOMETRII FTIR (Fourier Transform Infrared Spectroscopy)

Ćwiczenie 3 ANALIZA JAKOŚCIOWA PALIW ZA POMOCĄ SPEKTROFOTOMETRII FTIR (Fourier Transform Infrared Spectroscopy) POLITECHNIKA ŁÓDZKA WYDZIAŁ INśYNIERII PROCESOWEJ I OCHRONY ŚRODOWISKA KATEDRA TERMODYNAMIKI PROCESOWEJ K-106 LABORATORIUM KONWENCJONALNYCH ŹRÓDEŁ ENERGII I PROCESÓW SPALANIA Ćwiczenie 3 ANALIZA JAKOŚCIOWA

Bardziej szczegółowo

Stereochemia Ułożenie atomów w przestrzeni

Stereochemia Ułożenie atomów w przestrzeni Slajd 1 Stereochemia Ułożenie atomów w przestrzeni Slajd 2 Izomery Izomery to różne związki posiadające ten sam wzór sumaryczny izomery izomery konstytucyjne stereoizomery izomery cis-trans izomery zawierające

Bardziej szczegółowo

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,

Bardziej szczegółowo

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: IV. mgr inż. Marcin Płosiński

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: IV. mgr inż. Marcin Płosiński SPEKTROSKOPIA NMR PODEJŚIE PRAKTYZNE ZĘŚĆ: IV DR INŻ. TOMASZ LASKOWSKI mgr inż. Marcin Płosiński PROLOGOS: ODSPRZĘGANIE SPINÓW (DEOUPLING) ODSPRZĘGANIE SPINÓW Eliminacja zjawiska sprzężenia spinowo-spinowego

Bardziej szczegółowo

dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG

dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG 2. METODY WYZNACZANIA MASY MOLOWEJ POLIMERÓW dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej

Bardziej szczegółowo

Emisja spontaniczna i wymuszona

Emisja spontaniczna i wymuszona Fluorescencja Plan wykładu 1) Absorpcja, emisja wymuszona i emisja spontaniczna 2) Przesunięcie Stokesa 3) Prawo lustrzanego odbicia 4) Znaczniki fluorescencyjne 5) Fotowybielanie Emisja spontaniczna i

Bardziej szczegółowo

Podstawy informatyki kwantowej

Podstawy informatyki kwantowej Wykład 6 27 kwietnia 2016 Podstawy informatyki kwantowej dr hab. Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Wykłady: 6, 13, 20, 27 kwietnia oraz 4 maja (na ostatnim wykładzie będzie

Bardziej szczegółowo

INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCESOWEJ, MATERIAŁOWEJ I FIZYKI STOSOWANEJ POLITECHNIKA CZĘSTOCHOWSKA ĆWICZENIE NR MR-3

INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCESOWEJ, MATERIAŁOWEJ I FIZYKI STOSOWANEJ POLITECHNIKA CZĘSTOCHOWSKA ĆWICZENIE NR MR-3 INTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCEOWEJ, ATERIAŁOWEJ I FIZYKI TOOWANEJ POLITECHNIKA CZĘTOCHOWKA LABORATORIU Z PRZEDIOTU ETODY REZONANOWE ĆWICZENIE NR R-3 ELEKTRONOWY REZONAN PARAAGNETYCZNY JONÓW n

Bardziej szczegółowo

Spektroskopia molekularna. Spektroskopia w podczerwieni

Spektroskopia molekularna. Spektroskopia w podczerwieni Spektroskopia molekularna Ćwiczenie nr 4 Spektroskopia w podczerwieni Spektroskopia w podczerwieni (IR) jest spektroskopią absorpcyjną, która polega na pomiarach promieniowania elektromagnetycznego pochłanianego

Bardziej szczegółowo

Spektroskopia fotoelektronów (PES)

Spektroskopia fotoelektronów (PES) Spektroskopia fotoelektronów (PES) Efekt fotoelektryczny hν ( UV lub X) E =hν kin W Proces fotojonizacji w PES: M + hν M + + e E kin (e) = hν E B Φ sp E B energia wiązania elektronu w atomie/cząsteczce

Bardziej szczegółowo

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach 1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Bardziej szczegółowo

ogromna liczba małych cząsteczek, doskonale elastycznych, poruszających się we wszystkich kierunkach, tory prostoliniowe, kierunek ruchu zmienia się

ogromna liczba małych cząsteczek, doskonale elastycznych, poruszających się we wszystkich kierunkach, tory prostoliniowe, kierunek ruchu zmienia się CHEMIA NIEORGANICZNA Dr hab. Andrzej Kotarba Zakład Chemii Nieorganicznej Wydział Chemii I pietro p. 138 WYKŁAD - STAN GAZOWY i CHEMIA GAZÓW kinetyczna teoria gazów ogromna liczba małych cząsteczek, doskonale

Bardziej szczegółowo

Spektroskopowe badania właściwości magnetycznych warstwowych związków RBa2Cu3O6+x i R2Cu2O5. Janusz Typek Instytut Fizyki

Spektroskopowe badania właściwości magnetycznych warstwowych związków RBa2Cu3O6+x i R2Cu2O5. Janusz Typek Instytut Fizyki Spektroskopowe badania właściwości magnetycznych warstwowych związków RBa2Cu3O6+x i R2Cu2O5 Janusz Typek Instytut Fizyki Plan prezentacji Jakie materiały badałem? (Krótka prezentacja badanych materiałów)

Bardziej szczegółowo

H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR...

H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... (Początek: 1946 rok) 1. M.Levitt, Spin Dynamics Basics of Nuclear Magnetic Resonance (Wiley,

Bardziej szczegółowo

Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe

Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Wykład 4 29 kwietnia 2015 Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Dobra lektura: Michel Le Bellac

Bardziej szczegółowo

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne

Bardziej szczegółowo

RÓWNOWAGI REAKCJI KOMPLEKSOWANIA

RÓWNOWAGI REAKCJI KOMPLEKSOWANIA POLITECHNIK POZNŃSK ZKŁD CHEMII FIZYCZNEJ ĆWICZENI PRCOWNI CHEMII FIZYCZNEJ RÓWNOWGI REKCJI KOMPLEKSOWNI WSTĘP Ważną grupę reakcji chemicznych wykorzystywanych w chemii fizycznej i analitycznej stanowią

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny

Bardziej szczegółowo

CHEMIA. Wymagania szczegółowe. Wymagania ogólne

CHEMIA. Wymagania szczegółowe. Wymagania ogólne CHEMIA Wymagania ogólne Wymagania szczegółowe Uczeń: zapisuje konfiguracje elektronowe atomów pierwiastków do Z = 36 i jonów o podanym ładunku, uwzględniając rozmieszczenie elektronów na podpowłokach [

Bardziej szczegółowo

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektroskopia, a spektrometria Spektroskopia nauka o powstawaniu

Bardziej szczegółowo

STEREOCHEMIA ORGANICZNA

STEREOCHEMIA ORGANICZNA STEECEMI GNICZN Sławomir Jarosz Wykład 3 B B B B B B B B enancjomery enancjomery enancjomery enancjomery B S S S B S S B S S B S B B S B S B S S S brót o 180 Centrum pseudoasymetrii Konfiguracja względna

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego (NMR)

Spektroskopia magnetycznego rezonansu jądrowego (NMR) Spektroskopia magnetycznego rezonansu jądrowego (NM) Fizyczne podstawy spektroskopii NM W spektroskopii magnetycznego rezonansu jądrowego używane jest promieniowanie elektromagnetyczne o częstościach z

Bardziej szczegółowo

RJC # Alk l a k ny n Ster St eoi er zom eoi er zom y er Slides 1 to 30

RJC # Alk l a k ny n Ster St eoi er zom eoi er zom y er Slides 1 to 30 Alkany Stereoizomery Slides 1 to 30 Centrum asymetryczne (stereogeniczne) Atom węgla o hybrydyzacji sp 3 połączony z czterema róŝnymi podstawnikami tworzy centrum asymetryczne (stereogeniczne). Chiralność

Bardziej szczegółowo

Fizyczne podstawy magnetycznego rezonansu jądrowego (NMR) - obrazowania za pomocą rezonansu jądrowego (MRI)

Fizyczne podstawy magnetycznego rezonansu jądrowego (NMR) - obrazowania za pomocą rezonansu jądrowego (MRI) Postępy Psychiatrii i Neurologii. 1996. 5. 1-8 Fizyczne podstawy magnetycznego rezonansu jądrowego (NMR) - obrazowania za pomocą rezonansu jądrowego (MRI) Physicalfoundations ofnuclear magnetic resonance

Bardziej szczegółowo

Leksykon onkologii Cancer lexicon

Leksykon onkologii Cancer lexicon NOWOTWORY Journal of Oncology 2006 volume 56 Number 4 477 482 Leksykon onkologii Cancer lexicon Leksykon poj ç i definicji w onkologii rezonans magnetyczny Ma gorzata Tacikowska Cancer lexicon magnetic

Bardziej szczegółowo

Br Br. Br Br OH 2 OH NH NH 2 2. Zakład Chemii Organicznej: kopiowanie zabronione

Br Br. Br Br OH 2 OH NH NH 2 2. Zakład Chemii Organicznej: kopiowanie zabronione Kolokwium III Autorzy: A. Berlicka, M. Cebrat, E. Dudziak, A. Kluczyk, Imię i nazwisko Kierunek studiów azwisko prowadzącego Data Wersja A czas: 45 minut Skala ocen: ndst 0 20, dst 20.5 24, dst 24.5 28,

Bardziej szczegółowo

Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych

Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych CHEMI FIZYCZN Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych W ćwiczeniu przeprowadzana jest reakcja utleniania jonów tiosiarczanowych za pomocą jonów żelaza(iii). Przebieg

Bardziej szczegółowo

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B

Bardziej szczegółowo

Wstęp do optyki i fizyki materii skondensowanej. O: Wojciech Wasilewski FMS: Mateusz Goryca

Wstęp do optyki i fizyki materii skondensowanej. O: Wojciech Wasilewski FMS: Mateusz Goryca Wstęp do optyki i fizyki materii skondensowanej O: Wojciech Wasilewski FMS: Mateusz Goryca 1 Zasady części O Wykład przeglądowy Ćwiczenia rozszerzające lub ilustrujące Sprawdzane prace domowe psi.fuw.edu.pl/main/wdoifms

Bardziej szczegółowo

NMR Obrazowanie Spektroskopia wysokiej zdolności rozdzielczej Niskopolowy magnetyczny rezonans jądrowy - relaksometria

NMR Obrazowanie Spektroskopia wysokiej zdolności rozdzielczej Niskopolowy magnetyczny rezonans jądrowy - relaksometria NMR Obrazowanie Spektroskopia wysokiej zdolności rozdzielczej Niskopolowy magnetyczny rezonans jądrowy - relaksometria Obrazowanie Magnetyzacja w wybranej objętości (wokselu): -gęstość spinów -czas relaksacji

Bardziej szczegółowo

Jądra o wysokich energiach wzbudzenia

Jądra o wysokich energiach wzbudzenia Jądra o wysokich energiach wzbudzenia 1. Utworzenie i rozpad jądra złożonego a) model statystyczny 2. Gigantyczny rezonans dipolowy (GDR) a) w jądrach w stanie podstawowym b) w jądrach w stanie wzbudzonym

Bardziej szczegółowo

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: I. Animacje na slajdach przygotował mgr inż.

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: I. Animacje na slajdach przygotował mgr inż. SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE CZĘŚĆ: I DR INŻ. TOMASZ LASKOWSKI Animacje na slajdach 13-30 prgotował mgr inż. Marcin Płosiński MOTTO WYKŁADU Nie treba końcć studiów na kierunku elektronika, ab

Bardziej szczegółowo

Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy

Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy Odbicie promienia od powierzchni metalu E n 1 Równania Fresnela E θ 1 θ 1 r E = E odb, 0,

Bardziej szczegółowo

Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR

Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR 1. Wstęp Związki karbonylowe zawierające w położeniu co najmniej jeden atom wodoru mogą ulegać enolizacji przez przesunięcie protonu

Bardziej szczegółowo

czyli reakcje wymiany ligandów i ich zastosowanie Mateusz Bożejko Edmund Pelc Liceum Ogólnokształcące nr III we Wrocławiu

czyli reakcje wymiany ligandów i ich zastosowanie Mateusz Bożejko Edmund Pelc Liceum Ogólnokształcące nr III we Wrocławiu czyli reakcje wymiany ligandów i ich zastosowanie Mateusz Bożejko Edmund Pelc Liceum Ogólnokształcące nr III we Wrocławiu Podstawowe pojęcia Podstawowe pojęcia Związek kompleksowy Sfera koordynacyjna Ligand

Bardziej szczegółowo