NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

Wielkość: px
Rozpocząć pokaz od strony:

Download "NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan"

Transkrypt

1 NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

2 Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania

3 Fizyczne podstawy NMR Proton, neutron, elektron posiadają spin ½ Spin jądra jest wypadkową spinów cząstek składających się na jądro NMR 1945 (Purcell, Bloch, Horward, Stanford) Nagroda Nobla 1952 r. Moment magnetyczny jądra µ 0 W technikach NMR znaczenie mają spiny niesparowanych cząstek jąder atomowych NMR może być uzyskany jedynie dla izotopów, których abundancja jest wystarczająco duża do detekcji

4 Fizyczne podstawy NMR elektron w polu magnetycznym bąk w polu grawitacyjnym (ω = γ B 0 częstość Larmora) Elektron 2 momenty pędu: Orbitalny (ruch po orbicie) Spinowy (ruch wokół własnej osi) Ładunek w ruchu => pole magnetyczne Spin (wynika z mechaniki kwantowej)

5 Fizyczne podstawy NMR Cząsteczka posiadająca spin oddziałuje z polem magnetycznym H = µ B = gµ SzB = hγb Jądra posiadające spin większy od ½ w zewnętrznym polu magnetycznym mają więcej niż dwa poziomów energetycznych Dla spinu S = n/2, otrzymujemy następujące poziomy energetyczne: E = - {-n/2, (-n+2)/2,..., n/2} g µ B Prawdopodobieństwa obsadzeń poziomów energetycznych są następujące: N = e -E/kT Moment magnetyczny makroskopowy różnica obsadzeń poszczególnych poziomów energetycznych (ruch precesyjny w obecności pola magnetycznego B)

6 Fizyczne podstawy NMR (kwantowo) Proton (jądro wodoru) w zewnętrznym polu magnetycznym spin ustawia się równolegle do pola magnetycznego na dwa możliwe sposoby (dwa możliwe poziomy energetyczne protonu o różnicy energii E= 1/2g µ B- (-1/2)g µ B=g µ B) Dzięki absorbcji energii fali elektromagnetycznej E = hν, proton może przejść z jednego stanu do drugiego

7 Fizyczne podstawy NMR H = µ B; gdzie Dla jądra: µ = g j µ I, j µ j = eh 4πm p - magneton jądrowy Dla elektronu: µ = gµ S, B µ B = eh 4πm e - magneton Bohra

8 Fizyczne podstawy NMR Opis rezonansu dla S = ½ Próbka znajduje się w stałym polu magnetycznym (rzędu Tesli) i jest poddawana impulsowi świetlnemu (częstości radiowe, dla wodoru 42 MHz) Gdy gµb = hν, to następuje pochłonięcie rezonansowe fotonu (makroskopowo namagnesowanie próbki M) Impuls przestaje działać => powrót próbki do stanu początkowego (oddanie energii). Powoduje to wyindukowanie prądu w cewce odbiorczej Sygnał w cewce odbiorczej zawiera komplet informacji o właściwościach rezonansowych jąder Czas powrotu do stanu początkowego = czas relaksacji

9 Opis rezonansu w ujęciu klasycznym Rezonans magnetyczny polega na zmianie wartości spinu jądrowego między dwoma skwantowanymi poziomami energetycznymi o różnicy energii E = g µ B. Energia jest pochłaniana lub emitowana w postaci fali γ elektromagnetycznej o częstotliwości ν = B ω = γ B 2 π Częstotliwość rezonansowa zależy od rodzaju jądra (γ) i od indukcji pola magnetycznego (B) Dla protonów w polu magnetycznym o indukcji 1.4 T częstotliwość rezonansowa wynosi 60 MHz. Przejście pomiędzy dwoma stanami spinowymi indukowane jest przez działanie zmiennego pola magnetycznego o γ częstotliwości ν = B 2π

10

11

12 Opis rezonansu w ujęciu klasycznym Próbka znajduje się w stałym polu magnetycznym (rzędu Tesli) i jest poddawana impulsowi świetlnemu (częstości radiowe, dla wodoru 42 MHz) gµb = hν <=> ω = γb, ω częstość Larmora Próbka poddana jest rezonansowemu impulsowi radiowemu RF. Wektor magnetyzacji zaczyna wykonywać ruch precesyjny wokół wypadkowego pola magnetycznego prostopadłego do pola B

13 Opis rezonansu w ujęciu klasycznym Po wyłączeniu impulsu radiowego następuje relaksacja układu (odrost wektora magnetyzacji równolegle do pola B) Magnetyzacja podłużna M L wraca do stanu początkowego w odpowiednim czasie cykl wektora magnetyzacji

14 Opis rezonansu w ujęciu klasycznym Magnetyzacja poprzeczna cykl wektora magnetyzacji poprzecznej Sygnał FID jest odbierany przez cewkę odbiorczą i zawiera pełną informację o badanej próbce

15 Metody obrazowania MRI (Magnetic Resonance Imaging)

16

17 Powierzchnia integralna jest proporcjonalna do liczby wzbudzonych jąder ν ν ν δ = ν s wzorca 6 wzorca 10 [ ppm] B

18 Pierwsze zastosowanie: badanie struktury prostych związków organicznych Obecnie podstawowe narzędzie analizy chemicznej Angiografia na podstawie różnic amplitudy między spinami w ruchu i spoczynku

19 Przesunięcie chemiczne Częstości rezonansowe są różne dla jąder różnego typu Częstości rezonansowe są różne dla jąder tego samego typu (przesunięcie chemiczne względne zmniejszenie częstości rezonansowej jest rzędu 10-5 dla protonu) Kiedy atom zostanie umieszczony w zewnętrznym polu magnetycznym, jego elektrony zaczynają krążyć wokół kierunku pola. Wypadkowe pole magnetyczne w pobliżu jądra atomu jest nieco mniejsze od pola zewnętrznego

20 Przesunięcie chemiczne Zakresy absorpcji protonów w związkach organicznych

21 Sprzężenie spinowo-spinowe Rozszczepienie sygnału (dublet, tryplet, kwartet) zależne od liczby sąsiadujących jąder paramagnetycznych n (n + 1) Oddziaływanie pomiędzy dwoma molekułami H J =J 1,2 S 1z S 2z J odległość między pikami w multiplecie B 0 = 4,7 T ν = 200 MHz ν ν δ = ν s wzorca 6 wzorca 10 [ ppm] Wzorzec obojętny chemicznie, singlet, z dala od innych sygnałów (0 na skali). Dla protonów - tetrametylosilan (CH 3 ) 4 Si, (TMS)

22 Metody obrazowania MRI (Magnetic Resonance Imaging) Mierzone wartości sygnału rezonansowego są zwykle wartościami średnimi próbki. Są to wyniki nieinteresujące dla dużych ciał biologicznych Dzielimy badany obiekt na skończoną ilość elementów poprzez nadanie warunku rezonansu ściśle określonej objętości elementarnej (gradienty pola magnetycznego)

23 MRI Procedurę wykonujemy wielokrotnie pod różnymi kątami Rekonstruujemy obraz za pomocą standardowego algorytmu rekonstrukcji Dwuwymiarowa transformacja Fouriera Trójwymiarowa transformacja Fouriera Przykładowe wartości czasów relaksacji dla tkanek

24 Przykłady zastosowań

25

26

ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1)

ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1) h S = I(I+) gdzie: I kwantowa liczba spinowa jądra I = 0, ½,, /,, 5/,... itd gdzie: = γ S γ współczynnik żyromagnetyczny moment magnetyczny brak spinu I = 0 spin sferyczny I = _ spin elipsoidalny I =,,,...

Bardziej szczegółowo

Magnetyczny Rezonans Jądrowy (NMR)

Magnetyczny Rezonans Jądrowy (NMR) Magnetyczny Rezonans Jądrowy (NMR) obserwacja zachowania (precesji) jąder atomowych obdarzonych spinem w polu magnetycznym Magnetic Resonance Imaging (MRI) ( obrazowanie rezonansem magnetycznym potocznie

Bardziej szczegółowo

SPEKTROSKOPIA NMR. No. 0

SPEKTROSKOPIA NMR. No. 0 No. 0 Spektroskopia magnetycznego rezonansu jądrowego, spektroskopia MRJ, spektroskopia NMR jedna z najczęściej stosowanych obecnie technik spektroskopowych w chemii i medycynie. Spektroskopia ta polega

Bardziej szczegółowo

NMR Nuclear Magnetic Resonance. Co to jest?

NMR Nuclear Magnetic Resonance. Co to jest? 1 NMR Nuclear Magnetic Resonance Co to jest? Spektroskopia NMR ang. Nuclear Magnetic Resonance Spektroskopia Magnetycznego Rezonansu Jądrowego (MRJ) Wykorzystuje własności magnetyczne jąder atomowych Spektroskopia

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,

Bardziej szczegółowo

Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy

Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy Metody rezonansowe Magnetyczny rezonans jądrowy Magnetometr protonowy Co należy wiedzieć Efekt Zeemana, precesja Larmora Wektor magnetyzacji w podstawowym eksperymencie NMR Transformacja Fouriera Procesy

Bardziej szczegółowo

Wykorzystanie zjawiska rezonansu magnetycznego w medycynie. Mariusz Grocki

Wykorzystanie zjawiska rezonansu magnetycznego w medycynie. Mariusz Grocki Wykorzystanie zjawiska rezonansu magnetycznego w medycynie. Mariusz Grocki [1] WYŚCIG DO TYTUŁU ODKRYWCY. JĄDRO ATOMU W ZEWNĘTRZNYM POLU MAGNETYCZNYM. Porównanie do pola grawitacyjnego. CZYM JEST ZJAWISKO

Bardziej szczegółowo

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład VI Magnetyczny rezonans jądrowy (NMR) Metody obserwacji NMR: indukcji jądrowej (Blocha), absorpcyjna (Purcella)

Bardziej szczegółowo

Atomy mają moment pędu

Atomy mają moment pędu Atomy mają moment pędu Model na rysunku jest modelem tylko klasycznym i jak wiemy z mechaniki kwantowej, nie odpowiada dokładnie rzeczywistości Jednakże w mechanice kwantowej elektron nadal ma orbitalny

Bardziej szczegółowo

Magnetyczny rezonans jądrowy

Magnetyczny rezonans jądrowy Magnetyczny rezonans jądrowy Widmo NMR wykres absorpcji promieniowania magnetycznego od jego częstości Częstość pola wyraża się w częściach na milion (ppm) częstości pola magnetycznego pochłanianego przez

Bardziej szczegółowo

MAGNETYCZNY REZONANS JĄDROWY - podstawy

MAGNETYCZNY REZONANS JĄDROWY - podstawy 1 MAGNETYCZNY REZONANS JĄDROWY - podstawy 1. Wprowadzenie. Wstęp teoretyczny..1 Ruch magnetyzacji jądrowej, relaksacja. Liniowa i kołowa polaryzacja pola zmiennego (RF)..3 Metoda echa spinowego 1. Wprowadzenie

Bardziej szczegółowo

Atomy w zewnętrznym polu magnetycznym i elektrycznym

Atomy w zewnętrznym polu magnetycznym i elektrycznym Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka

Bardziej szczegółowo

Spektroskopia. Spotkanie drugie UV-VIS, NMR

Spektroskopia. Spotkanie drugie UV-VIS, NMR Spektroskopia Spotkanie drugie UV-VIS, NMR Spektroskopia UV-Vis 2/32 Promieniowanie elektromagnetyczne: Ultrafioletu ~100-350 nm światło widzialne ~350-900 nm Kwanty energii zgodne z róŝnicami poziomów

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego (NMR)

Spektroskopia magnetycznego rezonansu jądrowego (NMR) Spektroskopia magnetycznego rezonansu jądrowego (NM) Fizyczne podstawy spektroskopii NM W spektroskopii magnetycznego rezonansu jądrowego używane jest promieniowanie elektromagnetyczne o częstościach z

Bardziej szczegółowo

Wykład FIZYKA II. 5. Magnetyzm. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 5. Magnetyzm.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 5. Magnetyzm Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html MAGNESY Pierwszymi poznanym magnesem był magnetyt

Bardziej szczegółowo

W latach dwudziestych XX wieku pojawiły się koncepcje teoretyczne, które pozwoliły przewidzieć jądrowy rezonans magnetyczny, przez szereg lat eksperymentatorzy usiłowali bez skutku odkryć to zjawisko doświadczalnie.

Bardziej szczegółowo

MAGNETYCZNY REZONANS JĄDROWY (MRJ) NUCLEAR MAGNETIC RESONANCE (NMR)

MAGNETYCZNY REZONANS JĄDROWY (MRJ) NUCLEAR MAGNETIC RESONANCE (NMR) MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... Program: 1. Podstawy ogólne (zjawisko fizyczne, wykonanie pomiaru, aparatura) 2. Spektroskopia

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

JĄDROWY REZONANS MAGNETYCZNY

JĄDROWY REZONANS MAGNETYCZNY JĄDROWY REZONANS MAGNETYCZNY - pierwsze prace to rok 1946 E.M.Purcell, H.S.Torrey, R.V.Pound, Phys. Rev. 69(1946) 37 F.Bloch, W.W.Hansen, M.E.Packard, Phys. Rev. 69(1946) 127 - pierwsze prace polskie J.W.Hennel,

Bardziej szczegółowo

II.6 Atomy w zewnętrznym polu magnetycznym

II.6 Atomy w zewnętrznym polu magnetycznym II.6 Atomy w zewnętrznym polu magnetycznym 1. Kwantowanie przestrzenne w zewnętrznym polu magnetycznym. Model wektorowy raz jeszcze 2. Zjawisko Zeemana Normalne zjawisko Zeemana i jego wyjaśnienie w modelu

Bardziej szczegółowo

ĆWICZENIE NR 5 ANALIZA NMR PRODUKTÓW FERMENTACJI ALKOHOLOWEJ

ĆWICZENIE NR 5 ANALIZA NMR PRODUKTÓW FERMENTACJI ALKOHOLOWEJ ĆWICZENIE NR 5 ANALIZA NMR PRODUKTÓW FERMENTACJI ALKOHOLOWEJ Uwaga: Ze względu na laboratoryjny charakter zajęć oraz kontakt z materiałem biologicznym, studenci zobowiązani są uŝywać fartuchów i rękawiczek

Bardziej szczegółowo

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny Wykład 21. 12.2016 Atom o wielu elektronach Laser Rezonans magnetyczny Jeszcze o atomach Przypomnienie: liczby kwantowe elektronu w atomie wodoru, zakaz Pauliego, powłoki, podpowłoki, orbitale, Atomy wieloelektronowe

Bardziej szczegółowo

Zastosowanie spektroskopii NMR do określania struktury związków organicznych

Zastosowanie spektroskopii NMR do określania struktury związków organicznych Zastosowanie spektroskopii NMR do określania struktury związków organicznych Atomy zbudowane są z jąder atomowych i powłok elektronowych. Modelowo można stwierdzić, że jądro atomowe jest kulą, w której

Bardziej szczegółowo

WIDMA W POLU MAGNETYCZNYM SPEKTROSKOPIA NMR

WIDMA W POLU MAGNETYCZNYM SPEKTROSKOPIA NMR WIDMA W POLU MAGNETYCZNYM SPEKTROSKOPIA NMR Spektroskopia NMR Co to jest? Zjawisko jądrowego rezonansu magnetycznego jest oparte na oddziaływaniu pomiędzy dipolem magnetycznym jądra a zewnętrznym polem

Bardziej szczegółowo

Obrazowanie Metodą Magnetycznego Rezonansu Jądrowego Spis treści

Obrazowanie Metodą Magnetycznego Rezonansu Jądrowego Spis treści Obrazowanie Metodą Magnetycznego Rezonansu Jądrowego Spis treści 1 Kilka uwag na temat Mechaniki Kwantowej, Mechaniki Klasycznej oraz nazewnictwa. 2 Spin 3 Spin i moment magnetyczny jądra atomowego 4 Moment

Bardziej szczegółowo

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: II

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: II SPEKTROSKOPIA NMR PODEJŚIE PRAKTYZNE ZĘŚĆ: II DR INŻ. TOMASZ LASKOWSKI O TO JEST WIDMO? WIDMO NMR wykres ilości kwantów energii promieniowania elektromagnetycznego pochłanianego przez próbkę w funkcji

Bardziej szczegółowo

Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków.

Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Leptony i kwarki są fermionami mają spin połówkowy

Bardziej szczegółowo

Siła magnetyczna działająca na przewodnik

Siła magnetyczna działająca na przewodnik Siła magnetyczna działająca na przewodnik F 2 B b F 1 F 3 a F 4 I siła Lorentza: F B q v B IL B F B ILBsin a moment sił działający na ramkę: M' IabBsin a B F 2 b a S M moment sił działający cewkę o N zwojach

Bardziej szczegółowo

Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych.

Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych. VII. SPIN 1 Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych. 1 Wstęp Spin jest wielkością fizyczną charakteryzującą cząstki

Bardziej szczegółowo

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład I Moment magnetyczny a moment pędu czynnik g. Precesja Larmora. Zjawisko rezonansu magnetycznego. Fenomenologiczny

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

ROZDZIAŁ 1 ELEMENTARNY OPIS REZONANSU JĄDROWEGO. 1.1. Magnetyczne właściwości jąder

ROZDZIAŁ 1 ELEMENTARNY OPIS REZONANSU JĄDROWEGO. 1.1. Magnetyczne właściwości jąder ROZDZIAŁ ELEENTARNY OPIS REZONANSU JĄDROWEGO.. agnetyczne właściwości jąder Podstawą spektroskopii magnetycznego rezonansu jądrowego (w skrócie RJ albo w jęz. angielskim NR nuclear magnetic resonance)

Bardziej szczegółowo

Wykład FIZYKA II. 13. Fizyka atomowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 13. Fizyka atomowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 13. Fizyka atomowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ ZASADA PAULIEGO Układ okresowy pierwiastków lub jakiekolwiek

Bardziej szczegółowo

MAGNETYCZNY REZONANS JĄDROWY W POLU MAGNETYCZNYM ZIEMII

MAGNETYCZNY REZONANS JĄDROWY W POLU MAGNETYCZNYM ZIEMII J4 MAGNETYCZNY REZONANS JĄDROWY W POLU MAGNETYCZNYM ZIEMII Cel ćwiczenia Celem ćwiczenia laboratoryjnego jest uzyskanie w ziemskim polu magnetycznym sygnału rezonansu magnetycznego pochodzącego od jąder

Bardziej szczegółowo

Tomografia magnetyczno-rezonansowa 1

Tomografia magnetyczno-rezonansowa 1 12 FOTON 96, Wiosna 2007 Tomografia magnetyczno-rezonansowa 1 Jadwiga Tritt-Goc Instytut Fizyki Molekularnej PAN, Poznań Wstęp Od połowy lat osiemdziesiątych XX w. rezonans magnetyczny najczęściej kojarzony

Bardziej szczegółowo

Wykład Budowa atomu 3

Wykład Budowa atomu 3 Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n

Bardziej szczegółowo

EPR w Biologii i Medycynie. Tomasz Okólski Tomasz Rosmus

EPR w Biologii i Medycynie. Tomasz Okólski Tomasz Rosmus EPR w Biologii i Medycynie Tomasz Okólski Tomasz Rosmus Czym jest EPR? Bardzo dokładna technika badawcza Dedykowana określonej grupie materiałów Pozwala na badanie ilościowe oraz jakościowe Charakteryzuje

Bardziej szczegółowo

Podstawy informatyki kwantowej

Podstawy informatyki kwantowej Wykład 6 27 kwietnia 2016 Podstawy informatyki kwantowej dr hab. Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Wykłady: 6, 13, 20, 27 kwietnia oraz 4 maja (na ostatnim wykładzie będzie

Bardziej szczegółowo

Badanie protonowego rezonansu magnetycznego

Badanie protonowego rezonansu magnetycznego adanie protonowego rezonansu magnetycznego Rys. 1 Układ pomiarowy. Wprowadzenie teoretyczne Jedną z podstawowych własności jądra atomowego jest jego moment pędu. Naukowcy w trakcie badań zaobserwowali

Bardziej szczegółowo

MAGNETYCZNY REZONANS JĄDROWY W POLU MAGNETYCZNYM ZIEMI

MAGNETYCZNY REZONANS JĄDROWY W POLU MAGNETYCZNYM ZIEMI MAGNETYCZNY REZONANS JĄDROWY W POLU MAGNETYCZNYM ZIEMI Cel ćwiczenia Celem ćwiczenia laboratoryjnego jest uzyskanie w ziemskim polu magnetycznym sygnału rezonansu magnetycznego pochodzącego od jąder wodoru

Bardziej szczegółowo

Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe

Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Wykład 4 29 kwietnia 2015 Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Dobra lektura: Michel Le Bellac

Bardziej szczegółowo

Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy

Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy Metody rezonansowe Magnetyczny rezonans jądrowy Magnetometr protonowy Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Co należy wiedzieć Efekt Zeemana,

Bardziej szczegółowo

impulsowy NMR - podsumowanie

impulsowy NMR - podsumowanie impulsowy NMR - podsumowanie impulsy RF obracają wektor namagnesowania o żądany kąt wokół wybranej osi np. x, -x, y, -y (oś obrotu wybiera się przez regulowanie fazy sygnału względem fazy odnośnika, kąt

Bardziej szczegółowo

W5. Komputer kwantowy

W5. Komputer kwantowy W5. Komputer kwantowy Komputer klasyczny: Informacja zapisana w postaci bitów (binary digit) (sygnał jest albo go nie ma) W klasycznych komputerach wartość bitu jest określona przez stan pewnego elementu

Bardziej szczegółowo

Leksykon onkologii Cancer lexicon

Leksykon onkologii Cancer lexicon NOWOTWORY Journal of Oncology 2006 volume 56 Number 4 477 482 Leksykon onkologii Cancer lexicon Leksykon poj ç i definicji w onkologii rezonans magnetyczny Ma gorzata Tacikowska Cancer lexicon magnetic

Bardziej szczegółowo

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy

Bardziej szczegółowo

NAJNOWSZE TRENDY W INŻYNIERII MATERIAŁOWEJ - METODY BADAŃ MATERIAŁÓW - JĄDROWY REZONANS MAGNETYCZNY (NMR)

NAJNOWSZE TRENDY W INŻYNIERII MATERIAŁOWEJ - METODY BADAŃ MATERIAŁÓW - JĄDROWY REZONANS MAGNETYCZNY (NMR) NAJNOWSZE TRENDY W INŻYNIERII MATERIAŁOWEJ - METODY BADAŃ MATERIAŁÓW - JĄDROWY REZONANS MAGNETYCZNY (NMR) dr Zbigniew Kaczyński Gdańsk 2012 Publikacja współfinansowana ze środków Unii Europejskiej w ramach

Bardziej szczegółowo

SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne

SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów

Bardziej szczegółowo

Własności jąder w stanie podstawowym

Własności jąder w stanie podstawowym Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów

Bardziej szczegółowo

Ćwiczenie 10 Badanie protonowego rezonansu magnetycznego

Ćwiczenie 10 Badanie protonowego rezonansu magnetycznego Laboratorium z Fizyki Materiałów 2010 Ćwiczenie 10 adanie protonowego rezonansu magnetycznego Rys. 1 Układ pomiarowy. 1. Wprowadzenie teoretyczne Jedną z podstawowych własności jądra atomowego jest jego

Bardziej szczegółowo

Zastosowanie spektroskopii NMR do badania związków pochodzenia naturalnego

Zastosowanie spektroskopii NMR do badania związków pochodzenia naturalnego Zastosowanie spektroskopii NMR do badania związków pochodzenia naturalnego Literatura W. Zieliński, A. Rajcy, Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych, Wydawnictwa

Bardziej szczegółowo

H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR...

H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... (Początek: 1946 rok) 1. M.Levitt, Spin Dynamics Basics of Nuclear Magnetic Resonance (Wiley,

Bardziej szczegółowo

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Plan ogólny Kryształy, półprzewodniki, nanotechnologie, czyli czym będziemy się

Bardziej szczegółowo

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości: 1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

Słowniczek pojęć fizyki jądrowej

Słowniczek pojęć fizyki jądrowej Słowniczek pojęć fizyki jądrowej atom - najmniejsza ilość pierwiastka jaka może istnieć. Atomy składają się z małego, gęstego jądra, zbudowanego z protonów i neutronów (nazywanych inaczej nukleonami),

Bardziej szczegółowo

Neurokognitywistyka WYKŁAD 5 Nowe metody badawcze

Neurokognitywistyka WYKŁAD 5 Nowe metody badawcze Neurokognitywistyka WYKŁAD 5 Nowe metody badawcze Obrazowanie anatomii i patologii mózgu metodą MRI (Magnetic Interference Resonance). Prof. dr hab. Krzysztof Turlejski Uniwersytet Kardynała Stefana Wyszyńskiego

Bardziej szczegółowo

Spektroskopowe metody identyfikacji związków organicznych

Spektroskopowe metody identyfikacji związków organicznych Spektroskopowe metody identyfikacji związków organicznych Wstęp Spektroskopia jest metodą analityczną zajmującą się analizą widm powstających w wyniku oddziaływania promieniowania elektromagnetycznego

Bardziej szczegółowo

Wykład XIII: Właściwości magnetyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych

Wykład XIII: Właściwości magnetyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Wykład XIII: Właściwości magnetyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wprowadzenie 2. Rodzaje magnetyzmu

Bardziej szczegółowo

Pole elektromagnetyczne w bioinżynierii

Pole elektromagnetyczne w bioinżynierii Pole elektromagnetyczne w bioinżynierii Wprowadzenie opracował Jacek Starzyński wersja 04.2008 Treść wykładu Podstawy fizyczne Opis matematyczny równania Maxwella Zastosowania w medycynie diagnostyka terapia

Bardziej szczegółowo

Obrazowanie MR przy użyciu spolaryzowanego 3 He jak chcemy badać szczurze płuca w Krakowie

Obrazowanie MR przy użyciu spolaryzowanego 3 He jak chcemy badać szczurze płuca w Krakowie FAMO Obrazowanie MR przy użyciu spolaryzowanego 3 He jak chcemy badać szczurze płuca w Krakowie Katarzyna Cieślar, Tomasz Dohnalik Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagielloński

Bardziej szczegółowo

NMR REZONANS MAGNETYCZNY. System nisko-polowy OMR Siemens Magnetom C. Obrazy z tomografu MRI 2015-06-04

NMR REZONANS MAGNETYCZNY. System nisko-polowy OMR Siemens Magnetom C. Obrazy z tomografu MRI 2015-06-04 NMR NMR (albo MRI) jest nowoczesną metodą diagnostyki obrazowej, dającą podobnie jak CT obraz przekrojów narządów wewnętrznych. Ten obraz magnetyczny dostarcza bardzo dużo dokładnych informacji dotyczących

Bardziej szczegółowo

ZASTOSOWANIE SPEKTROSKOPII NMR W MEDYCYNIE

ZASTOSOWANIE SPEKTROSKOPII NMR W MEDYCYNIE ZASTOSOWANIE SPEKTROSKOPII NMR W MEDYCYNIE LITERATURA 1. K.H. Hausser, H.R. Kalbitzer, NMR in medicine and biology. Structure determination, tomography, in vivo spectroscopy. Springer Verlag. Wydanie polskie:

Bardziej szczegółowo

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: I. Animacje na slajdach przygotował mgr inż.

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: I. Animacje na slajdach przygotował mgr inż. SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE CZĘŚĆ: I DR INŻ. TOMASZ LASKOWSKI Animacje na slajdach 13-30 prgotował mgr inż. Marcin Płosiński MOTTO WYKŁADU Nie treba końcć studiów na kierunku elektronika, ab

Bardziej szczegółowo

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład V Wybrane zastosowania CW EPR Techniki impulsowe EPR Obrazowanie EPR Pomiary rezonansu spinowego na pojedynczych

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

ZASADY ZALICZENIA PRZEDMIOTU MBS

ZASADY ZALICZENIA PRZEDMIOTU MBS ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll

Bardziej szczegółowo

MAGNETYCZNY REZONANS JĄDROWY (MRJ) NUCLEAR MAGNETIC RESONANCE (NMR)

MAGNETYCZNY REZONANS JĄDROWY (MRJ) NUCLEAR MAGNETIC RESONANCE (NMR) MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... (Początek: 1946 rok) Klasyfikacja technik spektroskopowych NMR: Pomiary próbek gazowych Pomiary

Bardziej szczegółowo

Badanie właściwości magnetycznych

Badanie właściwości magnetycznych Ćwiczenie 20 Badanie właściwości magnetycznych ciał stałych Filip A. Sala Spis treści 1 Cel ćwiczenia 2 2 Wstęp teoretyczny 2 2.1 Zagadnienia z teorii atomu............................ 2 2.2 Magnetyzm....................................

Bardziej szczegółowo

III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy

III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy r. akad. 2004/2005 1. Atom helu: struktura poziomów, reguły wyboru, 2. Zakaz Pauliego, 3. Moment pędu w atomach wieloelektronowych:

Bardziej szczegółowo

Atom wodoru i jony wodoropodobne

Atom wodoru i jony wodoropodobne Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek

Bardziej szczegółowo

FID Free Induction Decay. Rejestracja widm NMR metodą fali ciągłej CW (Continuous Wave)

FID Free Induction Decay. Rejestracja widm NMR metodą fali ciągłej CW (Continuous Wave) Rejestracja widm NMR metodą fali ciągłej W (ontinuous Wave) metodą fali ciągłej ze stopniową zmianą zakresu częstości w spektrometrach W próbka jest umieszczona w polu magnetycznym i naświetlana przy powolnej

Bardziej szczegółowo

Tomografia magnetyczno-rezonansowa

Tomografia magnetyczno-rezonansowa FIZYKA FAZY SKONDENSOWANEJ Tomografia magnetyczno-rezonansowa Jadwiga Tritt-Goc Instytut Fizyki Molekularnej PAN, Poznań Magnetic resonance imaging Abstract: Magnetic Resonance Imaging (MRI) is a method

Bardziej szczegółowo

J1 - BADANIE MAGNETYCZNEGO REZONANSU JĄDROWEGO W CIAŁACH STAŁYCH METODĄ FALI CIĄGŁEJ

J1 - BADANIE MAGNETYCZNEGO REZONANSU JĄDROWEGO W CIAŁACH STAŁYCH METODĄ FALI CIĄGŁEJ J1 - BADANIE MAGNETYCZNEGO REZONANSU JĄDROWEGO W CIAŁACH STAŁYCH METODĄ FALI CIĄGŁEJ I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się: a. ze zjawiskiem magnetycznego rezonansu jądrowego ( MRJ ), b.

Bardziej szczegółowo

POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW

POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW Ćwiczenie 65 POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW 65.1. Wiadomości ogólne Pole magnetyczne można opisać za pomocą wektora indukcji magnetycznej B lub natężenia pola magnetycznego H. W jednorodnym ośrodku

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

Podstawy fizyki sezon 2 4. Pole magnetyczne 1

Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pola magnetycznego

Bardziej szczegółowo

Neurokognitywistyka WYKŁAD 5 Nowe metody badawcze

Neurokognitywistyka WYKŁAD 5 Nowe metody badawcze Neurokognitywistyka WYKŁAD 5 Nowe metody badawcze Obrazowanie anatomii i patologii mózgu metodą MRI (Magnetic Interference Resonance). Prof. dr hab. Krzysztof Turlejski Uniwersytet Kardynała Stefana Wyszyńskiego

Bardziej szczegółowo

Spektroskopia NMR w Chemii

Spektroskopia NMR w Chemii Spektroskopia NMR w Chemii Podstawy Wstęp momenty magnetyczne i ich oddziaływanie z polem magnetycznym magnetyzm jądrowy oddziaływanie z promieniowaniem elektromagnetycznym zasady detekcji sygnału budowa

Bardziej szczegółowo

PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ

PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ Kierowniczka pracowni: dr hab. Magdalena Pecul-Kudelska, (pok. 417), e-mail mpecul@chem.uw.edu.pl, tel 0228220211 wew 501; Spis ćwiczeń i osoby prowadzące 1.

Bardziej szczegółowo

Spis treści. 1. Wstęp... 17. 2. Masa i rozmiary atomu... 21. 3. Izotopy... 45. Przedmowa do wydania szóstego... 13

Spis treści. 1. Wstęp... 17. 2. Masa i rozmiary atomu... 21. 3. Izotopy... 45. Przedmowa do wydania szóstego... 13 5 Spis treści Przedmowa do wydania szóstego........................................ 13 Przedmowa do wydania czwartego....................................... 14 Przedmowa do wydania pierwszego.......................................

Bardziej szczegółowo

CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra

CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna Model atomu Bohra SPIS TREŚCI: 1. Modele budowy atomu Thomsona, Rutherforda i Bohra 2. Budowa atomu 3. Liczba atomowa a liczba

Bardziej szczegółowo

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św.

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św. Foton, kwant światła Wielkość fizyczna jest skwantowana jeśli istnieje w pewnych minimalnych (elementarnych) porcjach lub ich całkowitych wielokrotnościach w klasycznym opisie świata, światło jest falą

Bardziej szczegółowo

J1 - BADANIE MAGNETYCZNEGO REZONANSU JĄDROWEGO W CIAŁACH STAŁYCH METODĄ FALI CIĄGŁEJ

J1 - BADANIE MAGNETYCZNEGO REZONANSU JĄDROWEGO W CIAŁACH STAŁYCH METODĄ FALI CIĄGŁEJ J1 - BADANIE MAGNETYCZNEGO REZONANSU JĄDROWEGO W CIAŁACH STAŁYCH METODĄ FALI CIĄGŁEJ I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się: a. ze zjawiskiem magnetycznego rezonansu jądrowego ( MRJ ), b.

Bardziej szczegółowo

INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCESOWEJ, MATERIAŁOWEJ I FIZYKI STOSOWANEJ POLITECHNIKA CZĘSTOCHOWSKA ĆWICZENIE NR MR-3

INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCESOWEJ, MATERIAŁOWEJ I FIZYKI STOSOWANEJ POLITECHNIKA CZĘSTOCHOWSKA ĆWICZENIE NR MR-3 INTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCEOWEJ, ATERIAŁOWEJ I FIZYKI TOOWANEJ POLITECHNIKA CZĘTOCHOWKA LABORATORIU Z PRZEDIOTU ETODY REZONANOWE ĆWICZENIE NR R-3 ELEKTRONOWY REZONAN PARAAGNETYCZNY JONÓW n

Bardziej szczegółowo

Doświadczenie Rutherforda. Budowa jądra atomowego.

Doświadczenie Rutherforda. Budowa jądra atomowego. Doświadczenie Rutherforda. Budowa jądra atomowego. Rozwój poglądów na budowę atomu Model atomu Thomsona - zwany także modelem "'ciasta z rodzynkami". Został zaproponowany przez brytyjskiego fizyka J. J.

Bardziej szczegółowo

Badanie pętli histerezy magnetycznej ferromagnetyków, przy użyciu oscyloskopu (E1)

Badanie pętli histerezy magnetycznej ferromagnetyków, przy użyciu oscyloskopu (E1) Badanie pętli histerezy magnetycznej ferromagnetyków, przy użyciu oscyloskopu (E1) 1. Wymagane zagadnienia - klasyfikacja rodzajów magnetyzmu - własności magnetyczne ciał stałych, wpływ temperatury - atomistyczna

Bardziej szczegółowo

Wykład 4. metody badania mózgu II. dr Marek Binder Zakład Psychofizjologii

Wykład 4. metody badania mózgu II. dr Marek Binder Zakład Psychofizjologii Wykład 4 metody badania mózgu II dr Marek Binder Zakład Psychofizjologii Terminologia SAGITTAL SLICE Number of Slices e.g., 10 Slice Thickness e.g., 6 mm In-plane resolution e.g., 192 mm / 64 = 3 mm IN-PLANE

Bardziej szczegółowo

CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM.

CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna tel. 0501 38 39 55 www.medicus.edu.pl CHEMIA 1 ATOM Budowa atomu - jądro, zawierające

Bardziej szczegółowo

Kurs przygotowawczy NOWA MATURA FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY

Kurs przygotowawczy NOWA MATURA FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY Kurs przygotowawczy NOWA MATURA FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY 1.Wielkości fizyczne: - wielkości fizyczne i ich jednostki - pomiary wielkości fizycznych - niepewności pomiarowe - graficzne przedstawianie

Bardziej szczegółowo

Podstawy fizyki wykład 3

Podstawy fizyki wykład 3 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka.

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka. Fale materii 194- Louis de Broglie teoria fal materii, 199- nagroda Nobla Hipoteza de Broglie głosi, że dwoiste korpuskularno falowe zachowanie jest cechą nie tylko promieniowania, lecz również materii.

Bardziej szczegółowo

Teoria pasmowa ciał stałych

Teoria pasmowa ciał stałych Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury

Bardziej szczegółowo

Spektroskopia NMR w badaniach struktury i aktywności biomolekuł

Spektroskopia NMR w badaniach struktury i aktywności biomolekuł Spektroskopia NMR w badaniach struktury i aktywności biomolekuł I. Magnetyczny rezonans jądrowy uproszczone podstawy teoretyczne stosowanej metody i aparatura pomiarowa. Jądra atomowe co udowodnił Ernest

Bardziej szczegółowo

Zastosowanie metod dielektrycznych do badania właściwości żywności

Zastosowanie metod dielektrycznych do badania właściwości żywności Zastosowanie metod dielektrycznych do badania właściwości żywności Ze względu na właściwości elektryczne materiały możemy podzielić na: Przewodniki (dobrze przewodzące prąd elektryczny) Półprzewodniki

Bardziej szczegółowo

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %. Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:

Bardziej szczegółowo

Pracownia Spektroskopii Molekularnej Wydział Chemii UŁ 91-403 Łódź, ul. Tamka 12. Akademia Ciekawej Chemii 18.01.2012

Pracownia Spektroskopii Molekularnej Wydział Chemii UŁ 91-403 Łódź, ul. Tamka 12. Akademia Ciekawej Chemii 18.01.2012 Do czego potrzebna jest spektroskopia? O drganiach, rezonansie i muzyce, czyli kilka słów na temat jądrowego rezonansu magnetycznego Dr Arkadiusz Kłys Pracownia Spektroskopii Molekularnej Wydział Chemii

Bardziej szczegółowo

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny

Bardziej szczegółowo

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. Pole magnetyczne Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. naładowane elektrycznie cząstki, poruszające się w przewodniku w postaci prądu elektrycznego,

Bardziej szczegółowo