SPEKTROSKOPIA MAGNETYCZNEGO REZONANSU JĄDROWEGO IZOTOPÓW INNYCH NIś 1 H i 13 C

Wielkość: px
Rozpocząć pokaz od strony:

Download "SPEKTROSKOPIA MAGNETYCZNEGO REZONANSU JĄDROWEGO IZOTOPÓW INNYCH NIś 1 H i 13 C"

Transkrypt

1 SPEKTROSKOPIA MAGETYZEGO REZOASU JĄDROWEGO IZOTOPÓW IY Iś 1 i 13

2 o moŝna zmierzyć metodami MRJ? e Li Be B O F e a Mg Al Si P S l Ar K a Sc Ti V r Mn Fe o i u Zn Ga Ge As Se Br Kr Rb Sr Y Zr b Mo Tc Ru Rh Pd Ag d In Sn Sb Te I Xe s Ba La f Ta W Re Os Ir Pt Au g Tl Pb Bi Po At Rn Fr Ra Ac e Pr d Pm Sm Eu Gd Tb Dy o Er Tm Yb Lu Th Pa U p Pu Am m Bk f Es Fm Md o Lr pierwiastki posiadające co najmniej jeden izotop o spinie 1/2

3 T Mz Au 2 (D) 31 P 19 F 3 (T) izotopów o liczbie spinowej róŝnej od 0

4 PODZIAŁ IZOTOPÓW spin = 1/2 spin > 1/2 duŝa zawartość naturalna 1, 19 F, 31 P 14 mała zawartość naturalna 3, 13, 15 2, 17 O, 33 S Jądra o spinie większym niŝ 1/2 posiadają moment kwadrupolowy; z powodu sprzęŝenia kwadrupolowego ich czas T 1 jest krótki Drugi czynnik skracający T 1 : niesparowane elektrony (np. metale przejściowe)

5 + Jądro o spinie ½ Ładunek dodatni rozłoŝony symetrycznie Moment kwadrupolowy Q równy zero Jądro o spinie większym niŝ ½ Ładunek dodatni rozłoŝony niesymetrycznie Moment kwadrupolowy Q róŝny od zera Miara oddziaływania momentu kwadrupolowego z polem elektrycznym cząsteczki: sprzęŝenie kwadrupolowe Stała sprzęŝenia kwadrupolowego QF (z): e 2 Qq zz h 1/T 1 = 1/T 2 ~ QF, η, τ c

6 I szerokość połówkowa sygnału (z) szerokość w połowie wysokości, half-width, LW, W 1/2 ½ I W 1/2 ~ 1/T 2 Jądra o spinie ½ ( 1, 13, 15...): W 1/2 = z Jądra o spinie > ½ : W 1/2 = kilka z kilka kz lub więcej (!!!)

7 Trudność rejestracji widma MR jąder o krótkim czasie T 2 (T 1 ) T 1 >= T 2 D1 (0 s) AQ W 1/2 ~ 1/T 2 nm X czas T 2 krótki = W 1/2 duŝa prescan delay (> 10 µs) Relaksacja próbki trwa w czasie całego eksperymentu Sygnał próbki moŝe zaniknąć zanim rozpocznie się rejestracja (dla krótkich czasów T 1 ) Skrócenie odstępu pomiędzy pulsem a rejestracją zaburza linię podstawową widma Korzystny krótki impuls o duŝej mocy moc jest ograniczona wytrzymałością sondy 90 o 90o 90 o + - sygnał + zaburzenie zaburzenie

8 SprzęŜenia z jądrem o spinie większym niŝ 1/2 spin ½ - dwie moŝliwe orientacje wektora µ w polu magnetycznym spin 1 - trzy moŝliwe orientacje wektora µ w polu magnetycznym z z x x y y spin ½ (rzut na oś z: 1/2, -1/2) spin 1 (rzut na oś z: 1, 0, -1 spin 3/2 (rzut na oś z: 3/2, 1/2, -1/2, -3/2

9 SprzęŜenie jądra o spinie 1 z jądrem o spinie ½ (sygnał 13 w l 3 i Dl 3 ) 1 J( 13-2 ) = 32 z 1 J( 13-1 ) = 214 z l 3 l 3 Dl 3 Efekt izotopowy δ(l 3 ) δ(dl 3 ) = 0.2 ppm

10 Wpływ jądra o spinie > ½ na kształt sygnału jądra o spinie ½ ( efekt odsprzęgania, przypadek 1 / 14 ) Kształt sygnału: T Q, J Symulacja dla układu J( 14-1 ) = 60 z MR 1 : 14 : T Q s s s s 0.04 s W 1/2 800 z 320 z 100 z 35 z 8 z

11 Magnetyczny rezonans jądrowy azotu 15 ( 15 MR) aturalna zawartość: 0.36%, spin: 1/2, częstość Mz ( T) Zakres przesunięć chemicznych: ppm ppm ( 3 O 2 = 0 ppm) Wzorzec: nitrometan (0 ppm) lub ciekły amoniak (0 ppm); δ amoniak = δ nitrometan ppm skala przesunięć chemicznych ppm skala ekranowania - 0 ppm + Widmo: ostre sygnały, < 1 z, długi czas T 1 (kilka kilkaset sekund). Typowe warunki pomiaru: probówka 10 mm, kilkaset mg (!) substancji (roztwór M) kilkugodzinny czas pomiaru, dodatek r(acac) 3 Przyspieszenie pomiaru: IEPT, metoda 2D IVERSE (wzrost czułości ok. 300 razy)

12 Przykładowe przesunięcia chemiczne 15 ; δ( 3 O 2 ) = 0 ppm iekły amoniak Aminy Pirydyny Związki nitrozowe (np. Ar-=O) 380 ppm od 280 ppm do 385 ppm od 30 ppm do 155 ppm od do ppm Typowe stałe sprzęŝenia: J( 15-1 ) 1 J( 15 -X) 1 J: (- 40 z) (-130 z) 1 J( ): (+ 9 z) (-78 z) 2 J: 0 z 15 z 1 J( F): (+ 150 z) (+ 460 z) 3 J: 0 z 7 z 1 J( P): (- 80 z) (+ 100 z) n J: <1z

13 Metody ułatwiające pomiar: Dodatek substancji skracającej czas T 1, r(acac) 3 relaksant wygasza OE i utrudnia przeniesienie polaryzacji!! Wykorzystanie OE (wzmocnienie I / I o = ) Metody IEPT i DEPT ( wzmocnienie I / I o = 9.87!!) η { 1 } log ( ωτ ) Wzmocnienie: (I I o ) / I o = 5.94 I / I o Intensywność sygnału moŝe mieć wartość zero!! =- 2 jeden sygnał moŝe być dodatni, drugi ujemny.

14 Protonowanie atomu azotu Utlenianie atomu azotu + + O O O - 63 ppm ppm - 63 ppm - 96 ppm - 96 ppm ppm Ustalenie miejsca protonowania cząsteczki Ph Ph S Ph S Ph Ph S Ph J = 82 z

15 Kompleksowanie atomu azotu przez metal przejściowy: od ppm do ppm δ( 15 ) = ppm Rh δ( 15 ): ppm δ( 15 Ν) ppm ( 3 ) ppm (=-) ppm

16 Oznaczanie składu mieszaniny tautomerycznej Mieszanina badana Związki modelowe X X XMe X Me X X δ X + X δ = δ obs X X + X = 1

17 Magnetyczny rezonans jądrowy azotu 14 ( 14 MR) aturalna zawartość: 99.64%, spin: 1, częstość: Mz ( T) Zakres przesunięć chemicznych i kalibracja: jak w spektroskopii 15 MR: sygnał 14 nitrometanu (0 ppm) lub ciekłego amoniaku (0 ppm); Przesunięcie chemiczne: jak przesunięcie chemiczne 15, z dokładnością do 1 ppm zas relaksacji T 1 : bardzo krótki, T 2 = T 1 < 1 sekundy. MoŜna skrócić czas D1 i AQ. Widmo: szerokie sygnały, od kilkudziesięciu z do kilku kz. Szerokość sygnału zaleŝna m.in. od symetrii otoczenia chemicznego i gęstości ładunku wokół jądra. Stałe sprzęŝenia J: J( 15 -X) = J( 14 -X). Bardzo często występuje efekt odsprzęgania i sprzęŝenia są niewidoczne. Jądro 14 rozczepia sygnał jądra o spinie 1/2 na trzy składowe, nie na dwie!!

18 R4 R3 + R1 R2 X - Inne związki dogodne do pomiarów 14 MR: R1 = R2 = R3 = R4 ostry sygnał 14 (mała gęstość ładunku, symetria otoczenia) izonitryle R nitrozwiązki RO 2 grupy R róŝne: poszerzenie sygnału 14 (zaburzona symetria) Aminy: szerokie sygnały 14

19 2 J( 14-1 ) = 1.6 z 3 J( 1-1 ) = 6.8 z Ph + 1 J( ) = 4.7 z 3 1 J( ) = 6.5 z * * 3 J( 14-1 ) = 2.2 z 3 J( 1-1 ) = 6.8 z 2 J( ) = 0 z

20 Pomiar 15 : probówka 10 mm; ok mg związku, kilkugodzinny czas pomiaru Pomiar 14 : kilkadziesiąt mg związku, czas pomiaru: kilka kilkanaście minut

21 Magnetyczny rezonans jądrowy fluoru 19 F ( 19 F MR) aturalna zawartość: 100%, spin: 1/2, częstość Mz ( T) Wzorzec: Fl 3 (0 ppm) Typowy zakres przesunięć chemicznych: ppm ppm. SprzęŜenia z 1 mogą być usunięte przez odsprzęganie Stałe sprzęŝenia J: J( 19 F- 1 ) J( 19 F- 19 F) J( 19 F- 13 ) 2 J: 40 z 90 z 2 J: do 300 z 1 J: 160 z 300 z 3 J: 0 z 50 z 3 J: ok. 20 z n J: 0 z 60 z 4 J: < 10 z 4 J: (- 20 z) (+ 20 z) J: (+ 5 z) (+ 18 z) F F 5 J( 19 F- 19 F) = 170 z (!!)

22 Magnetyczny rezonans jądrowy fosforu 31 P ( 31 P MR) aturalna zawartość: 100%, spin: 1/2, częstość Mz ( T) Wzorzec zewnętrzny: 3 PO 4 aq. (0 ppm) Typowy zakres przesunięć chemicznych: ppm ppm. SprzęŜenia z 1 mogą być usunięte przez odsprzęganie teraz ppm 0 ppm - + dawniej Stałe sprzęŝenia J: J( 31 P- 1 ) J( 31 P- 31 P) J( 31 P- 13 ) 1 J: 200 z 1000 z 1 J: 20 z 770 z 1 J: 0 z 250 z 2 J: 0 z 30 z 2 J: 40 z 150 z n J: 0 z 40 z 3 J: 0 z 20 z 3 J: 30 z 40 z 4 J: 2 z 4 z

23 Magnetyczny rezonans jądrowy tlenu 17 O ( 17 O MR) aturalna zawartość: 0.037%, spin: 5/2, częstość Mz ( T) Wzorzec zewnętrzny: 2 O (0 ppm) Zakres przesunięć chemicznych: 0 ppm 1100 ppm. SprzęŜenia z innymi jądrami: zazwyczaj niewidoczne (są wyjątki, np. R 3 P=O) zas relaksacji T 1 : bardzo krótki, T 1 = T 2 < 1 s. MoŜna skrócić czas D1 i AQ. Sygnały: szerokie, od kilkudziesięciu z do kilku kz Przykładowe przesunięcia chemiczne: alkohole, etery od - 40 ppm do ppm ketony, aldehydy od ppm do ppm aceton 573 ppm nitrometan 607 ppm azotyny (-=O) od ppm do ppm r 2 O 2-7 ok ppm octan etylu 172 ppm (-O-), 308 ppm (=O)

24 Magnetyczny rezonans jądrowy siarki 33 S ( 33 S MR) aturalna zawartość: 0.76%, spin: 3/2, częstość Mz ( T) Wzorzec zewnętrzny: S 2 (0 ppm) Zakres przesunięć chemicznych: od ppm do 240 ppm ppm. SprzęŜenia z innymi jądrami: zazwyczaj niewidoczne zas relaksacji T 1 : bardzo krótki, T 1 = T 2 < 1 s. MoŜna skrócić czas D1 i AQ. Sygnały: szerokie, od kilkudziesięciu z do kilku kz i więcej (!!!) S S O R S O + S ppm - 30 ppm od 300 ppm do 340 ppm R 750 ppm

25 Magnetyczny rezonans jądrowy wodoru 2 i 3 ( 2 MR, 3 MR) aturalna zawartość deuteru ( 2, D): 0.015%, spin: 1, częstość Mz ( T) aturalna zawartość trytu ( 3, T): 0%, spin: 1/2, częstość Mz ( T) Zakres przesunięć chemicznych i kalibracja: jak w spektroskopii 1 MR. W przypadku 2 : sygnał 2 TMS. W przypadku trytu: sygnał 1 TMS (!). SprzęŜenia z innymi jądrami: dla 3 podobnie jak w spektroskopii 1 MR. W przypadku 2 : jak dla jądra o spinie 1. Przeliczenia sprzęŝeń: J( 1-1 ) = J( 2-1 )*6.51 = J( 3-1 )*0.94 Zalety: wysoka czułość pomiaru w przypadku trytu. Wady: są pewne trudności techniczne... Zastosowania: Znaczenie związków chemicznych, i śledzenie ich przemian (chemia, organizmy Ŝywe) Wykorzystanie 2 lub 3 jako sondy w złoŝonej cząsteczce (białko, polimer) Badanie wiązań wodorowych i efektów izotopowych Synteza związków o chiralności izotopowej (chiralna grupa 3 : ( 1 )( 2 )( 3 ) przeliczanie sprzęŝeń: J(X- n A) / J(X- m A) = (częstość n A) / (częstość m A)

26 Wykorzystanie 2 w pomiarze stałych sprzęŝenia J( 1-1 ) i J( ) X X X X Układ spinowy A 2 na widmie 1 MR 1 sygnał (singlet). Problem: jak zmierzyć 3 J( 1-1 )? 13 Układ spinowy ABX (AA X) 2 R R Układ spinowy AX J( 1-1 ) = J( 2-1 )*6.51 Układ spinowy AA XX 2 Układ spinowy A 2 lub A 2 X Układ spinowy AMX (AMM X)

27 Pomiar geminalnej stałej sprzęŝenia 2 J( 1-1 ) Dl 2 2 l 2 D 3 OD z 2 J( 1-1 ) = 2 J( 2-1 )*6.51

28 Inne izotopy być moŝe uŝyteczne: Si, Se, Sn,...

29 POMIAR OWEGO IZOTOPU - etapy Wyszukanie literatury z opisem typowego eksperymentu Zdobycie wzorca do kalibracji widma Dostrojenie spektrometru, kalibracja impulsu, optymalizacja parametrów pomiaru Pomiar próbki wzorcowej Pomiar próbki X Wynik pracy: moŝe być negatywny... IhO PA: Izotopy juŝ mierzone: 19 F, 31 P, 17 O, 29 Si, 77 Se, 113 d, 117 Sn, 119 Sn, 195 Pt, 199 g Dostępny zakres pomiarowy: od ok. 20 Mz do 500 Mz ( T) Poza zasięgiem (???) : 41 K, 57 Fe, 99 Ru, 103 Rh, 187 Os, 191 Ir, 193 Ir, 197 Au, 235 U Dostępne w zamian: 39 K, 101 Ru, 189 Os Ograniczenia: Izotopy o małej częstości rezonansowej (zakres aparatu, niska czułość pomiaru) DuŜa szerokość sygnału (sprzęŝenie kwadrupolowe, niesparowane elektrony)

30 SprzęŜenia pomiędzy róŝnymi izotopami: SprzęŜenia pomiędzy jądrami o spinie ½ są widoczne (o ile stęŝenie izotopomeru na to pozwala!) SprzęŜenia pomiędzy jądrami o spinie > ½ lub jądrem o spinie ½ i jądrem o spinie > ½ ( 14, 17 O, 33 S) są zazwyczaj niewidoczne ( efekt odsprzęgania ) Wyjątek: sygnał jądra o spinie > ½ jest ostry Przykład: widoczne są sprzęŝenia z deuterem (spin 1), sprzęŝenia J( 14-1 ) w czwartorzędowych solach amoniowych, sprzęŝenia J( 31 P- 17 O) w pewnych związkach fosforu (wiązanie P=O), itp. R δ( 17 O) = ppm R P O W 1/2 = z R 1 J( 31 P- 17 O) = z Przy analizie sprzęŝeń naleŝy uwzględnić statystykę

31 Etyloamina z punktu widzenia spektroskopii MR ok. 98% % 1% % * 1% = % 1% % * 1% = % 0.01% % * 1% * 1% = % Dla uproszczenia: pominięto sprzęŝenia z 1 i 2 Odsprzęganie 1 : Widmo 14 MR: szeroki singlet; ewentualne sprzęŝenia z 13 widoczne jako linie satelitarne. SprzęŜeń prawdopodobnie nie będzie widać z powodu efektu odsprzęgania Widmo 13 MR: składa się z singletów. SprzęŜenia z 14 prawdopodobnie niewidoczne; sprzęŝenia z 13 i 15 dają trudne do obserwacji sygnały satelitarne. Widmo 15 MR: siglet; sprzęŝenia z 13 widoczne jako linie satelitarne. Widmo 1 MR: ewentualne sprzęŝenia widoczne jako linie satelitarne. Widma sprzęŝone z 1 : na widmach 13 i 15 pojawią się sprzęŝenia z 1 SprzęŜenia J( 14 -X): niewidoczne w 3 2 2, ale być moŝe (??) widoczne w soli amoniowej ( 3 ) 4 l -

32 Struktura sygnału 13 w mieszaninie izotopomerów 1% singlet 0.01% dublet, 1 J( ) 0.36% * 1% = % dublet, 1 J( ) 0.36% * 1% * 1% = % kwartet, 1 J( ) i 1 J( ) δ( 13 ): róŝne dla kaŝdego izotopomeru ( efekt izotopowy ) Sygnał 13 : suma powyŝszych sygnałów cyna: 115 Sn 0.35% (1/2) 117 Sn 7.61% (1/2) 119 Sn 8.58% (1/2) Związek zawierający atom cyny: trzy izotopomery aktywne w spektroskopii MR

33 Satelitarne sygnały cyny na widmie 13 MRJ Trzy izotopomery aktywne w MRJ: 13 MRJ nm Sn % 119 Sn % J = a 117 Sn % J= a 115 Sn % J= a MoŜliwy efekt izotopowy!! 13 MRJ 1 J( 119 Sn, 13 ) = 487 z 1 J( 117 Sn, 13 ) = 466 z 3 J( 119/117 Sn, 13 ) = 24 z 2 J( 119/117 Sn, 13 ) = 77 z

34 n-bu n-bu Sn n-bu 1 MR 1 J( 117 Sn, 1 ) 1515 z 1 J( 119 Sn, 1 ) 1585 z 1 J( 115 Sn, 1 ) 1390 z

35 Efektywna technika pomiaru: obserwacja pośrednia ( inverse ) Pomiar właściwości spektralnych MR jednego izotopu poprzez obserwację widma drugiego izotopu.

36 Dwa sposoby obserwacji tej samej stałej sprzęŝenia Układ dwóch sprzęŝonych ze sobą jąder: np w l 3 Widmo 1 MR: Widmo 13 MR: δ, dublet, 1 J( 13-1 ) = 214 z δ c, dublet, 1 J( 13-1 ) = 214 z Przesunięcie chemiczne 1 (δ ) moŝna odczytać z widma 1 MR Przesunięcie chemiczne 13 (δ c ) moŝna odczytać z widma 13 MR Wartość 1 J( 13-1 ) moŝna odczytać z obu widm, 1 i 13 MR ( 1 ) ( 13 ) ( 1 ) > ( 13 ) Informacja o 1 J( 13-1 ) znajduje się w satelitarnym widmie 1 MR (sygnały 13 1 ), zagłuszonym przez sygnały 12-1, 100 razy silniejsze (!!)

37 Widmo 13 MR R Widmo 1 MR Widmo 1 MR filtrowane (usunięte sygnały 12-1 )

38 Przeniesienie informacji o przesunięciu chemicznym 13 do widma 1 I M o 1 I M o, cos(ω c τ) I 90 o 180 o τ o 90 o τ t τ 2 τ 4 τ τ 3 Obserwacja pośrednia lub odwrotna (inverse): obserwacja jądra o małej czułości za pośrednictwem jądra o duŝej czułości ( 13-1, F, P...)

39 T Mz Au 2 (D) 31 P 19 F 3 (T) izotopów o liczbie spinowej róŝnej od 0

40 zułość pomiaru: Os (X- 1 ): Pomiar 1D wprost : Pomiar IEPT γ / γ X = ν / ν X Pomiar 2D inverse ( γ / γ X ) 5/2 = (ν / ν X ) 5/ (X- 31 P): Pomiar 2D inverse (ν P / ν X ) 5/

SPEKTROSKOPIA MAGNETYCZNEGO REZONANSU JĄDROWEGO IZOTOPÓW INNYCH NIŻ 1 H i 13 C

SPEKTROSKOPIA MAGNETYCZNEGO REZONANSU JĄDROWEGO IZOTOPÓW INNYCH NIŻ 1 H i 13 C SPEKTRSKPIA MAGETYZEG REZASU JĄDRWEG IZTPÓW IY IŻ 1 i 13 o można zmierzyć metodami MRJ? e Li Be B F e a Mg Al Si P S l Ar K a Sc Ti V r Mn Fe o i u Zn Ga Ge As Se Br Kr Rb Sr Y Zr b Mo Tc Ru Rh Pd Ag d

Bardziej szczegółowo

SPEKTROSKOPIA MAGNETYCZNEGO REZONANSU JĄDROWEGO IZOTOPÓW O SPINIE WIĘKSZYM NIŻ 1/2

SPEKTROSKOPIA MAGNETYCZNEGO REZONANSU JĄDROWEGO IZOTOPÓW O SPINIE WIĘKSZYM NIŻ 1/2 SPEKTRSKPIA MAGETYZEG REZASU JĄDRWEG IZTPÓW SPIIE WIĘKSZYM IŻ 1/2 PDZIAŁ IZTPÓW spin = 1/2 spin > 1/2 duża zawartość naturalna 1, 19 F, 31 P 14 mała zawartość naturalna 3, 13, 15 2, 17, 33 S Jądra o spinie

Bardziej szczegółowo

Układ okresowy. Przewidywania teorii kwantowej

Układ okresowy. Przewidywania teorii kwantowej Przewidywania teorii kwantowej Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle

Bardziej szczegółowo

PIERWIASTKI W UKŁADZIE OKRESOWYM

PIERWIASTKI W UKŁADZIE OKRESOWYM PIERWIASTKI W UKŁADZIE OKRESOWYM 1 Układ okresowy Co można odczytać z układu okresowego? - konfigurację elektronową - podział na bloki - podział na grupy i okresy - podział na metale i niemetale - trendy

Bardziej szczegółowo

Układ okresowy. Przewidywania teorii kwantowej

Układ okresowy. Przewidywania teorii kwantowej Przewidywania teorii kwantowej 1 Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle

Bardziej szczegółowo

Inne koncepcje wiązań chemicznych. 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań?

Inne koncepcje wiązań chemicznych. 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań? Inne koncepcje wiązań chemicznych 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań? Model VSEPR wiązanie pary elektronowe dzielone między atomy tworzące wiązanie.

Bardziej szczegółowo

Pierwiastek: Na - Sód Stan skupienia: stały Liczba atomowa: 11

Pierwiastek: Na - Sód Stan skupienia: stały Liczba atomowa: 11 ***Dane Pierwiastków Chemicznych*** - Układ Okresowy Pierwiastków 2.5.1.FREE Pierwiastek: H - Wodór Liczba atomowa: 1 Masa atomowa: 1.00794 Elektroujemność: 2.1 Gęstość: [g/cm sześcienny]: 0.0899 Temperatura

Bardziej szczegółowo

Wiązania. w świetle teorii kwantów fenomenologicznie

Wiązania. w świetle teorii kwantów fenomenologicznie Wiązania w świetle teorii kwantów fenomenologicznie Wiązania Teoria kwantowa: zwiększenie gęstości prawdopodobieństwa znalezienia elektronów w przestrzeni pomiędzy atomami c a a c b b Liniowa kombinacja

Bardziej szczegółowo

SPEKTROSKOPIA NMR. No. 0

SPEKTROSKOPIA NMR. No. 0 No. 0 Spektroskopia magnetycznego rezonansu jądrowego, spektroskopia MRJ, spektroskopia NMR jedna z najczęściej stosowanych obecnie technik spektroskopowych w chemii i medycynie. Spektroskopia ta polega

Bardziej szczegółowo

ul. Umultowska 89b, Collegium Chemicum, Poznań tel ; fax

ul. Umultowska 89b, Collegium Chemicum, Poznań tel ; fax Wydział Chemii Zakład Chemii Analitycznej Plazma kontra plazma: optyczna spektrometria emisyjna w badaniach środowiska Przemysław Niedzielski ul. Umultowska 89b, Collegium Chemicum, 61-614 Poznań tel.

Bardziej szczegółowo

Chemia. Wykłady z podstaw chemii. Dr hab. Joanna Łojewska Zakład Chemii Nieorganicznej r Odkrycie fosforu przez Henninga Branda

Chemia. Wykłady z podstaw chemii. Dr hab. Joanna Łojewska Zakład Chemii Nieorganicznej r Odkrycie fosforu przez Henninga Branda Chemia Dr hab. Joanna Łojewska Zakład Chemii Nieorganicznej 1669 r Odkrycie fosforu przez Henninga Branda Wykłady z podstaw chemii Lista wykładów STECHIOMETRIA GAZY TERMOCHEMIA TERMODYNAMIKA RÓWNOWAGA

Bardziej szczegółowo

Wykład 9 Wprowadzenie do krystalochemii

Wykład 9 Wprowadzenie do krystalochemii Wykład 9 Wprowadzenie do krystalochemii 1. Krystalografia a krystalochemia. 2. Prawa krystalochemii 3. Sieć krystaliczna i pozycje atomów 4. Bliskie i dalekie uporządkowanie. 5. Kryształ a cząsteczka.

Bardziej szczegółowo

UKŁAD OKRESOWY PIERWIASTKÓW

UKŁAD OKRESOWY PIERWIASTKÓW UKŁAD OKRESOWY PIERWIASTKÓW Michał Sędziwój (1566-1636) Alchemik Sędziwój - Jan Matejko Pierwiastki chemiczne p.n.e. Sb Sn Zn Pb Hg S Ag C Au Fe Cu (11)* do XVII w. As (1250 r.) P (1669 r.) (2) XVIII

Bardziej szczegółowo

Wykłady z podstaw chemii

Wykłady z podstaw chemii Chemia dr hab. Joanna Łojewska Zakład Chemii Nieorganicznej 1669 r Odkrycie fosforu przez Henninga Branda Wykłady z podstaw chemii Lista wykładów STECHIOMETRIA GAZY TERMOCHEMIA TERMODYNAMIKA RÓWNOWAGA

Bardziej szczegółowo

1669 r Odkrycie fosforu przez Henninga Branda. Chemia. dr hab. Joanna Łojewska Zakład Chemii Nieorganicznej

1669 r Odkrycie fosforu przez Henninga Branda. Chemia. dr hab. Joanna Łojewska Zakład Chemii Nieorganicznej 1669 r Odkrycie fosforu przez Henninga Branda Chemia dr hab. Joanna Łojewska Zakład Chemii Nieorganicznej Wykłady z podstaw chemii Lista wykładów STECHIOMETRIA 5 GAZY 3 TERMOCHEMIA 2 TERMODYNAMIKA 4 RÓWNOWAGA

Bardziej szczegółowo

Chemia. Dr hab. Joanna Łojewska Zakład Chemii Nieorganicznej r Odkrycie fosforu przez Henninga Branda

Chemia. Dr hab. Joanna Łojewska Zakład Chemii Nieorganicznej r Odkrycie fosforu przez Henninga Branda Chemia Dr hab. Joanna Łojewska Zakład Chemii Nieorganicznej 1669 r Odkrycie fosforu przez Henninga Branda Wykłady z podstaw chemii Lista wykładów STECHIOMETRIA GAZY TERMOCHEMIA TERMODYNAMIKA RÓWNOWAGA

Bardziej szczegółowo

MAGNETYCZNY REZONANS JĄDROWY (MRJ) NUCLEAR MAGNETIC RESONANCE (NMR)

MAGNETYCZNY REZONANS JĄDROWY (MRJ) NUCLEAR MAGNETIC RESONANCE (NMR) MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... (Początek: 1946 rok) Klasyfikacja technik spektroskopowych NMR: Pomiary próbek gazowych Pomiary

Bardziej szczegółowo

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11

Bardziej szczegółowo

Impulsy selektywne selektywne wzbudzenie

Impulsy selektywne selektywne wzbudzenie Impulsy selektywne selektywne wzbudzenie Impuls prostokątny o długości rzędu mikrosekund ( hard ): cały zakres 1 ( 13 C) Fala ciągła (impuls o nieskończonej długości): jedna częstość o Impuls prostokątny

Bardziej szczegółowo

Konwersatorium 1. Zagadnienia na konwersatorium

Konwersatorium 1. Zagadnienia na konwersatorium Konwersatorium 1 Zagadnienia na konwersatorium 1. Omów reguły zapełniania powłok elektronowych. 2. Podaj konfiguracje elektronowe dla atomów Cu, Ag, Au, Pd, Pt, Cr, Mo, W. 3. Wyjaśnij dlaczego występują

Bardziej szczegółowo

ĆWICZENIE NR 5 ANALIZA NMR PRODUKTÓW FERMENTACJI ALKOHOLOWEJ

ĆWICZENIE NR 5 ANALIZA NMR PRODUKTÓW FERMENTACJI ALKOHOLOWEJ ĆWICZENIE NR 5 ANALIZA NMR PRODUKTÓW FERMENTACJI ALKOHOLOWEJ Uwaga: Ze względu na laboratoryjny charakter zajęć oraz kontakt z materiałem biologicznym, studenci zobowiązani są uŝywać fartuchów i rękawiczek

Bardziej szczegółowo

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by Harcourt,

Bardziej szczegółowo

Układ okresowy Przewidywania teorii kwantowej

Układ okresowy Przewidywania teorii kwantowej Przewiywania teorii kwantowej Chemia kwantowa - oumowanie Czątka w ule Atom wooru Równanie Schroeingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - oumowanie rozwiązanie Czątka w ule Atom wooru Ψn

Bardziej szczegółowo

XXIII Konkurs Chemiczny dla Uczniów Szkół Ponadgimnazjalnych. Etap II. Poznań, Zadanie 1. Zadanie 2. Zadanie 3

XXIII Konkurs Chemiczny dla Uczniów Szkół Ponadgimnazjalnych. Etap II. Poznań, Zadanie 1. Zadanie 2. Zadanie 3 XXIII Konkurs Chemiczny dla Uczniów Szkół Ponadgimnazjalnych Etap II Zadanie 1 Poniżej zaprezentowano schemat reakcji, którym ulegają związki manganu. Wszystkie reakcje (poza prażeniem) zachodzą w środowisku

Bardziej szczegółowo

Teoria VSEPR. Jak przewidywac strukturę cząsteczki?

Teoria VSEPR. Jak przewidywac strukturę cząsteczki? Teoria VSEPR Jak przewidywac strukturę cząsteczki? Model VSEPR wiązanie pary elektronowe dzielone między atomy tworzące wiązanie. Rozkład elektronów walencyjnych w cząsteczce (struktura Lewisa) stuktura

Bardziej szczegółowo

Magnetyczny Rezonans Jądrowy (NMR)

Magnetyczny Rezonans Jądrowy (NMR) Magnetyczny Rezonans Jądrowy (NMR) obserwacja zachowania (precesji) jąder atomowych obdarzonych spinem w polu magnetycznym Magnetic Resonance Imaging (MRI) ( obrazowanie rezonansem magnetycznym potocznie

Bardziej szczegółowo

Spektroskopia. Spotkanie drugie UV-VIS, NMR

Spektroskopia. Spotkanie drugie UV-VIS, NMR Spektroskopia Spotkanie drugie UV-VIS, NMR Spektroskopia UV-Vis 2/32 Promieniowanie elektromagnetyczne: Ultrafioletu ~100-350 nm światło widzialne ~350-900 nm Kwanty energii zgodne z róŝnicami poziomów

Bardziej szczegółowo

impulsowy NMR - podsumowanie

impulsowy NMR - podsumowanie impulsowy NMR - podsumowanie impulsy RF obracają wektor namagnesowania o żądany kąt wokół wybranej osi np. x, -x, y, -y (oś obrotu wybiera się przez regulowanie fazy sygnału względem fazy odnośnika, kąt

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,

Bardziej szczegółowo

DWUWYMIAROWA SPEKTROSKOPIA NMR (2D NMR)

DWUWYMIAROWA SPEKTROSKOPIA NMR (2D NMR) DWUWYMIARWA SPEKTRSKPIA MR (2D MR) W2D WIDM_2D Przykładowe dwuwymiarowe widmo MR Jednowymiarowy eksperyment MR (1D MR) z z M y y x M x I ~ M FT t A(t 1 ) A(t 2 ) A(t 3 ) A(t n ) I(ν 1 ) I(ν 2 ) I(ν 3 )

Bardziej szczegółowo

Elektronowa struktura atomu

Elektronowa struktura atomu Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii

Bardziej szczegółowo

Źródła światła w AAS. Seminarium Analityczne MS Spektrum Zakopane Jacek Sowiński MS Spektrum

Źródła światła w AAS. Seminarium Analityczne MS Spektrum Zakopane Jacek Sowiński MS Spektrum Źródła światła w AAS Seminarium Analityczne MS Spektrum Zakopane 2013 Jacek Sowiński MS Spektrum js@msspektrum.pl www.msspektrum.pl Lampy HCL Standardowa Super-Lampa 3V 10V specyf. Lampy HCL 1,5 cala

Bardziej szczegółowo

CHEMIA WARTA POZNANIA

CHEMIA WARTA POZNANIA Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej Wydział Chemii UAM Poznań 2011 Część I Atom jest najmniejszą częścią pierwiastka chemicznego, która zachowuje jego właściwości chemiczne

Bardziej szczegółowo

Chemia. dr hab. Joanna Łojewska Zakład Chemii Nieorganicznej r Odkrycie fosforu przez Henninga Branda

Chemia. dr hab. Joanna Łojewska Zakład Chemii Nieorganicznej r Odkrycie fosforu przez Henninga Branda Chemia dr hab. Joanna Łojewska Zakład Chemii Nieorganicznej 1669 r Odkrycie fosforu przez Henninga Branda Wykłady Chemia Ogólna i Nieorganiczna Organizacja kursu WYKŁAD Seminarium Cwiczenia Zal. (ECTS

Bardziej szczegółowo

NUKLIDY O SPINIE 1/2. Duża zawartość naturalna (%): H (99.98), 19 F (100), 31 P (100) Średnia zawartość naturalna (%):

NUKLIDY O SPINIE 1/2. Duża zawartość naturalna (%): H (99.98), 19 F (100), 31 P (100) Średnia zawartość naturalna (%): UKLIDY O SPIIE 1/2 Duża zawartość naturalna (%): 1 (99.98), 19 F (100), 31 P (100) Średnia zawartość naturalna (%): 29 Si (4.7), 77 Se (7.58), 117 Sn (7.61), 119 Sn (8.58) iska zawartość naturalna (%):

Bardziej szczegółowo

ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1)

ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1) h S = I(I+) gdzie: I kwantowa liczba spinowa jądra I = 0, ½,, /,, 5/,... itd gdzie: = γ S γ współczynnik żyromagnetyczny moment magnetyczny brak spinu I = 0 spin sferyczny I = _ spin elipsoidalny I =,,,...

Bardziej szczegółowo

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by arcourt,

Bardziej szczegółowo

imię i nazwisko numer w dzienniku klasa

imię i nazwisko numer w dzienniku klasa Test po. części serii Chemia Nowej Ery CHEMIA I grupa imię i nazwisko numer w dzienniku klasa Test składa się z 8 zadań. Czytaj uważnie treść poleceń. W zadaniach. 5., 7.., 3. 7. wybierz poprawną odpowiedź

Bardziej szczegółowo

Struktura elektronowa

Struktura elektronowa Struktura elektronowa Struktura elektronowa atomów układ okresowy pierwiastków: 1) elektrony w atomie zajmują poziomy energetyczne od dołu, inaczej niż te gołębie (w Australii, ale tam i tak chodzi się

Bardziej szczegółowo

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

Poznań, Aktywność 57

Poznań, Aktywność 57 XXIII onkurs Chemiczny dla Uczniów Szkół Ponadgimnazjalnych Etap finałowy Zadanie 1 Zbudowano układ pomiarowy złożony z licznika Geigera i źródła promieniotwórczego. Przeprowadzono pomiar aktywności (wyrażonej

Bardziej szczegółowo

ekranowanie lokx loky lokz

ekranowanie lokx loky lokz Odziaływania spin pole magnetyczne B 0 DE/h [Hz] bezpośrednie (zeemanowskie) 10 7-10 9 pośrednie (ekranowanie) 10 3-10 6 spin spin bezpośrednie (dipolowe) < 10 5 pośrednie (skalarne) < 10 3 spin moment

Bardziej szczegółowo

Okresowość właściwości chemicznych pierwiastków. Układ okresowy pierwiastków. 1. Konfiguracje elektronowe pierwiastków

Okresowość właściwości chemicznych pierwiastków. Układ okresowy pierwiastków. 1. Konfiguracje elektronowe pierwiastków Układ okresowy pierwiastków Okresowość właściwości chemicznych pierwiastków 1. Konfiguracje elektronowe pierwiastków. Konfiguracje a układ okresowy 3. Budowa układu okresowego 4. Historyczny rozwój układu

Bardziej szczegółowo

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11

Bardziej szczegółowo

Zastosowanie spektroskopii NMR do określania struktury związków organicznych

Zastosowanie spektroskopii NMR do określania struktury związków organicznych Zastosowanie spektroskopii NMR do określania struktury związków organicznych Atomy zbudowane są z jąder atomowych i powłok elektronowych. Modelowo można stwierdzić, że jądro atomowe jest kulą, w której

Bardziej szczegółowo

Magnetyczny rezonans jądrowy

Magnetyczny rezonans jądrowy Magnetyczny rezonans jądrowy Widmo NMR wykres absorpcji promieniowania magnetycznego od jego częstości Częstość pola wyraża się w częściach na milion (ppm) częstości pola magnetycznego pochłanianego przez

Bardziej szczegółowo

Spektroskopowe metody identyfikacji związków organicznych / Robert. Spis treści

Spektroskopowe metody identyfikacji związków organicznych / Robert. Spis treści Spektroskopowe metody identyfikacji związków organicznych / Robert M. Silverstein, Francis X. Webster, David J. Kiemle. wyd. 2, dodr. 4. - Warszawa, 2012 Spis treści ROZDZIAŁ 1 SPEKTROMETRIA MAS 1 1.1

Bardziej szczegółowo

ROZPORZĄDZENIE RADY MINISTRÓW. z dnia 12 lipca 2006 r. w sprawie szczegółowych warunków bezpiecznej pracy ze źródłami promieniowania jonizującego 1)

ROZPORZĄDZENIE RADY MINISTRÓW. z dnia 12 lipca 2006 r. w sprawie szczegółowych warunków bezpiecznej pracy ze źródłami promieniowania jonizującego 1) Dziennik Ustaw z 2006 r. Nr 140 poz. 994 ROZPORZĄDZENIE RADY MINISTRÓW z dnia 12 lipca 2006 r. w sprawie szczegółowych warunków bezpiecznej pracy ze źródłami promieniowania jonizującego 1) (Dz. U. z dnia

Bardziej szczegółowo

MAGNETYCZNY REZONANS JĄDROWY (MRJ) NUCLEAR MAGNETIC RESONANCE (NMR)

MAGNETYCZNY REZONANS JĄDROWY (MRJ) NUCLEAR MAGNETIC RESONANCE (NMR) MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... Program: 1. Podstawy ogólne (zjawisko fizyczne, wykonanie pomiaru, aparatura) 2. Spektroskopia

Bardziej szczegółowo

ZAPROSZENIE DO SKŁADANIA OFERT

ZAPROSZENIE DO SKŁADANIA OFERT Katowice, 17.07.2018 r. ZAPROSZENIE DO SKŁADANIA OFERT Na usługę analizy składu pierwiastkowego finansowanego w ramach projektu Inkubator Innowacyjności+ dofinansowanym ze środków: Ministra Nauki i Szkolnictwa

Bardziej szczegółowo

Maksymalna liczba punktów: 40. Czas rozwiązywania zadań: 90 minut.

Maksymalna liczba punktów: 40. Czas rozwiązywania zadań: 90 minut. Pieczęć KONKURS CHEMICZNY dla uczniów gimnazjów województwa lubuskiego 20 stycznia 2011 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu Chemicznego. Przed przystąpieniem do rozwiązywania

Bardziej szczegółowo

Anna Grych Test z budowy atomu i wiązań chemicznych

Anna Grych Test z budowy atomu i wiązań chemicznych Anna Grych Test z budowy atomu i wiązań chemicznych 1. Uzupełnij tabelkę wpisując odpowiednie dane: Nazwa atomu Liczba nukleonów protonów neutronów elektronów X -... 4 2 Y -... 88 138 Z -... 238 92 W -...

Bardziej szczegółowo

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: II

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: II SPEKTROSKOPIA NMR PODEJŚIE PRAKTYZNE ZĘŚĆ: II DR INŻ. TOMASZ LASKOWSKI O TO JEST WIDMO? WIDMO NMR wykres ilości kwantów energii promieniowania elektromagnetycznego pochłanianego przez próbkę w funkcji

Bardziej szczegółowo

Zastosowanie spektroskopii NMR do badania związków pochodzenia naturalnego

Zastosowanie spektroskopii NMR do badania związków pochodzenia naturalnego Zastosowanie spektroskopii NMR do badania związków pochodzenia naturalnego Literatura W. Zieliński, A. Rajcy, Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych, Wydawnictwa

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 4 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

Scenariusz lekcji otwartej z chemii w klasie II gimnazjum.

Scenariusz lekcji otwartej z chemii w klasie II gimnazjum. Scenariusz lekcji otwartej z chemii w klasie II gimnazjum. Opracowała: Marzena Bień Termin realizacji: Czas realizacji: 45 minut. Temat: Chemia a budowa atomów. Cel ogólny: Usystematyzowanie wiadomości

Bardziej szczegółowo

Spektroskopia Jader 13 C i efekt Overhausera

Spektroskopia Jader 13 C i efekt Overhausera Spektroskopia Jader 13 C i efekt Overhausera Literatura : 1. A. Ejchart, L.Kozerski, Spektrometria Magnetycznego Rezonansu Jądrowego 13 C. PWN, Warszawa 1988 (1981). 2. F.W. Wehrli, T. Wirthlin ; z ang.

Bardziej szczegółowo

Chiralność i spektroskopia MRJ Badanie procesów wymiany (Dynamic NMR, D NMR) Wyznaczanie stałej trwałości kompleksów Technika pomiarowa MRJ: impulsy

Chiralność i spektroskopia MRJ Badanie procesów wymiany (Dynamic NMR, D NMR) Wyznaczanie stałej trwałości kompleksów Technika pomiarowa MRJ: impulsy Chiralność i spektroskopia MRJ Badanie procesów wymiany (Dynamic MR, D MR) Wyznaczanie stałej trwałości kompleksów Technika pomiarowa MRJ: impulsy złoŝone i selektywne Czas relaksacji T 1 Czas relaksacji

Bardziej szczegółowo

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: IV. mgr inż. Marcin Płosiński

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: IV. mgr inż. Marcin Płosiński SPEKTROSKOPIA NMR PODEJŚIE PRAKTYZNE ZĘŚĆ: IV DR INŻ. TOMASZ LASKOWSKI mgr inż. Marcin Płosiński PROLOGOS: ODSPRZĘGANIE SPINÓW (DEOUPLING) ODSPRZĘGANIE SPINÓW Eliminacja zjawiska sprzężenia spinowo-spinowego

Bardziej szczegółowo

XXIV Konkurs Chemiczny dla Uczniów Szkół Ponadgimnazjalnych. Etap finałowy. Poznań, Zadanie 1

XXIV Konkurs Chemiczny dla Uczniów Szkół Ponadgimnazjalnych. Etap finałowy. Poznań, Zadanie 1 XXIV Konkurs Chemiczny dla Uczniów Szkół Ponadgimnazjalnych Etap finałowy Zadanie 1 Związek A to krystaliczne ciało stałe, dobrze rozpuszczalne w wodzie oraz wielu rozpuszczalnikach organicznych. Analiza

Bardziej szczegółowo

Piotr Kosztołowicz. Powtórka przed maturą. Chemia. Zadania. Zakres rozszerzony

Piotr Kosztołowicz. Powtórka przed maturą. Chemia. Zadania. Zakres rozszerzony Piotr Kosztołowicz Zakres rozszerzony Chemia Powtórka przed maturą Zadania 95 Spis treści Wstęp Rozdział 1. Budowa atomów Rozdział 2. Przemiany jądrowe Rozdział 3. Struktura elektronowa atomu Rozdział

Bardziej szczegółowo

Efekty interferencyjne w atomowej spektrometrii absorpcyjnej

Efekty interferencyjne w atomowej spektrometrii absorpcyjnej Uniwersytet w Białymstoku Wydział Biologiczno-Chemiczny Efekty interferencyjne w atomowej spektrometrii absorpcyjnej Beata Godlewska-Żyłkiewicz Elżbieta Zambrzycka Ślesin 26-28.IX.2014 Jak oznaczyć zawartość

Bardziej szczegółowo

Analiza Organiczna. Jan Kowalski grupa B dwójka 7(A) Własności fizykochemiczne badanego związku. Zmierzona temperatura topnienia (1)

Analiza Organiczna. Jan Kowalski grupa B dwójka 7(A) Własności fizykochemiczne badanego związku. Zmierzona temperatura topnienia (1) Przykład sprawozdania z analizy w nawiasach (czerwonym kolorem) podano numery odnośników zawierających uwagi dotyczące kolejnych podpunktów sprawozdania Jan Kowalski grupa B dwójka 7(A) analiza Wynik przeprowadzonej

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z CHEMII

KONKURS PRZEDMIOTOWY Z CHEMII Pieczęć KONKURS PRZEDMIOTOWY Z CHEMII dla uczniów gimnazjów województwa lubuskiego 26 stycznia 2012 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu Chemicznego. Przed przystąpieniem

Bardziej szczegółowo

Zadanie 2. (1 pkt) Jądro izotopu U zawiera A. 235 neutronów. B. 327 nukleonów. C. 143 neutrony. D. 92 nukleony

Zadanie 2. (1 pkt) Jądro izotopu U zawiera A. 235 neutronów. B. 327 nukleonów. C. 143 neutrony. D. 92 nukleony Zadanie 1. (1 pkt) W jednym z naturalnych szeregów promieniotwórczych występują m.in. trzy izotopy polonu, których okresy półtrwania podano w nawiasach: Po-218 (T 1/2 = 3,1minuty), Po-214 (T 1/2 = 0,0016

Bardziej szczegółowo

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość Monika Gałkiewicz Zad. 1 () Przedstaw pełną konfigurację elektronową atomu pierwiastka

Bardziej szczegółowo

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil Spektroskopia Spotkanie pierwsze Prowadzący: Dr Barbara Gil Temat rozwaŝań Spektroskopia nauka o powstawaniu i interpretacji widm powstających w wyniku oddziaływań wszelkich rodzajów promieniowania na

Bardziej szczegółowo

V KONKURS CHEMICZNY 23.X. 2007r. DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO Etap I ... ... czas trwania: 90 min Nazwa szkoły

V KONKURS CHEMICZNY 23.X. 2007r. DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO Etap I ... ... czas trwania: 90 min Nazwa szkoły V KONKURS CHEMICZNY 23.X. 2007r. DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO Etap I...... Imię i nazwisko ucznia ilość pkt.... czas trwania: 90 min Nazwa szkoły... maksymalna ilość punk. 33 Imię

Bardziej szczegółowo

Test sprawdzający z chemii do klasy I LO i technikum z działu Budowa atomu i wiązania chemiczne

Test sprawdzający z chemii do klasy I LO i technikum z działu Budowa atomu i wiązania chemiczne Anna Grych Test sprawdzający z chemii do klasy I LO i technikum z działu Budowa atomu i wiązania chemiczne Informacja do zadań -7 75 Dany jest pierwiastek 33 As. Zadanie. ( pkt) Uzupełnij poniższą tabelkę.

Bardziej szczegółowo

Wymagania techniczne dla pracowni Zasady pracy ze źródłami promieniowania jonizującego

Wymagania techniczne dla pracowni Zasady pracy ze źródłami promieniowania jonizującego OCHRONA RADIOLOGICZNA Wymagania techniczne dla pracowni Zasady pracy ze źródłami promieniowania jonizującego Jakub Ośko Na podstawie materiałów Tomasza Pliszczyńskiego Wymagania techniczne i ochrony radiologicznej

Bardziej szczegółowo

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW POUFNE Pieczątka szkoły 16 styczeń 2010 r. Kod ucznia Wpisuje uczeń po otrzymaniu zadań Imię Wpisać po rozkodowaniu pracy Czas pracy 90 minut Nazwisko KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW ROK SZKOLNY

Bardziej szczegółowo

Powierzchniowo wzmocniona spektroskopia Ramana SERS. (Surface Enhanced Raman Spectroscopy)

Powierzchniowo wzmocniona spektroskopia Ramana SERS. (Surface Enhanced Raman Spectroscopy) Powierzchniowo wzmocniona spektroskopia Ramana SERS (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych powierzchniach niektórych metali (Ag, Au, Cu) dają bardzo intensywny sygnał

Bardziej szczegółowo

Nazwy pierwiastków: ...

Nazwy pierwiastków: ... Zadanie 1. [ 3 pkt.] Na podstawie podanych informacji ustal nazwy pierwiastków X, Y, Z i zapisz je we wskazanych miejscach. I. Atom pierwiastka X w reakcjach chemicznych może tworzyć jon zawierający 20

Bardziej szczegółowo

BUDOWA ATOMU. Pierwiastki chemiczne

BUDOWA ATOMU. Pierwiastki chemiczne BUDOWA ATOMU Pierwiastki chemiczne p.n.e. Sb Sn n Pb Hg S Ag C Au Fe Cu ()* do XVII w. As (5 r.) P (669 r.) () XVIII w. N Cl Cr Co Y Mn Mo () Ni Pt Te O U H W XIX w. (m.in.) Na Ca Al Si F Cs Ba B Bi I

Bardziej szczegółowo

Podstawy fizyki subatomowej. 3 kwietnia 2019 r.

Podstawy fizyki subatomowej. 3 kwietnia 2019 r. Podstawy fizyki subatomowej Wykład 7 3 kwietnia 2019 r. Atomy, nuklidy, jądra atomowe Atomy obiekt zbudowany z jądra atomowego, w którym skupiona jest prawie cała masa i krążących wokół niego elektronów.

Bardziej szczegółowo

Związki kompleksowe pigmenty i barwniki co to są związki kompleksowe? jaka jest ich budowa? skąd się bierze kolor?

Związki kompleksowe pigmenty i barwniki co to są związki kompleksowe? jaka jest ich budowa? skąd się bierze kolor? pigmenty i barwniki co to są związki kompleksowe? jaka jest ich budowa? skąd się bierze kolor? 1 1 1 H 3 Li 11 Na 19 K 37 Rb 55 Cs 87 Fr 4 Be 12 Mg 20 Ca 38 Sr 56 Ba 88 Ra Układ okresowy 2 13 14 15 16

Bardziej szczegółowo

Związki kompleksowe. pigmenty i barwniki. co to są związki kompleksowe? jaka jest ich budowa? skąd się bierze kolor? Pierwiastki

Związki kompleksowe. pigmenty i barwniki. co to są związki kompleksowe? jaka jest ich budowa? skąd się bierze kolor? Pierwiastki pigmenty i barwniki co to są związki kompleksowe? jaka jest ich budowa? skąd się bierze kolor? 1 07_117 Układ okresowy Pierwiastki 1 1 H 3 Li 11 Na 19 K 37 Rb 55 Cs 87 Fr metale niemetale 2 13 14 15 16

Bardziej szczegółowo

dobry punkt wyjściowy do analizy nieznanego związku

dobry punkt wyjściowy do analizy nieznanego związku spektrometria mas dobry punkt wyjściowy do analizy nieznanego związku cele: wyznaczenie masy cząsteczkowej związku wyznaczenie wzoru empirycznego określenie fragmentów cząsteczki określenie niedoboru wodoru

Bardziej szczegółowo

II.6 Atomy w zewnętrznym polu magnetycznym

II.6 Atomy w zewnętrznym polu magnetycznym II.6 Atomy w zewnętrznym polu magnetycznym 1. Kwantowanie przestrzenne w zewnętrznym polu magnetycznym. Model wektorowy raz jeszcze 2. Zjawisko Zeemana Normalne zjawisko Zeemana i jego wyjaśnienie w modelu

Bardziej szczegółowo

Spin jądra atomowego. Podstawy fizyki jądrowej - B.Kamys 1

Spin jądra atomowego. Podstawy fizyki jądrowej - B.Kamys 1 Spin jądra atomowego Nukleony mają spin ½: Całkowity kręt nukleonu to: Spin jądra to suma krętów nukleonów: Dla jąder parzysto parzystych, tj. Z i N parzyste ( ee = even-even ) I=0 Dla jąder nieparzystych,

Bardziej szczegółowo

Spektroskopowe metody identyfikacji związków organicznych

Spektroskopowe metody identyfikacji związków organicznych Spektroskopowe metody identyfikacji związków organicznych Wstęp Spektroskopia jest metodą analityczną zajmującą się analizą widm powstających w wyniku oddziaływania promieniowania elektromagnetycznego

Bardziej szczegółowo

Budowa atomu. Izotopy

Budowa atomu. Izotopy Budowa atomu. Izotopy Zadanie. atomu lub jonu Fe 3+ atomowa Z 9 masowa A Liczba protonów elektronów neutronów 64 35 35 36 Konfiguracja elektronowa Zadanie 2. Atom pewnego pierwiastka chemicznego o masie

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego (NMR)

Spektroskopia magnetycznego rezonansu jądrowego (NMR) Spektroskopia magnetycznego rezonansu jądrowego (NM) Fizyczne podstawy spektroskopii NM W spektroskopii magnetycznego rezonansu jądrowego używane jest promieniowanie elektromagnetyczne o częstościach z

Bardziej szczegółowo

Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR

Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR 1. Wstęp Związki karbonylowe zawierające w położeniu co najmniej jeden atom wodoru mogą ulegać enolizacji przez przesunięcie protonu

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

MAGNETYCZNY REZONANS JĄDROWY WODORU

MAGNETYCZNY REZONANS JĄDROWY WODORU MAGNETYZNY REZONANS JĄDROWY WODORU 1 NMR, ( 2 NMR, 3 NMR) Trzy aktywne izotopy wodoru: 1 99.98% spin ½ 500.000 Mz (11.744 T) 2 0.02% spin 1 76.753 Mz (11.744 T) 3 0 spin ½ 533.317 Mz (11.744 T) Przykładowe

Bardziej szczegółowo

Spektroskopia magnetyczna

Spektroskopia magnetyczna Spektroskopia magnetyczna Literatura Zbigniew Kęcki, Podstawy spektroskopii molekularnej, PWN W- wa 1992 lub nowsze wydanie Przypomnienie 1) Mechanika ruchu obrotowego - moment bezwładności, moment pędu,

Bardziej szczegółowo

3. Jaka jest masa atomowa pierwiastka E w następujących związkach? Który to pierwiastek? EO o masie cząsteczkowej 28 [u]

3. Jaka jest masa atomowa pierwiastka E w następujących związkach? Który to pierwiastek? EO o masie cząsteczkowej 28 [u] 1. Masa cząsteczkowa tlenku dwuwartościowego metalu wynosi 56 [u]. Masa atomowa tlenu wynosi 16 [u]. Ustal jaki to metal i podaj jego nazwę. Napisz wzór sumaryczny tego tlenku. 2. Ile razy masa atomowa

Bardziej szczegółowo

Promieniotwórczość naturalna. Jądro atomu i jego budowa.

Promieniotwórczość naturalna. Jądro atomu i jego budowa. Promieniotwórczość naturalna. Jądro atomu i jego budowa. Doświadczenie Rutherforda (1909). Polegało na bombardowaniu złotej folii strumieniem cząstek alfa (jąder helu) i obserwacji odchyleń ich toru ruchu.

Bardziej szczegółowo

Ekscyton w morzu dziur

Ekscyton w morzu dziur Ekscyton w morzu dziur P. Kossacki, P. Płochocka, W. Maślana, A. Golnik, C. Radzewicz and J.A. Gaj Institute of Experimental Physics, Warsaw University S. Tatarenko, J. Cibert Laboratoire de Spectrométrie

Bardziej szczegółowo

Atomy mają moment pędu

Atomy mają moment pędu Atomy mają moment pędu Model na rysunku jest modelem tylko klasycznym i jak wiemy z mechaniki kwantowej, nie odpowiada dokładnie rzeczywistości Jednakże w mechanice kwantowej elektron nadal ma orbitalny

Bardziej szczegółowo

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH ZAAWANSWANE METDY USTALANIA BUDWY ZWIĄZKÓW RGANICZNYC Witold Danikiewicz Instytut Chemii rganicznej PAN ul. Kasprzaka /52, 0-22 Warszawa Interpretacja widm NMR, IR i MS prostych cząsteczek Czyli jak powiązać

Bardziej szczegółowo

Spektrometria mas (1)

Spektrometria mas (1) pracował: Wojciech Augustyniak Spektrometria mas (1) Spektrometr masowy ma źródło jonów, które jonizuje próbkę Jony wędrują w polu elektromagnetycznym do detektora Metody jonizacji: - elektronowa (EI)

Bardziej szczegółowo

H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR...

H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... (Początek: 1946 rok) 1. M.Levitt, Spin Dynamics Basics of Nuclear Magnetic Resonance (Wiley,

Bardziej szczegółowo

dr inż. Beata Brożek-Pluska SERS La boratorium La serowej

dr inż. Beata Brożek-Pluska SERS La boratorium La serowej dr inż. Beata Brożek-Pluska La boratorium La serowej Spektroskopii Molekularnej PŁ Powierzchniowo wzmocniona sp ektroskopia Ramana (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych

Bardziej szczegółowo

III Podkarpacki Konkurs Chemiczny 2010/2011. ETAP I r. Godz Zadanie 1

III Podkarpacki Konkurs Chemiczny 2010/2011. ETAP I r. Godz Zadanie 1 III Podkarpacki Konkurs Chemiczny 2010/2011 KOPKCh ETAP I 22.10.2010 r. Godz. 10.00-12.00 Zadanie 1 1. Jon Al 3+ zbudowany jest z 14 neutronów oraz z: a) 16 protonów i 13 elektronów b) 10 protonów i 13

Bardziej szczegółowo

Br Br. Br Br OH 2 OH NH NH 2 2. Zakład Chemii Organicznej: kopiowanie zabronione

Br Br. Br Br OH 2 OH NH NH 2 2. Zakład Chemii Organicznej: kopiowanie zabronione Kolokwium III Autorzy: A. Berlicka, M. Cebrat, E. Dudziak, A. Kluczyk, Imię i nazwisko Kierunek studiów azwisko prowadzącego Data Wersja A czas: 45 minut Skala ocen: ndst 0 20, dst 20.5 24, dst 24.5 28,

Bardziej szczegółowo

Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy

Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy Metody rezonansowe Magnetyczny rezonans jądrowy Magnetometr protonowy Co należy wiedzieć Efekt Zeemana, precesja Larmora Wektor magnetyzacji w podstawowym eksperymencie NMR Transformacja Fouriera Procesy

Bardziej szczegółowo

Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali.

Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali. Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali. Projekt ćwiczenia w Laboratorium Fizyki i Techniki Jądrowej na Wydziale Fizyki Politechniki Warszawskiej. dr Julian Srebrny

Bardziej szczegółowo