13 Zastosowania Lematu Szemerédiego

Wielkość: px
Rozpocząć pokaz od strony:

Download "13 Zastosowania Lematu Szemerédiego"

Transkrypt

1 13 Zastosowania Lematu Szemerédiego 13.1 Twierdzenie Erdősa-Stone a (Rozdzia ly 7.1 i 7.5 podre cznika) Jednym z g lównych zagadnień ekstremalnej teorii grafów jest wyznaczenie parametru ex(n, H) = max{ G : G = n i G H}, be da cego maksymalna liczba krawe dzi w n-wierzcho lkowym grafie G nie zawieraja cym żadnej kopii danego grafu H. Graf Turána T r 1 (n) to graf (r 1)-dzielny o n r 1 wierzcho lkach i maksymalnej liczbie krawe dzie (oznaczanej t r 1 (n)). Moce jego klas podzia lu różnia sie o co najwyżej 1. Twierdzenie 6 (D 7.1.1, Turán, 1941) Dla wszystkich liczb naturalnych r i n, r > 1, każdy graf bez K r o n wierzcho lkach i ex(n, K r ) krawe dziach jest (izomorficzny z) grafem Turána. Twierdzenie 7 (D 7.1., Erdős, Stone, 1946) Dla wszystkich liczb naturalnych r i s 1, i dla każdego ǫ > 0, istnieje n 0 takie, że każdy graf o n n 0 wierzcho lkach i G t r 1 (n) + ǫn krawe dziach zawiera Ks r := K(s, s,...,s) r-dzielny graf pe lny. } {{ } r Z tego wynika ważny wniosek. Wniosek 9 ( D Erdős, Simonovits, 1966) lim n ex(n, H) ( n ) = χ(h) χ(h) 1 Dowód: Niech χ(h) = r. Wtedy dla każdego n, H T r 1 (n),a zatem ex(n, H) t r 1 (n). Z drugiej strony, dla dostatecznie duzych s, H Ks, r wie c ex(n, H) ex(n, Ks r ). Na podstawie Tw. 7, dla każdego ǫ > 0 i dostatecznie dużych n, ex(n, K r s ) t r 1(n) + ǫn. 40

2 Ostatecznie t r 1 (n) ex(n, K r s ) t r 1(n) + ǫn i dziela c przez ( n ) oraz przechodza c z n, otrzymujemy, że ex(n, H) t lim ( r 1 (n) n n = lim ) = ) r n r 1. ( n (Niestety Wniosek 9 nie mówi wiele o grafach dwudzielnych.) Def. grafu regularności: Dane sa ǫ-regularny podzia l Π := (V 0,..., V k ) grafu G i liczba d [0, 1] (tzw. próg ge stości). Niech R = R(Π, d) be dzie grafem o zbiorze wierzcho lków {v 1,...,v k }, w którym v i v j jest krawe dzia wgdy para (V i, V j ) jest ǫ-regularna o ge stości d G (V i, V j ) d. Graf R s powstaje przez powie kszenia (blow-up) grafu R w skali s, tzn. każdy wierzcho lek v i grafu R zaste pujemy zbiorem niezależnym U i mocy s, a każda krawe dź grafem pe lnym -dzielnym K s,s. Lemat 13 (D 7.5. Lemat o zanurzaniu,,weak Blow-up Lemma ) Dla każdego d > 0 i 1 istnieje ǫ 0 > 0 takie, że dla każdego grafu H, (H), dla każdego s i dla każdego grafu G wraz z ǫ-regularnym podzia lem Π, ǫ ǫ 0, w którym każdy zbiór poza śmietnikiem ma moc l s/ǫ 0, zachodzi implikacja: H R s (Π, d) = H G Dowód: (Idea: sekwencyjne zanurzanie wierzcho lków z o przysz lość.) troska Niech H R s := R s (Π, d). Uporza dkujmy wierzcho lki H dowolnie: u 1,...,u h, h = H. Dla każdego i, niech j = σ(i) be dzie takie, że u i U j. Chcemy zanurzyć H w G, tzn. przypisać każdemu u i V (H) pewien v i V σ(i). Niech Yi 0 = V σ(i) be dzie pocza tkowym zbiorem kandydatów na v i. Zbiory kandydatów modyfikowane w trakcie sekwencyjnego zanurzania: gdy be da jako obraz pewnego u j wybierzemy v j, to dla każdego i > j takiego, że u j u i H, obetniemy Y j 1 i do Y j i := Y j 1 i N G (v j ). Ponieważ takich u i jest co najwyżej, v j można wybrać tak, by wszystkie zbiory Y j i mia ly rozmiar co najmniej (d ǫ) i. Rzeczywiście, z Zadania 41

3 107 wynika, że wierzcho lków nie spe lniaja cych tego wymogu jest nie wie cej niż ǫl, o ile i ǫl. Trzeba też pokazać, że wybór v j jest możliwy, tzn., że j ǫl s (bo, być może, obrazy s 1 innych wierzcho lków z U σ(j) zosta ly już wybrane i to w laśnie z Y j 1 j ). Obie powyższe nierówności z nierówności wynikaja Y j i (d ǫ 0) d ij l, która udowodnimy indukcja po j. Tutaj, Dla ǫ 0 < 1 +1 d mamy d ij = N H (u i ) {u 1,...,u j 1 }. i (d ǫ 0 ) l ( + 1)ǫ 0 l i Zadanie 107 można stosować, co w zasadzie kończy dowód. Idea dowódu Twierdzenia 7: Stosujemy Lemat 9 z tak dobranymi parametrami, by graf regularności R(Π, d) mia l wie cej niż 1 kr r 1 t r 1(n) krawe dzi, i na podstawie Tw. Turána zawiera l graf pe lny K r. Wtedy też R s zawiera K r s, i na podstawie Lematu 13, rownież G zawiera Kr s. 13. Krawe dziowe liczby Ramseya (Twierdzenie 9.. w podre czniku) Twierdzenie 8 (D Ramsey, 1930) 4

4 Liczba Ramseya R(H) nazywamy najmniejsza liczbe naturalna N taka, że każde -kolorowanie krawe dzi grafu pe lnego K N prowadzi do monochromatycznej kopii grafu H. Gdy H = K n, to piszemy R(n) zamiast R(K n ). Na przyk lad R(3) = 6. Wiadomo, że dla n > 3, R(n) > n. Jednak dla rzadkich grafów H (a takimi sa grafy o ograniczonym maksymalnym stopniu) liczby Ramseya R(H) rosna liniowo z n = H. Twierdzenie 9 (D 9.., Chvatál, Rödl, Trotter, Szemerédi, 1983) Dla każdego 1 istnieje c > 0 takie, że dla każdego grafu H o maksymaknym stopniu (H) mamy R(H) c H. Dowód: Przyjmijmy d = 1/. Niech ǫ 0 = ǫ 0 (d, ) be dzie jak w Lemacie 13. Ustalmy też m = R( + 1) i wybierzmy ǫ ǫ 0 tak, by ǫ < 1 m 1 1 m. Niech M = M(ǫ, m) be dzie jak w Lemacie Szemerédiego 9. Pokażemy prawdziwość twierdzenia dla c =. Niech n = H, N = M ǫ 0 (1 ǫ) cn i niech K N = G Ḡ be dzie -kolorowaniem grafu pe lnego KN, gdzie przez G oznaczamy graf z lożony z czerwonych krawe dzi (a przez Ḡ z niebieskich). Stosuja c Lemat 9 do G otrzymujemy ǫ-regularny podzia l Π = {V 0, V 1,..., V k }, gdzie V 0 < ǫn, V 1 =... = V k = l i m k M. Zauważmy, że l = N V 0 k n ǫ 0. Oszacujmy od do lu krawe dzi grafu regularności R = R(Π, 0) reprezentuja cego pary ǫ-regularne podzia lu Π bez żadnych warunków na ich ge stość liczbe (sta d drugi parametr jest równy 0). Mamy R ( ) k ǫk > m (m 1) k t m 1 (k). Zatem na podstawie tw. Turána R K m. Oznaczmy te klike przez K i pomalujmy jej krawe dzie {i, j} na dwa kolory: różowy, jeśli d G (V i, V j ) 1/ i b le kitny w przeciwnym razie. Z definicji liczby Ramseya, tak pomalowany graf K zawiera klike K +1, której wszystkie krawe dzie sa w tym samym kolorze. 43

5 Ponieważ χ(h) + 1, to H Kn +1, gdzie Kn +1 powstaje z K +1 przez n-krotne rozdmuchanie. Zatem, jeśli tym kolorem jest różowy, to H R n (Π, 1/) i na podstawie Lematu 13 H G. Jeśli natomiast tym kolorem jest b le kitny, to to samo jest w stosunku do grafu Ḡ. Korzystamy tu prawda z Zadania

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Anna Romanowska January 29, 2016 4 Kraty i algebry Boole a 41 Kraty zupe lne Definicja 411 Zbiór uporza dkowany (P, ) nazywamy krata zupe lna,

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA TYPY GRAFÓW c.d. Graf nazywamy dwudzielnym, jeśli zbiór jego wierzchołków można podzielić na dwa rozłączne podzbiory, tak że żadne dwa wierzchołki należące do tego samego podzbioru nie są sąsiednie. G

Bardziej szczegółowo

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF 29 kwietnia 2013, godzina 23: 56 strona 1 P. Urzyczyn: Materia ly do wyk ladu z semantyki Uproszczony 1 j ezyk PCF Sk ladnia: Poniżej Γ oznacza otoczenie typowe, czyli zbiór deklaracji postaci (x : τ).

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony

Bardziej szczegółowo

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy

Bardziej szczegółowo

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia Maemayka A kolokwium maja rozwia zania Należy przeczyać CA LE zadanie PRZED rozpocze ciem rozwia zywania go!. Niech M. p. Dowieść że dla każdej pary liczb ca lkowiych a b isnieje aka para liczb wymiernych

Bardziej szczegółowo

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza 165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie

Bardziej szczegółowo

Działanie grupy na zbiorze

Działanie grupy na zbiorze Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz?

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? DROGI i CYKLE EULERA w grafach Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? Czy można narysować podaną figurę nie odrywając ołówka od papieru

Bardziej szczegółowo

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie

Bardziej szczegółowo

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem

Bardziej szczegółowo

Matematyka Dyskretna Zestaw 2

Matematyka Dyskretna Zestaw 2 Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje

Bardziej szczegółowo

Wykład 3. Miara zewnętrzna. Definicja 3.1 (miary zewnętrznej) Funkcję µ przyporządkowującą każdemu podzbiorowi

Wykład 3. Miara zewnętrzna. Definicja 3.1 (miary zewnętrznej) Funkcję µ przyporządkowującą każdemu podzbiorowi Wykład 3 Miara zewnętrzna Definicja 3.1 (miary zewnętrznej Funkcję przyporządkowującą każdemu podzbiorowi A danej przestrzeni X liczbę (A [0, + ] (a więc określoną na rodzinie wszystkich podzbiorów przestrzeni

Bardziej szczegółowo

GRAFY i SIECI. Graf: G = ( V, E ) - para uporządkowana

GRAFY i SIECI. Graf: G = ( V, E ) - para uporządkowana GRAFY podstwowe definicje GRAFY i SIECI Grf: G = ( V, E ) - pr uporządkown V = {,,..., n } E { {i, j} : i j i i, j V } - zbiór wierzchołków grfu - zbiór krwędzi grfu Terminologi: grf = grf symetryczny,

Bardziej szczegółowo

Wyk lad 4. Grafy skierowane

Wyk lad 4. Grafy skierowane Wyk lad 4 Grafy skierowane Definicja Graf skierowany G sk lada si e z dwóch zbiorów, niepustego zbioru V (G) grafu G i zbioru E(G) kraw edzi grafu G oraz z funkcji γ (gamma) ze zbioru E(G) w zbiór V (G)

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Pierścienie grupowe wyk lad 2. Przypomnijmy, że K-algebra A jest pó lprosta, gdy jej lewe A-modu ly przypominaja

Pierścienie grupowe wyk lad 2. Przypomnijmy, że K-algebra A jest pó lprosta, gdy jej lewe A-modu ly przypominaja Pierścienie grupowe wyk lad 2. Przypomnijmy, że K-algebra A jest pó lprosta, gdy jej lewe A-modu ly przypominaja przestrzenie liniowe nad A: każdy z nich ma rozk lad na sume modu lów prostych. W tych rozk

Bardziej szczegółowo

Twierdzenie Halla o małżeństwach

Twierdzenie Halla o małżeństwach Twierdzenie Halla o małżeństwach Tomasz Tkocz Streszczenie. Notatki te, przygotowane do referatu wygłoszonego na kółku w II LO w Rybniku, pokazują jak można rozwiązywać życiowe problemy oraz te bardziej

Bardziej szczegółowo

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1 4. Wykład 4: Grupy rozwiązalne i nilpotentne. Definicja 4.1. Niech (G, ) będzie grupą. Wówczas (1) ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G (0) = G, G (i) =[G (i 1),G (i 1) ], dla i N nazywamy

Bardziej szczegółowo

Teoria ciała stałego Cz. I

Teoria ciała stałego Cz. I Teoria ciała stałego Cz. I 1. Elementy teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3

Bardziej szczegółowo

Grupy i cia la, liczby zespolone

Grupy i cia la, liczby zespolone Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n

Bardziej szczegółowo

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n 123456789 wyk lad 9 Zagadnienie transportowe Mamy n punktów wysy lajacych towar i t punktów odbierajacych. Istnieje droga od każdego dostawcy do każdego odbiorcy i znany jest koszt transportu jednostki

Bardziej szczegółowo

Rezolucja w rachunku predykatów. Przedrostkowa koniunkcyjna postać normalna. Formu ly ustalone. Joanna Józefowska. Poznań, rok akademicki 2009/2010

Rezolucja w rachunku predykatów. Przedrostkowa koniunkcyjna postać normalna. Formu ly ustalone. Joanna Józefowska. Poznań, rok akademicki 2009/2010 Instytut Informatyki Poznań, rok akademicki 2009/2010 1 Postać klauzulowa formu l 2 Regu la rezolucji Regu la rezolucji dla klauzul ustalonych Regu la rezolucji dla klauzul ustalonych a spe lnialność Ogólna

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY ALGEBRA Z GEOMETRIĄ 1/10 LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY Piotr M. Hajac Uniwersytet Warszawski Wykład 10, 11.12.2013 Typeset by Jakub Szczepanik. Geometryczne intuicje Dla pierścienia R = R mamy

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

Podstawowe działania w rachunku macierzowym

Podstawowe działania w rachunku macierzowym Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Twierdzenie spektralne

Twierdzenie spektralne Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

LOGIKA ALGORYTMICZNA

LOGIKA ALGORYTMICZNA LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R

Bardziej szczegółowo

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że 4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze taka że K(x 0, δ) (y 0 η, y 0 + η) R n R, f(x 0, y 0 ) = 0, y f(x 0, y 0 ) 0. Wówczas dla odpowiednio

Bardziej szczegółowo

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów

Bardziej szczegółowo

Zadania o liczbach zespolonych

Zadania o liczbach zespolonych Zadania o liczbach zespolonych Zadanie 1. Znaleźć takie liczby rzeczywiste a i b, aby zachodzi ly równości: a) a( + i) + b(4 i) 6 i, b) a( + i) + b( + i) 8i, c) a(4 i) + b(1 + i) 7 1i, ( ) a d) i + b +i

Bardziej szczegółowo

Teoria mnogo±ci. Twierdzenia podziaªowe. Piotr Zakrzewski. Toru«, 31 sierpnia 2009. Instytut Matematyki Uniwersytet Warszawski

Teoria mnogo±ci. Twierdzenia podziaªowe. Piotr Zakrzewski. Toru«, 31 sierpnia 2009. Instytut Matematyki Uniwersytet Warszawski Teoria mnogo±ci Twierdzenia podziaªowe Piotr Zakrzewski Instytut Matematyki Uniwersytet Warszawski Toru«, 31 sierpnia 2009 Istota twierdze«podziaªowych Jesli,du»y' zbiór podzielimy na,niewielk ' liczb

Bardziej szczegółowo

Rzut oka na współczesną matematykę spotkanie 9-10: Zagadnienie czterech barw i teoria grafów

Rzut oka na współczesną matematykę spotkanie 9-10: Zagadnienie czterech barw i teoria grafów Rzut oka na współczesną matematykę spotkanie 9-10: Zagadnienie czterech barw i teoria grafów P. Strzelecki pawelst@mimuw.edu.pl Instytut Matematyki, Uniwersytet Warszawski MISH UW, semestr zimowy 2011-12

Bardziej szczegółowo

Regulamin przyznawania i pozbawiania licencji sędziowskich Polskiego Związku Łyżwiarstwa Figurowego

Regulamin przyznawania i pozbawiania licencji sędziowskich Polskiego Związku Łyżwiarstwa Figurowego R E G U L A M I N przyznawania i pozbawiania licencji sędziowskich uprawniających do sędziowania zawodów, sprawdzianów i testów łyżwiarstwa figurowego, w ramach działalności opisanej statutem PZŁF Na podstawie

Bardziej szczegółowo

Polska-Katowice: Meble 2015/S 029-048339

Polska-Katowice: Meble 2015/S 029-048339 1/7 Niniejsze ogłoszenie w witrynie TED: http://ted.europa.eu/udl?uri=ted:notice:48339-2015:text:pl:html Polska-Katowice: Meble 2015/S 029-048339 Uniwersytet Śląski w Katowicach, ul. Bankowa 12, Dział

Bardziej szczegółowo

art. 488 i n. ustawy z dnia 23 kwietnia 1964 r. Kodeks cywilny (Dz. U. Nr 16, poz. 93 ze zm.),

art. 488 i n. ustawy z dnia 23 kwietnia 1964 r. Kodeks cywilny (Dz. U. Nr 16, poz. 93 ze zm.), Istota umów wzajemnych Podstawa prawna: Księga trzecia. Zobowiązania. Dział III Wykonanie i skutki niewykonania zobowiązań z umów wzajemnych. art. 488 i n. ustawy z dnia 23 kwietnia 1964 r. Kodeks cywilny

Bardziej szczegółowo

ALGORYTMY OPTYMALIZACJI wyklad 3.nb 1. Wykład 3. Sformułujemy teraz warunki konieczne dla istnienia rozwiązań zagadnienia optymalizacyjnego:

ALGORYTMY OPTYMALIZACJI wyklad 3.nb 1. Wykład 3. Sformułujemy teraz warunki konieczne dla istnienia rozwiązań zagadnienia optymalizacyjnego: ALGORYTMY OPTYMALIZACJI wyklad 3.nb 1 Wykład 3 3. Otymalizacja z ograniczeniami Sformułujemy teraz warunki konieczne dla istnienia rozwiązań zagadnienia otymalizacyjnego: g i HxL 0, i = 1, 2,..., m (3.1)

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA

PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA Metody kolejnych przybli e Twierdzenie. (Bolzano Cauchy ego) Metody kolejnych przybli e Je eli funkcja F(x) jest ci g a w przedziale domkni tym [a,b] i F(a) F(b)

Bardziej szczegółowo

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l TEORIA FUNKCJONA LÓW GȨSTOŚCI (Density Functional Theory - DFT) Monika Musia l PRZEDMIOT BADAŃ Uk lad N elektronów + K j ader atomowych Przybliżenie Borna-Oppenheimera Zamiast funkcji falowej Ψ(r 1,σ 1,r

Bardziej szczegółowo

Wykład 9: Markov Chain Monte Carlo

Wykład 9: Markov Chain Monte Carlo RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa

Bardziej szczegółowo

Test, dzień pierwszy, grupa młodsza

Test, dzień pierwszy, grupa młodsza Test, dzień pierwszy, grupa młodsza 1. Na połowinkach 60 procent wszystkich uczniów to dziewczyny. Impreza jest kiepska, bo tylko 40 procent wszystkich uczniów chce się tańczyć. Sytuacja poprawia sie odrobinę,

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

Szeregi liczbowe. Analiza Matematyczna. Alexander Denisjuk

Szeregi liczbowe. Analiza Matematyczna. Alexander Denisjuk Analiza Matematyczna Szeregi liczbowe Alexander Denisjuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk

Bardziej szczegółowo

Ciągi. Pojęcie granicy ciągu.

Ciągi. Pojęcie granicy ciągu. Rozdział 2 Ciągi. Pojęcie granicy ciągu. Definicja 2.. Ciąg jest to funkcja określona na zbiorze liczb naturalnych. Będziemy rozważać ciągi o wyrazach rzeczywistych, czyli zgodnie z powyższą definicją

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 1: GRY W POSTACI EKSTENSYWNEJ I NORMALNEJ

TEORIA GIER W EKONOMII WYKŁAD 1: GRY W POSTACI EKSTENSYWNEJ I NORMALNEJ TEORIA GIER W EKONOMII WYKŁAD : GRY W POSTACI EKSTENSYWNEJ I NORMALNEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Schemat gry. Początek gry. 2. Ciąg kolejnych posunięć

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu

1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu Równania różniczkowe zwyczajne liniowe I-go rzędu 1 1 1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu Równaniem różniczkowym zwyczajnym liniowym pierwszego rzędu nazywamy równanie postaci (RL1)

Bardziej szczegółowo

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? Semina Nr 3 Scientiarum 2004 Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? W tym krótkim opracowaniu chciałbym przedstawić dowody obu twierdzeń Gödla wykorzystujące

Bardziej szczegółowo

GRZEGORZ SZKIBIEL WSTE P DO TEORII ZBIORÓW I KOMBINATORYKI

GRZEGORZ SZKIBIEL WSTE P DO TEORII ZBIORÓW I KOMBINATORYKI U N I W E R S Y T E T S Z C Z E C I Ń S K I GRZEGORZ SZKIBIEL WSTE P DO TEORII ZBIORÓW I KOMBINATORYKI SZCZECIN 2002 Spis treści Przedmowa.................................................. 5 1. Elementy

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 9: Grupy skończone Gniewomir Sarbicki Grupy cykliczne Definicja: Jeżeli każdy element grupy G jest postaci a n dla pewnego a G, to mówimy, że grupa G jest grupą cykliczną o

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

Zarządzenie nr 91/2016 Wójta Gminy Zielonki z dnia 21 kwietnia 2016 roku

Zarządzenie nr 91/2016 Wójta Gminy Zielonki z dnia 21 kwietnia 2016 roku O-KRS-490-1/16 Zarządzenie nr 91/2016 Wójta Gminy Zielonki z dnia 21 kwietnia 2016 roku w sprawie ogłoszenia konkursu na kandydata na stanowisko Dyrektora Przedszkola Samorządowego w Zielonkach Na podstawie:

Bardziej szczegółowo

Wyznaczanie statycznego i kinetycznego współczynnika tarcia przy pomocy równi pochyłej

Wyznaczanie statycznego i kinetycznego współczynnika tarcia przy pomocy równi pochyłej Wyznaczanie statycznego i kinetycznego współczynnika tarcia przy pomocy równi pochyłej Równia pochyła jest przykładem maszyny prostej. Jej konstrukcja składa się z płaskiej powierzchni nachylonej pod kątem

Bardziej szczegółowo

Jeden przyk lad... czyli dlaczego warto wybrać MIESI.

Jeden przyk lad... czyli dlaczego warto wybrać MIESI. Jeden przyk lad... czyli dlaczego warto wybrać MIESI. Micha l Ramsza Szko la G lówna Handlowa Micha l Ramsza (Szko la G lówna Handlowa) Jeden przyk lad... czyli dlaczego warto wybrać MIESI. 1 / 13 Dlaczego

Bardziej szczegółowo

Załącznik nr 1 do SIWZ FORMULARZ OFERTOWY STO BIAŁYSTOK. Słonimska 1. Białystok

Załącznik nr 1 do SIWZ FORMULARZ OFERTOWY STO BIAŁYSTOK. Słonimska 1. Białystok Załącznik nr 1 do SIWZ. nazwa i adres wykonawcy adres internetowy. e-mail. numer telefonu i faksu......, dnia FORMULARZ OFERTOWY STO BIAŁYSTOK Słonimska 1 Białystok ul. MIA 15-950 Odpowiadając na zaproszenie

Bardziej szczegółowo

enova Workflow Obieg faktury kosztowej

enova Workflow Obieg faktury kosztowej enova Workflow Obieg faktury kosztowej Spis treści 1. Wykorzystanie procesu... 3 1.1 Wprowadzenie dokumentu... 3 1.2 Weryfikacja merytoryczna dokumentu... 5 1.3 Przydzielenie zadań wybranym operatorom...

Bardziej szczegółowo

Praca dyplomowa magisterska

Praca dyplomowa magisterska Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra: Katedra Algorytmów i Modelowania Systemów Forma i poziom studiów: stacjonarne, jednolite magisterskie Kierunek studiów: Informatyka

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

W przypadku kandydatów do klasy o ukierunkowaniu politechnicznym brane będą pod uwagę oceny z następujących przedmiotów: a) matematyka b) fizyka

W przypadku kandydatów do klasy o ukierunkowaniu politechnicznym brane będą pod uwagę oceny z następujących przedmiotów: a) matematyka b) fizyka Szczegółowe warunki rekrutacji Liceum Ogólnokształcącego z Oddziałami Dwujęzycznymi im. Władysława Broniewskiego w Strzelcach Opolskich w roku szkolnym 2016/2017 opracowany na podstawie: Ustawy z dnia

Bardziej szczegółowo

ń ż ń ń ź ć ż ń ż ń ć ć ń ć ń ć ć Ź ń ć Ź ć ń ń ć ż ń ż ćź Ę ż ń ń ć ć ć ż ż ń ń Ę ć ć ń ż Ś Ś Ó Ź ń Ó ź Ś Ź Ę ż ń ż ź Ś ż ż ń ć ń ż ż ń Ż Ń Ź ż ż ć ć ż ć ń ż ż ń ń ń ć ń ż ć ź ć ń Ś Ę Ę ż Ę ń Ź ń Ó ż

Bardziej szczegółowo

Ń ź Ń ź Ń ź Ń ź ź Ń Ń Ń Ń ź Ą ź Ń ź Ó Ą ć Ń ć Ń ć ć ć ć ć ź ź ć Ń Ń ć ć Ę Ą ź Ę Ń ć ź Ń ź Ł Ń ć Ń Ą ć Ń ć ć ź Ń ćń Ś ź ź ź ć Ń ź ź Ń Ń Ę Ń ź Ń ź Ń Ą ć ź ć ć Ę ć ź ć Ą ć ź ć Ń ć ć ź ć Ń Ń Ń Ę ć Ą Ą ź Ń

Bardziej szczegółowo

Ą ń Ś ź ń ć ż Ę Ń Ą ć ń ń ż ń ź ź ź Ż ń ź ń Ą ń ż Ł ż Ę Ż ć ż ń Ę ć ż ż ń Ę ż ń ń Ą ż ń Ąć Ę ń Ę Ł Ą Ż ż Ę Ę ń Ż ż Ż Ę Ę Ę Ę Ę ć ż ż ż ć ćń ż ź Ę ń ż ć Ę ż ż Ę ź Ę ń ż Ę Ę ń Ę Ę ń ć Ż ć ż Ą Ę Ę ź ń ż ń

Bardziej szczegółowo

V Konkurs Matematyczny Politechniki Białostockiej

V Konkurs Matematyczny Politechniki Białostockiej V Konkurs Matematyczny Politechniki iałostockiej Rozwiązania - klasy pierwsze 27 kwietnia 2013 r. 1. ane są cztery liczby dodatnie a b c d. Wykazać że przynajmniej jedna z liczb a + b + c d b + c + d a

Bardziej szczegółowo

Zadania. SiOD Cwiczenie 1 ;

Zadania. SiOD Cwiczenie 1 ; 1. Niech A będzie zbiorem liczb naturalnych podzielnych przez 6 B zbiorem liczb naturalnych podzielnych przez 2 C będzie zbiorem liczb naturalnych podzielnych przez 5 Wyznaczyć zbiory A B, A C, C B, A

Bardziej szczegółowo

Problemy optymalizacyjne - zastosowania

Problemy optymalizacyjne - zastosowania Problemy optymalizacyjne - zastosowania www.qed.pl/ai/nai2003 PLAN WYKŁADU Zło ono obliczeniowa - przypomnienie Problemy NP-zupełne klika jest NP-trudna inne problemy NP-trudne Inne zadania optymalizacyjne

Bardziej szczegółowo

Kielce, dnia 12 stycznia 2016 r. Poz. 207 UCHWAŁA NR XVII/155/2015 RADY MIEJSKIEJ W KOŃSKICH. z dnia 30 grudnia 2015 r.

Kielce, dnia 12 stycznia 2016 r. Poz. 207 UCHWAŁA NR XVII/155/2015 RADY MIEJSKIEJ W KOŃSKICH. z dnia 30 grudnia 2015 r. DZIENNIK URZĘDOWY WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO Kielce, dnia 12 stycznia 2016 r. Poz. 207 UCHWAŁA NR XVII/155/2015 RADY MIEJSKIEJ W KOŃSKICH z dnia 30 grudnia 2015 r. w sprawie określenia kryteriów naboru

Bardziej szczegółowo

Strategia czy intuicja?

Strategia czy intuicja? Strategia czy intuicja czyli o grach niesko«czonych Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 29 sierpnia 2009 Denicja gry Najprostszy przypadek: A - zbiór (na ogóª co najwy»ej przeliczalny),

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Łukasz Kuszner pokój 209, WETI http://www.kaims.pl/ kuszner/ kuszner@eti.pg.gda.pl Oficjalna strona wykładu http://www.kaims.pl/

Bardziej szczegółowo

ZAPYTANIE OFERTOWE. Gryfice, dn.14.04.2016 r.

ZAPYTANIE OFERTOWE. Gryfice, dn.14.04.2016 r. Gryfice, dn.14.04.2016 r. ZAPYTANIE OFERTOWE W związku z realizacją przez Powiat Gryficki projektu pn. Wiem, dlatego działam program profilaktyki chorób układu krążenia dla powiatu gryfickiego, finansowanego

Bardziej szczegółowo

Klasa III, edukacja polonistyczna, krąg tematyczny W kadrze zatrzymane Temat: Na planie filmowym SCENARIUSZ Z WYKORZYSTANIEM METODY PROJEKTÓW

Klasa III, edukacja polonistyczna, krąg tematyczny W kadrze zatrzymane Temat: Na planie filmowym SCENARIUSZ Z WYKORZYSTANIEM METODY PROJEKTÓW 1 Ad@ i J@ś na matematycznej wyspie, PAKIET 114, SCENARIUSZE LEKCJI, nazwa zasobu: nauczyciel_3_114, do zastosowania z: uczeń_3_114 (materiały dla ucznia), pomoce multimedialne zgromadzone na www.matematycznawyspa.pl:

Bardziej szczegółowo

4 Kilka klas procesów

4 Kilka klas procesów Marek Beśka, Całka Stochastyczna, wykład 4 48 4 Kilka klas procesów 4.1 Procesy rosnące i przestrzenie V,, loc Jak poprzednio niech (Ω, F, F, P ) będzie zupełną bazą stochastyczną. Definicja 4.1 Proces

Bardziej szczegółowo

U S T AWA. z dnia 2015 r. Art. 1.

U S T AWA. z dnia 2015 r. Art. 1. Projekt U S T AWA z dnia 2015 r. o zmianie ustawy o minimalnym wynagrodzeniu za pracę Art. 1. W ustawie z dnia 10 października 2002 r. o minimalnym wynagrodzeniu za pracę (Dz. U. z 2002 r., Nr 200, poz.

Bardziej szczegółowo

x = (x 1, x 2,..., x n ), p = (p 1, p 2,..., p n )

x = (x 1, x 2,..., x n ), p = (p 1, p 2,..., p n ) *** Elementy teorii popytu *** II. Funkcja popytu konsumenta x = (x 1, x 2,..., x n ), p = (p 1, p 2,..., p n ) p, x = p 1 x 1 + p 2 x 2 + + p n x n cena koszyka x Zbiór wszystkich koszyków, na jakie sta

Bardziej szczegółowo

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów W matematyce teorię grafów klasyfikuje się jako gałąź topologii. Jest ona jednak ściśle związana z algebrą i

Bardziej szczegółowo

Formularz Fair Play sezon 2009/2010 III liga. Stadion/Miejsce zawodów Data Godzina meczu Rezultat OCENA

Formularz Fair Play sezon 2009/2010 III liga. Stadion/Miejsce zawodów Data Godzina meczu Rezultat OCENA Gospodarze Formularz Fair Play sezon 2009/2010 III liga Goście Stadion/Miejsce zawodów Data Godzina meczu Rezultat Imię i nazwisko Delegata/Obserwatora* Imię i nazwisko Obserwatora Imię i nazwisko Sędziego

Bardziej szczegółowo

Karty przypuszczeń IDEA

Karty przypuszczeń IDEA Karty przypuszczeń IDEA CO? Karty przypuszczeń IDEA są narzędziem zaprojektowanym aby użyc go w kilku kontekstach: w nauczaniu przedsiębiorczości w ramach studiów wyższych w mentoringu i nauczaniu potencjalnych

Bardziej szczegółowo

Definicja: alfabetem. słowem długością słowa

Definicja: alfabetem. słowem długością słowa Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa. Na

Bardziej szczegółowo

Metoda LBL (ang. Layer by Layer, pol. Warstwa Po Warstwie). Jest ona metodą najprostszą.

Metoda LBL (ang. Layer by Layer, pol. Warstwa Po Warstwie). Jest ona metodą najprostszą. Metoda LBL (ang. Layer by Layer, pol. Warstwa Po Warstwie). Jest ona metodą najprostszą. Po pierwsze - notacja - trzymasz swoją kostkę w rękach? Widzisz ścianki, którymi można ruszać? Notacja to oznaczenie

Bardziej szczegółowo

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 1. Wprowadzenie do rachunku zbiorów 1 Podstawowe pojęcia rachunku zbiorów Uwaga 1.1. W teorii mnogości mówimy o zbiorach

Bardziej szczegółowo

INSTRUKCJA PROGRAMU BHM SPIS TREŚCI

INSTRUKCJA PROGRAMU BHM SPIS TREŚCI INSTRUKCJA PROGRAMU BHM SPIS TREŚCI 1. Sprzedaż...... 2 1.1 Odbiorca... 2 1.1.1. Dopisywanie odbiorcy......... 2 1.1.2. Modyfikacja odbiorcy........ 2 1.1.3. Dodawanie załączników........ 3 1.1.4. Blokada

Bardziej szczegółowo

Procedury wewnętrzne określające zasady refundacji kosztów opieki nad dzieckiem do lat 6 lub nad dzieckiem niepełnosprawnym do 7 lat

Procedury wewnętrzne określające zasady refundacji kosztów opieki nad dzieckiem do lat 6 lub nad dzieckiem niepełnosprawnym do 7 lat Procedury wewnętrzne określające zasady refundacji kosztów opieki nad dzieckiem do lat 6 lub nad dzieckiem niepełnosprawnym do 7 lat Na podstawie art. 61 ustawy z dnia 20 kwietnia 2004r. o promocji zatrudnienia

Bardziej szczegółowo

Wrocław, dnia 2 lipca 2015 r. Poz. 2868 UCHWAŁA NR XII/68/2015 RADY GMINY KAMIENIEC ZĄBKOWICKI. z dnia 29 czerwca 2015 r.

Wrocław, dnia 2 lipca 2015 r. Poz. 2868 UCHWAŁA NR XII/68/2015 RADY GMINY KAMIENIEC ZĄBKOWICKI. z dnia 29 czerwca 2015 r. DZIENNIK URZĘDOWY WOJEWÓDZTWA DOLNOŚLĄSKIEGO Wrocław, dnia 2 lipca 2015 r. Poz. 2868 UCHWAŁA NR XII/68/2015 RADY GMINY KAMIENIEC ZĄBKOWICKI z dnia 29 czerwca 2015 r. w sprawie określenia zasad udzielania

Bardziej szczegółowo

Regulamin rekrutacji

Regulamin rekrutacji S t r o n a 1 Regulamin rekrutacji do Liceum Ogólnokształcącego Towarzystwa Salezjańskiego w roku szkolnym 2016/2017 Podstawa prawna: Ustawa o systemie oświaty Dz. U. z 2014 poz. 7 i 811 oraz z 2015 r.

Bardziej szczegółowo

1 Jeżeli od momentu złożenia w ARR, odpisu z KRS lub zaświadczenia o wpisie do ewidencji działalności

1 Jeżeli od momentu złożenia w ARR, odpisu z KRS lub zaświadczenia o wpisie do ewidencji działalności Załącznik nr 2 Zasady przyznawania autoryzacji dla zakładów produkcyjnych (przetwórczych) i zakładów konfekcjonujących oraz autoryzacji receptury produktów pośrednich 1. Autoryzację w ramach niniejszego

Bardziej szczegółowo