Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem."

Transkrypt

1 Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej wielkości, lecz wartości do niej zbliżone. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.

2 Pomiarem nazywamy czynności związane z ustaleniem wartości liczbowej miary danej wielkości fizycznej. Istotą pomiaru fizycznego jest porównanie wielkości z ustalonym wzorcem czyli jednostką. Narzędzia pomiarowe: Sposób pomiaru: wielkości proste wielkości złożone - wzorce - przyrządy pomiarowe - pomiar bezpośredni - pomiar pośredni W pracowni spotykamy się z dwoma następującymi po sobie procesami: 1. Pomiar a. ustawienie przyrządu b. obserwacja zjawiska c. odczyt mierzonej wielkości 2. Obliczenia, również krytyczna analiza prawidłowości i stopnia ich pewności.

3 Błędy popełniane podczas pomiarów 1. Błędy przypadkowe są to błędy nie powtarzające się. Mogą przyjmować wartość dodatnią lub ujemną. Spowodowane są przez różne niekontrolowane przez eksperymentatora czynniki, działające w chwili pomiaru (np. zmiany napięcia w sieci elektrycznej, do której podłączone są urządzenia pomiarowe, ograniczona dokładność obserwacji eksperymentatora). 2. Błędy grube są to duże błędy przypadkowe spowodowane nieuwagą lub niestarannością eksperymentatora. 3. Błędy systematyczne są to błędy powtarzające się, w większości tego samego znaku. Powodują je czynniki działające w jednakowy sposób w czasie wielokrotnego powtarzania tego samego pomiaru. Przyczyną tych błędów może być: niedokładność przyrządów, niedokładność metod pomiarowych oraz wzorów stosowanych do ostatecznych obliczeń.

4 Błędy popełniane podczas pomiarów Błąd bezwzględny wielkości mierzonej: x x 0 = Błąd względny: / x 0 Błąd procentowy: / x %

5 Błędy popełniane podczas pomiarów Błędy systematyczne błąd systematyczny określa się najczęściej w postaci błędu bezwzględnego X X 0 = zwykle za błąd pojedynczego oznaczenia lub analizy przyjmuje się dokładność przyrządu metoda analityczna może być obarczona 1. systematycznym błędem stałym (powodowanym addytywnymi zakłóceniami) 2. systematycznym błędem zmiennym (powodowanym względnymi zakłóceniami)

6 Aby wykryć zmienny lub stały błąd systematyczny metody należy: zbadać N próbek; przyjąć, że wartości X i to wartości dane a Y i to wartości oznaczone daną metodą analityczną; wyznaczyć zależność pomiędzy powyższymi wartościami w postaci zależności funkcyjnej Y = ax + b; jeśli wyraz wolny b istotnie różni się od 0 to dowodzi to występowania błędu stałego; jeśli współczynnik kierunkowy a prostej istotnie różni się od 1 to dowodzi to występowania błędu zmiennego; występowanie błędów systematycznych zostaje stwierdzone jeśli: t b = b / s b t P,df t a = 1 a /s a t P,df df =N 2

7 Błędy przypadkowe (losowe) BŁĘDY POMIAROWE w pomiarach bezpośrednich opisuje je odchylenie standardowe, odchylenie standardowe średniej i wariancja. Tak opisane błędy stosujemy tylko do takich samych warunków pomiarowych, czyli do analizy w danym laboratorium, gdy spełnione są te same założenia pomiarowe (tu odchylenie s można określać jako odchylenie standardowe precyzji).

8 Błędy przypadkowe (losowe) BŁĘDY POMIAROWE w pomiarach pośrednich (gdy nie możemy zmierzyć bezpośrednio wielkości fisycznej A, lecz jest ona związana z K innymi wielkościami fizycznymi X 1, X 2,...X K błąd całkowity określa nam różniczka zupełna: S A= [ A 1 X S X 1]2 [ A 2 X S X 2]2 [ A X S X K]2 K Jeśli rozpatrzymy związek między dwiema zmiennymi X1 i X2 to przenoszenie (propagacja) błędu zachodzi według prostych zależności: y=x 1 x 2 2 y=x 1 x y = 2 2 x1 x2 2 y=x 1 x 2 y=x 1 / x = y x 1 x 2 2 y x 1 x 2

9 Dokładność, precyzja, powtarzalność i odtwarzalność metody Dokładność stopień zgodności z wartością prawdziwą; przeciętne odchylenie otrzymanych wyników od wartości rzeczywistej (wzorca). Precyzja stopień zgodności między indywidualnymi wynikami powtarzanymi wielokrotnie na tym samym materiale, określa się za pomocą np. odchylenia standardowego. Powtarzalność uzyskiwanie tych samych wyników w krótkich odstępach czasu na tym samym materiale w różnym czasie, przez tę samą osobę przy użyciu tych samych odczynników. Odtwarzalność uzyskiwanie tych samych wyników w różnym czasie, przez różnych analityków, różnymi odczynnikami, w różnych laboratoriach.

10 Inne kryteria metody analitycznej to: Czułość m. a. - najmniejsza różnica zawartości składnika, jaką można oznaczyć daną metodą. Wykrywalność (granica wykrywalności) m. a. - najmniejsza wartość stężenia lub ilości składnika, jaką można wykryć tą metodą, Oznaczalność (granica oznaczalności) m. a. - najmniejsze stężenie składnika, jakie można oznaczyć ilościowo daną metodą, Selektywność m. a. - możliwe jest wykrycie np. niewielkiej liczby różnego rodzaju cząsteczek, Specyficzność m. a. - możliwe jest wykrycie np. cząsteczek jednego rodzaju.

11 Dokładność lub precyzję metody analitycznej można sprawdzić kilkoma metodami: 1. Statystyczna ocena oznaczeń wzorców; 2. Ustalenie współzależności korelacyjnej dla mieszaniny wzorców; 3. Porównanie dwóch metod; 4. Użycie odzysku.

12 1. Metoda odzysku Wyznaczanie dokładności i precyzji metody Polega na równoległym oznaczeniu nieznanego stężenia w badanej próbce oraz w tej samej próbce z dodatkiem określonej ilości wzorca. % odzysku= a b c a zmierzone stężenie po dodaniu wzorca; b zmierzone stężenie przed dodaniem wzorca; c spodziewana zmiana stężenia po dodaniu wzorca; Jest to miara dokładności metody. 100 %

13 Wyznaczanie dokładności i precyzji metody 2. Ustalenie współzależności korelacyjnej dla mieszaniny wzorców Roztwór wzorcowy rozcieńczamy w celu otrzymania serii różnych stężeń wzorca (stężenie oczekiwane oś X). Dokonujemy pomiarów (stężenia znalezione oś Y). Liczymy współczynniki prostej regresji. Metoda jest dokładna jeśli: r 0,98 0,98 a 1,02 oraz b=0

14 Wyznaczanie dokładności i precyzji metody 3. Porównanie dwóch metod Serię wzorców oznacza się dotychczas używaną metodą o znanej dokładności (wartości oczekiwane X 0 i s 0 ) i nową metodą (wartości znalezione X 1 i s 1 ). Różnica pomiędzy dwoma metodami stanowi ocenę ich dokładności i precyzji. - ocena dokładności sprawdzanie istotności różnic pomiędzy średnimi; - ocena precyzji sprawdzenie istotności różnic pomiędzy wariancjami.

15 Dokładność pojedynczego wyniku określa błąd pomiaru: X =X i X 0 X i =X 0 X i sys g ΔX i dla pojedynczego pomiaru szacujemy na podstawie dużej próby N>>30 jeśli cecha ma rozkład normalny X 0 X, =s : z= X i / X = X i X =zs X i = X ±zs Maksymalne granica błędu przypadkowego pojedynczego pomiaru: X =±zs Często za błąd pojedynczego pomiaru przyjmuje się dokładność przyrządu pomiarowego.

16 Dokładność wyniku końcowego analizy: X = X Na ten błąd ma wpływ błąd przypadkowy średniej i błąd systematyczny metody. Jeśli cecha ma rozkład normalny to: X N / =z X = X =z / N Maksymalne granice błędu przypadkowego dla dużej próby X =±z / N Maksymalne granice błędu przypadkowego dla małej próby Błąd względny metody w % X =±t s/ n t s X / X 100 %

17 Błąd systematyczny duży w porównaniu z błędem przypadkowym 1. Wielkości proste, szacujemy błąd na podstawie dokładności lub klasy przyrządu (= najmniejsza działka skali) 2. Wielkości złożone, obliczmy błąd maksymalny, tzn. określamy jaki maksymalny wpływ na wynik końcowy posiadają błędy systematyczne poszczególnych wielkości prostych - matematycznie, różniczka zupełna

18 Błędy pomiarowe Błąd gruby kryterium eliminacji: Test Q-Dixona Test Grubbsa Sposób von Graf'a i Henninga 1. Dla N 10 < N < Pomija się wynik podejrzany i oblicza średnią i odchylenie standardowe 3. Jeśli liczba rozpatrywanych wyników jest większa od 10 i jeśli wynik podejrzany różni się od średniej o 4 lub więcej odchyleń standardowych to wynik ten z dużym prawdopodobieństwem jest obciążony błędem grubym Gdy N > z d = X i X /s z d 1,96 to wynik odrzucamy z p = 95%

19 Odrzucanie wyników niepewnych. Test Grubbsa W teście Grubbsa do sprawdzenia największej wartości z próby o liczności n posługujemy się wzorem: n 1 2 S x i x n 2 n S = i=1 2 n x i x 2 i=1 Dla wartości najmniejszej mamy: n 2 S x i x S = i=2 2 n x i x 2 i=1 gdzie n 1 x 1 x 2... x n ; x n = 1 n 1 i=1 x i ; x 1 = 1 n n 1 i=2 n x i ; x= 1 n i=1 x i

20 W celu ustalenia, czy dwie wartości odbiegają od pozostałych korzystamy z zależności: Dla wartości najmniejszej mamy: gdzie n 2 2 S n, n 1 i=1 = S 2 2 S 1,2 n x i x n, n 1 2 n i=1 x i x 2 x i x 1, 2 2 S = i=3 2 n x i x 2 i=1 n 2 x 1 x 2... x n ; x n, n 1 = 1 n 2 i=1 x i ; x 1, 2 = 1 n n 2 i=3 n x i ; x= 1 n i=1 x i Odrzucamy wyniki z określonym prawdopodobieństwem, kiedy we wszystkich wymienionych przypadkach wartość doświadczalna stosunku jest mniejsza od wartości teoretycznej S i 2 /S 2 d S i 2 /S 2 t

21 Odrzucanie wyników niepewnych. Test Q Dixona W teście Q Dixona do sprawdzenia największej wartości z próby o liczności n posługujemy się wzorem: Dla wartości najmniejszej mamy: gdzie R - rozstęp. Q p = X n X n 1 R Q l = X 2 X 1 R Wynik uznajemy za niepewny jeżeli wartość Q p lub Q l jest większa od wartości krytycznej.

22 W praktyce laboratoryjnej dąży się do sytuacji, aby uzyskać wyniki obciążone jak najmniejszym błędem. Przy oszacowaniu błędu wyniku końcowego ważne jest, aby znaleźć błąd dominujący. Np. przeprowadzono próbną serię 4-ch pomiarów Jeśli ich wyniki są identyczne to... Jeśli różnice między pomiarami próbnymi znacznie przekraczają błąd systematyczny to...

23 Zadanie W określonym doświadczeniu otrzymano następujące wyniki, które zostały uporządkowane w szereg rosnący: 13, 42, 43, 46, 47, 49, 49, 54, 55, 56, 67, 100. Wyniki: 13 i 100 różnią się znacznie od pozostałych. Sprawdź, czy wartości te należą do danego zbioru.

24 Test Q-Dixona: Q p = x n x n 1 R Q l = x 2 x 1 R Wynik wątpliwy odrzuca się, kiedy obliczona wartość Q jest większa od wartości tabelarycznej Q t.

25 Test Q-Dixona: Q p = x n x n 1 R Q l = x 2 x 1 R = = =0,379 =0,333 Q =0,05 ; n=12 =0,376 Wynik 100 jest wynikiem niepewnym.

26 Test Grubbsa: n 1 2 x S i x n 2 n S = i=1 2 n x i x 2 i=1 n 2 x S i x S 2= i=2 n x i x 2 i=1 x 1 x 2... x n ; x n = 1 n 1 n 1 i=1 x i ; x 1 = 1 n n 1 i=2 n x i ; x= 1 n i=1 x i Odrzucamy wynik z określonym prawdopodobieństwem, kiedy we wszystkich wymienionych przypadkach wartość doświadczalna stosunku S i2 /S 2 jest mniejsza od wartości tabelarycznej.

27 Test Grubbsa: x i x n 2 S = i=1 =0,414 2 n x i x 2 S n 2 n 1 i=1 S n 2 n 2 x S i x S 2= i=2 =0,645 n x i x 2 i=1 =0,05 ; n=12 =0, S Wynik 100 jest wynikiem niepewnym.

28 Zadanie W celu sprawdzenia dokładności pipety automatycznej ustawiono ją na 20 μl i zważono na wadze analitycznej objętość wody, którą była pobierana przy takim ustawieniu. Uzyskane wyniki (w mg) to: 19,2; 18,7; 19,1; 38,3; 19,0; 18,9. Czy pipeta posiada błąd systematyczny?

29 Najpierw trzeba się zająć podejrzanym wynikiem Sprawdzamy go w różnych testach: 1) Q-Dixona Q p = x n x n 1 R Q =0,05;n=6 =0,560 = 38,3 19,2 19,6 =0,974 Wynik 38,3 jest wynikiem niepewnym.

30 2) Grubbsa n 1 2 x S i x n 2 n S = i=1 2 n x i x 2 i=1 x 1 x 2... x n ; x n = 1 n 1 n 1 i=1 n x i ; x= 1 n i=1 x i

31 S n 2 S 2 =0, ,2 =0,00048 S n 2 =0,05 ; n=6 =0, S Wynik 38,3 jest wynikiem niepewnym.

32 Teraz testem t-studenta sprawdzamy, czy obliczona średnia (po odrzuceniu wyniku 38,3) istotnie różni się od 20,0: t= X s/ n =18,98 20,0 0,192/ 5 = 11,86 t / 2=0,025 ; df =4 = 2,776 Odp.: Hipotezę H 0 odrzucamy pipeta jest obarczona błędem systematycznym.

Walidacja metod analitycznych Raport z walidacji

Walidacja metod analitycznych Raport z walidacji Walidacja metod analitycznych Raport z walidacji Małgorzata Jakubowska Katedra Chemii Analitycznej WIMiC AGH Walidacja metod analitycznych (według ISO) to proces ustalania parametrów charakteryzujących

Bardziej szczegółowo

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo

Zasady wykonania walidacji metody analitycznej

Zasady wykonania walidacji metody analitycznej Zasady wykonania walidacji metody analitycznej Walidacja metod badań zasady postępowania w LOTOS Lab 1. Metody badań stosowane w LOTOS Lab należą do następujących grup: 1.1. Metody zgodne z uznanymi normami

Bardziej szczegółowo

Walidacja metod wykrywania, identyfikacji i ilościowego oznaczania GMO. Magdalena Żurawska-Zajfert Laboratorium Kontroli GMO IHAR-PIB

Walidacja metod wykrywania, identyfikacji i ilościowego oznaczania GMO. Magdalena Żurawska-Zajfert Laboratorium Kontroli GMO IHAR-PIB Walidacja metod wykrywania, identyfikacji i ilościowego oznaczania GMO Magdalena Żurawska-Zajfert Laboratorium Kontroli GMO IHAR-PIB Walidacja Walidacja jest potwierdzeniem przez zbadanie i przedstawienie

Bardziej szczegółowo

Fizyka (Biotechnologia)

Fizyka (Biotechnologia) Fizyka (Biotechnologia) Wykład I Marek Kasprowicz dr Marek Jan Kasprowicz pokój 309 marek.kasprowicz@ur.krakow.pl www.ar.krakow.pl/~mkasprowicz Marek Jan Kasprowicz Fizyka 013 r. Literatura D. Halliday,

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów LISTA 4 1.Na pewnym obszarze dokonano 40 pomiarów grubości warstwy piasku otrzymując w m.: 54, 58, 64, 69, 61, 56, 41, 48, 56, 61, 70, 55, 46, 57, 70, 55, 47, 62, 55, 60, 54,57,65,60,53,54, 49,58,62,59,55,50,58,

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE

JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE 1 JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE Precyzja Dr hab. inż. Piotr KONIECZKA Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska ul. G. Narutowicza 11/1 80-95 GDAŃSK e-mail: kaczor@chem.pg.gda.pl

Bardziej szczegółowo

JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE

JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE 1 Granica wykrywalności i granica oznaczalności Dr inż. Piotr KONIECZKA Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska ul. G. Narutowicza 11/12

Bardziej szczegółowo

LINIOWOŚĆ METODY OZNACZANIA ZAWARTOŚCI SUBSTANCJI NA PRZYKŁADZIE CHROMATOGRAFU

LINIOWOŚĆ METODY OZNACZANIA ZAWARTOŚCI SUBSTANCJI NA PRZYKŁADZIE CHROMATOGRAFU LINIOWOŚĆ METODY OZNACZANIA ZAWARTOŚCI SUBSTANCJI NA PRZYKŁADZIE CHROMATOGRAFU Tomasz Demski, StatSoft Polska Sp. z o.o. Wprowadzenie Jednym z elementów walidacji metod pomiarowych jest sprawdzenie liniowości

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

Charakterystyka mierników do badania oświetlenia Obiektywne badania warunków oświetlenia opierają się na wynikach pomiarów parametrów świetlnych. Podobnie jak każdy pomiar, również te pomiary, obarczone

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA narzędzie do opracowywania i interpretacji wyników pomiarów

STATYSTYKA MATEMATYCZNA narzędzie do opracowywania i interpretacji wyników pomiarów STATYSTYKA MATEMATYCZNA narzędzie do opracowywania i interpretacji wyników pomiarów Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Statystyka matematyczna - część matematyki

Bardziej szczegółowo

Szkoła Letnia STC Łódź mgr inż. Paulina Mikoś

Szkoła Letnia STC Łódź mgr inż. Paulina Mikoś 1 mgr inż. Paulina Mikoś Pomiar powinien dostarczyć miarodajnych informacji na temat badanego materiału, zarówno ilościowych jak i jakościowych. 2 Dzięki temu otrzymane wyniki mogą być wykorzystane do

Bardziej szczegółowo

Określanie niepewności pomiaru

Określanie niepewności pomiaru Określanie niepewności pomiaru (Materiały do ćwiczeń laboratoryjnych z przedmiotu Materiałoznawstwo na wydziale Górnictwa i Geoinżynierii) 1. Wprowadzenie Pomiar jest to zbiór czynności mających na celu

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Walidacja metod analitycznych

Walidacja metod analitycznych Kierunki rozwoju chemii analitycznej Walidacja metod analitycznych Raport z walidacji Małgorzata Jakubowska Katedra Chemii Analitycznej WIMiC AGH oznaczanie coraz niŝszych w próbkach o złoŝonej matrycy

Bardziej szczegółowo

Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów.

Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów. Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów.. KEITHLEY. Practical Solutions for Accurate. Test & Measurement. Training materials, www.keithley.com;. Janusz Piotrowski: Procedury

Bardziej szczegółowo

Wprowadzenie do rachunku niepewności pomiarowej. Jacek Pawlyta

Wprowadzenie do rachunku niepewności pomiarowej. Jacek Pawlyta Wprowadzenie do rachunku niepewności pomiarowej Jacek Pawlyta Fizyka Teorie Obserwacje Doświadczenia Fizyka Teorie Przykłady Obserwacje Przykłady Doświadczenia Przykłady Fizyka Potwierdzanie bądź obalanie

Bardziej szczegółowo

Temat: SZACOWANIE NIEPEWNOŚCI POMIAROWYCH

Temat: SZACOWANIE NIEPEWNOŚCI POMIAROWYCH Temat: SZCOWNIE NIEPEWNOŚCI POMIROWYCH - Jak oszacować niepewność pomiarów bezpośrednich? - Jak oszacować niepewność pomiarów pośrednich? - Jak oszacować niepewność przeciętną i standardową? - Jak zapisywać

Bardziej szczegółowo

JAK WYZNACZYĆ PARAMETRY WALIDACYJNE W METODACH INSTRUMENTALNYCH

JAK WYZNACZYĆ PARAMETRY WALIDACYJNE W METODACH INSTRUMENTALNYCH JAK WYZNACZYĆ PARAMETRY WALIDACYJNE W METODACH INSTRUMENTALNYCH dr inż. Agnieszka Wiśniewska EKOLAB Sp. z o.o. agnieszka.wisniewska@ekolab.pl DZIAŁALNOŚĆ EKOLAB SP. Z O.O. Akredytowane laboratorium badawcze

Bardziej szczegółowo

Sterowanie jakością badań i analiza statystyczna w laboratorium

Sterowanie jakością badań i analiza statystyczna w laboratorium Sterowanie jakością badań i analiza statystyczna w laboratorium CS-17 SJ CS-17 SJ to program wspomagający sterowanie jakością badań i walidację metod badawczych. Może działać niezależnie od innych składników

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

SPIS TREŚCI do książki pt. Metody badań czynników szkodliwych w środowisku pracy

SPIS TREŚCI do książki pt. Metody badań czynników szkodliwych w środowisku pracy SPIS TREŚCI do książki pt. Metody badań czynników szkodliwych w środowisku pracy Autor Andrzej Uzarczyk 1. Nadzór nad wyposażeniem pomiarowo-badawczym... 11 1.1. Kontrola metrologiczna wyposażenia pomiarowego...

Bardziej szczegółowo

Ana n l a i l za z a i ns n tru r men e t n al a n l a

Ana n l a i l za z a i ns n tru r men e t n al a n l a Analiza instrumentalna rok akademicki 2014/2015 wykład: prof. dr hab. Ewa Bulska prof. dr hab. Agata Michalska Maksymiuk pracownia: dr Marcin Wojciechowski Slide 1 Analiza_Instrumentalna: 2014/2015 Analiza

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka tankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i efektów

Bardziej szczegółowo

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Podstawy Metrologii i Technik Eksperymentu Laboratorium Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Instrukcja do ćwiczenia nr 4 Zakład Miernictwa

Bardziej szczegółowo

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Wprowadzenie 2010-10-20

Wprowadzenie 2010-10-20 PODSTAWY STATYSTYKI Dr hab. inż. Piotr Konieczka piotr.konieczka@pg.gda.pl 1 Wprowadzenie Wynik analityczny to efekt przeprowadzonego pomiaru(ów). Pomiar to zatem narzędzie wykorzystywane w celu uzyskania

Bardziej szczegółowo

Analiza statystyczna w naukach przyrodniczych

Analiza statystyczna w naukach przyrodniczych Analiza statystyczna w naukach przyrodniczych Po co statystyka? Człowiek otoczony jest różnymi zjawiskami i próbuje je poznać, dowiedzieć się w jaki sposób funkcjonują, jakie relacje między nimi zachodzą.

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

KALIBRACJA. ważny etap procedury analitycznej. Dr hab. inż. Piotr KONIECZKA

KALIBRACJA. ważny etap procedury analitycznej. Dr hab. inż. Piotr KONIECZKA KALIBRAJA ważny etap procedury analitycznej 1 Dr hab. inż. Piotr KONIEZKA Katedra hemii Analitycznej Wydział hemiczny Politechnika Gdańska ul. G. Narutowicza 11/12 8-233 GDAŃK e-mail: piotr.konieczka@pg.gda.pl

Bardziej szczegółowo

Niepewności pomiarów

Niepewności pomiarów Niepewności pomiarów Międzynarodowa Organizacja Normalizacyjna (ISO) w roku 1995 opublikowała normy dotyczące terminologii i sposobu określania niepewności pomiarów [1]. W roku 1999 normy zostały opublikowane

Bardziej szczegółowo

SYSTEM KONTROLI I ZAPEWNIENIA JAKOŚCI WYNIKÓW BADAŃ W LABORATORIUM. Piotr Konieczka

SYSTEM KONTROLI I ZAPEWNIENIA JAKOŚCI WYNIKÓW BADAŃ W LABORATORIUM. Piotr Konieczka SYSTEM KONTROLI I ZAPEWNIENIA JAKOŚCI WYNIKÓW BADAŃ W LABORATORIUM Piotr Konieczka 1 2 Jakość spełnienie określonych i oczekiwanych wymagań (zawartych w odpowiedniej normie systemu zapewnienia jakości).

Bardziej szczegółowo

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III ZALICZENIA W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III 1 Wariant I. PROBLEM WŁASNY Sformułować własne zadanie statystyczne związane z własną pracą badawczą

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom

Bardziej szczegółowo

Metrologia: definicje i pojęcia podstawowe. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: definicje i pojęcia podstawowe. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: definicje i pojęcia podstawowe dr inż. Paweł Zalewski Akademia Morska w Szczecinie Pojęcia podstawowe: Metrologia jest nauką zajmująca się sposobami dokonywania pomiarów oraz zasadami interpretacji

Bardziej szczegółowo

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

Testowanie hipotez statystycznych cd.

Testowanie hipotez statystycznych cd. Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

Dokładność pomiaru: Ogólne informacje o błędach pomiaru

Dokładność pomiaru: Ogólne informacje o błędach pomiaru Dokładność pomiaru: Rozumny człowiek nie dąży do osiągnięcia w określonej dziedzinie większej dokładności niż ta, którą dopuszcza istota przedmiotu jego badań. (Arystoteles) Nie można wykonać bezbłędnego

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących

Bardziej szczegółowo

Metrologia: powtarzalność i odtwarzalność pomiarów. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: powtarzalność i odtwarzalność pomiarów. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: powtarzalność i odtwarzalność pomiarów dr inż. Paweł Zalewski Akademia Morska w Szczecinie Definicje: Pojęciami związanymi z metodami diagnozowania procesów i oceny ich bezpieczeństwa oraz

Bardziej szczegółowo

Systemy zapewnienia jakości w laboratorium badawczym i pomiarowym

Systemy zapewnienia jakości w laboratorium badawczym i pomiarowym Systemy zapewnienia jakości w laboratorium badawczym i pomiarowym Narzędzia statystyczne w zakresie kontroli jakości / nadzoru nad wyposażeniem pomiarowym M. Kamiński Jednym z ważnych narzędzi statystycznej

Bardziej szczegółowo

4.Zmienne losowe X 1, X 2,..., X 100 są niezależne i mają rozkład wykładniczy z α = 0.25 Jakie jest prawdopodobieństwo, że 1

4.Zmienne losowe X 1, X 2,..., X 100 są niezależne i mają rozkład wykładniczy z α = 0.25 Jakie jest prawdopodobieństwo, że 1 LISTA 7 W rozwiązaniu zadań 1-4 wykorzystać centralne twierdzenie graniczne. 1.Prawdopodobieństwo, że aparat zepsuje się w czasie jego konserwacji wynosi 0.02. Jakie jest prawdopodobieństwo, że w trakcie

Bardziej szczegółowo

JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE

JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE 1 Przykład walidacji procedury analitycznej Piotr KONIECZKA Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska ul. G. Narutowicza 11/1 80-33 GDAŃSK

Bardziej szczegółowo

Walidacja metody analitycznej podejście metrologiczne. Waldemar Korol Instytut Zootechniki-PIB, Krajowe Laboratorium Pasz w Lublinie

Walidacja metody analitycznej podejście metrologiczne. Waldemar Korol Instytut Zootechniki-PIB, Krajowe Laboratorium Pasz w Lublinie Walidacja metody analitycznej podejście metrologiczne Waldemar Korol Instytut Zootechniki-PIB, Krajowe Laboratorium Pasz w Lublinie Walidacja potwierdzenie parametrów metody do zamierzonego jej zastosowania

Bardziej szczegółowo

Laboratorium Fizyczne Inżynieria materiałowa. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Laboratorium Fizyczne Inżynieria materiałowa. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Laboratorium Fizyczne Inżynieria materiałowa Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego błąd pomiaru = x i x 0 Błędy pomiaru dzielimy na: Błędy

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

BŁĘDY W POMIARACH BEZPOŚREDNICH

BŁĘDY W POMIARACH BEZPOŚREDNICH Podstawy Metrologii i Technik Eksperymentu Laboratorium BŁĘDY W POMIARACH BEZPOŚREDNICH Instrukcja do ćwiczenia nr 2 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy Metrologii

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

Kryteria wyboru i oceny metod badawczych

Kryteria wyboru i oceny metod badawczych Kryteria wyboru i oceny metod badawczych Mariusz B. Bogacki 10.10.2008 Politechnika Poznańska, Instytut Technologii i Inżynierii Chemicznej, Zakład Inżynierii Procesowej. Błędy pomiarowe Błąd pomiaru oznacza

Bardziej szczegółowo

Niepewność pomiaru masy w praktyce

Niepewność pomiaru masy w praktyce Niepewność pomiaru masy w praktyce RADWAG Wagi Elektroniczne Z wszystkimi pomiarami nierozłącznie jest związana Niepewność jest nierozerwalnie związana z wynimiarów niepewność ich wyników. Podając wyniki

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

Pytanie: Kiedy do testowania hipotezy stosujemy test F (Fishera-Snedecora)?

Pytanie: Kiedy do testowania hipotezy stosujemy test F (Fishera-Snedecora)? Pytanie: Kiedy do testowania hipotezy stosujemy test F (Fishera-Snedecora)? Gdy: badana cecha jest mierzalna (ewentualnie policzalna); dysponujemy dwoma próbami; chcemy porównać, czy wariancje w tych próbach

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych

Bardziej szczegółowo

Wyznaczanie minimalnej odważki jako element kwalifikacji operacyjnej procesu walidacji dla wagi analitycznej.

Wyznaczanie minimalnej odważki jako element kwalifikacji operacyjnej procesu walidacji dla wagi analitycznej. Wyznaczanie minimalnej odważki jako element kwalifikacji operacyjnej procesu walidacji dla wagi analitycznej. Andrzej Hantz Dyrektor Centrum Metrologii RADWAG Wagi Elektroniczne Pomiary w laboratorium

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM

Bardziej szczegółowo

Projektowanie systemów pomiarowych. 02 Dokładność pomiarów

Projektowanie systemów pomiarowych. 02 Dokładność pomiarów Projektowanie systemów pomiarowych 02 Dokładność pomiarów 1 www.technidyneblog.com 2 Jak dokładnie wykonaliśmy pomiar? Czy duża / wysoka dokładność jest zawsze konieczna? www.sparkfun.com 3 Błąd pomiaru.

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 1 Metody określania niepewności pomiaru. I. Zagadnienia do przygotowania na kartkówkę: 1. Podstawowe założenia teorii niepewności. Wyjaśnić znaczenie pojęć randomizacja

Bardziej szczegółowo

POWTÓRZENIE - GEODEZJA OGÓLNA dział 9 ELEMENTY RACHUNKU WYRÓWNAWCZEGO

POWTÓRZENIE - GEODEZJA OGÓLNA dział 9 ELEMENTY RACHUNKU WYRÓWNAWCZEGO POWTÓRZENIE - GEODEZJA OGÓLNA dział 9 ELEMENTY RACHUNKU WYRÓWNAWCZEGO SPOSTRZEŻENIA JEDNAKOWO DOKŁADNE. Spostrzeżenia jednakowo dokładne to takie, które wykonane są: tym samym przyrządem, tą samą metodą

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 www: http://hirg.if.pw.edu.pl/~gos/students/kadd Politechnika Warszawska Wydział

Bardziej szczegółowo

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Hipotezą statystyczną jest dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia

Bardziej szczegółowo

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Przykład. Producent pewnych detali twierdzi, że wadliwość jego produkcji nie przekracza 2%. Odbiorca pewnej partii tego produktu chce sprawdzić, czy może wierzyć producentowi.

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Pomiar rezystancji metodą techniczną

Pomiar rezystancji metodą techniczną Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej.

Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej. Temat: WYKRYWANIE ODCHYLEO W DANYCH Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej. Przykładem Box Plot wygodną metodą

Bardziej szczegółowo

NARZĘDZIA DO KONTROLI I ZAPEWNIENIA JAKOŚCI WYNIKÓW ANALITYCZNYCH. Piotr KONIECZKA

NARZĘDZIA DO KONTROLI I ZAPEWNIENIA JAKOŚCI WYNIKÓW ANALITYCZNYCH. Piotr KONIECZKA 1 NARZĘDZIA DO KONTROLI I ZAPEWNIENIA JAKOŚCI WYNIKÓW ANALITYCZNYCH Piotr KONIECZKA Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska ul. G. Narutowicza 11/12 80-952 GDAŃSK e-mail: kaczor@chem.pg.gda.pl

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Wydział Matematyki. Testy zgodności. Wykład 03

Wydział Matematyki. Testy zgodności. Wykład 03 Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy

Bardziej szczegółowo

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28 Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

WALIDACJA METOD POMIAROWYCH

WALIDACJA METOD POMIAROWYCH WALIDACJA METOD POMIAROWYCH Michał Iwaniec, StatSoft Polska Sp. z o.o. Metody pomiarowe służą do oceny zjawisk i procesów funkcjonujących w otaczającym nas świecie, zarówno tych naturalnie występujących

Bardziej szczegółowo

WPROWADZENIE DO TEORII BŁĘDÓW I NIEPEWNOŚCI POMIARU

WPROWADZENIE DO TEORII BŁĘDÓW I NIEPEWNOŚCI POMIARU Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego WPROWADZENIE DO TEORII BŁĘDÓW I NIEPEWNOŚCI POMIARU 1. Błąd a niepewność pomiaru Pojęcia błędu i niepewności

Bardziej szczegółowo

Teoria błędów pomiarów geodezyjnych

Teoria błędów pomiarów geodezyjnych PodstawyGeodezji Teoria błędów pomiarów geodezyjnych mgr inŝ. Geodeta Tomasz Miszczak e-mail: tomasz@miszczak.waw.pl Wyniki pomiarów geodezyjnych będące obserwacjami (L1, L2,, Ln) nigdy nie są bezbłędne.

Bardziej szczegółowo

Walidacja metod analitycznych

Walidacja metod analitycznych Kierunki rozwoju chemii analitycznej Walidacja metod analitycznych Raport z walidacji Małgorzata Jakubowska Katedra Chemii Analitycznej WIMiC AGH oznaczanie coraz niŝszych stęŝeń w próbkach o złoŝonej

Bardziej szczegółowo

PODSTAWOWA TERMINOLOGIA METROLOGICZNA W PRAKTYCE LABORATORYJNEJ

PODSTAWOWA TERMINOLOGIA METROLOGICZNA W PRAKTYCE LABORATORYJNEJ Klub Polskich Laboratoriów Badawczych POLLAB PODSTAWOWA TERMINOLOGIA METROLOGICZNA W PRAKTYCE LABORATORYJNEJ Andrzej Hantz Centrum Metrologii im. Zdzisława Rauszera RADWAG Wagi Elektroniczne Metrologia

Bardziej szczegółowo