Statystyczne Metody Opracowania Wyników Pomiarów
|
|
- Gabriela Pietrzak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Statystyczne Metody Opracowania Wyników Pomiarów dla studentów Ochrony Środowiska Teresa Jaworska-Gołąb 2017/18
2 Co czytać [1] H. Szydłowski, Pracownia fizyczna, PWN, Warszawa [2] A. Zięba, Analiza danych w naukach ścisłych i technice, Wydawnictwo Naukowe PWN, Warszawa [3] J. R. Taylor, Wstęp do analizy błędu pomiarowego, Wydawnictwo Naukowe PWN, W-wa [4] [5] D. Halliday, R. Resnick, J. Walker, Podstawy Fizyki, Wydawnictwo Naukowe PWN, W-wa [6]
3 Czym są i czemu służą zajęcia w I PF SAMODZIELNE WYKONYWANIE EKSPERYMENTÓW I POMIARÓW FIZYCZNYCH oraz OPRACOWANIE ICH WYNIKÓW I. Obserwacja zjawisk i efektów fizycznych. II. Nauka obsługi wybranych przyrządów pomiarowych. III. Nauka podstaw planowania i opracowania wyników pomiarów, czyli: poprawnego wyznaczania wielkości fizycznych, pomiaru zależności fizycznych i ich opisu, poprawnej prezentacji wyników. Niniejszy wykład stanowi wstęp do trzeciego punktu
4 Pomiar bezpośredni pomiar, w którym konkretna wielkość fizyczna mierzona jest bezpośrednio przy pomocy określonego przyrządu Rodzaje pomiarów 1/2 Przykłady: pomiar długości linijką pomiar czasu stoperem
5 Pomiar pośredni Pomiar, w którym dana wielkość fizyczna mierzona jest pośrednio poprzez pomiar innych wielkości fizycznych Rodzaje pomiarów 2/2 Przykład: pomiar prędkości poprzez pomiar drogi (linijka) i czasu (stoper) v s t
6 Jak dokładne są nasze pomiary? Niepewności i błędy Żaden pomiar (nawet najstaranniejszy) nie jest doskonały, obarczony jest niepewnością pomiarową a może i błędem ma skończoną dokładność!!! Podając wynik pomiaru należy podać: wartość wielkości mierzonej, niepewność pomiarową i jednostkę!!! wszystkie trzy!!! Wynik pomiaru bez podania niepewności pomiarowej jest bezwartościowy.
7 Zapis wyników pomiarowych 1/2 Podajemy najwyżej dwie cyfry znaczące niepewności, a jeżeli zaokrąglenie do jednej cyfry nie zmieni wyznaczonej wartości więcej niż o 10% (lub 20%) to podaje się tylko jedną cyfrę Niepewności zaokrąglamy zawsze w górę 0.2 Wynik pomiaru obliczamy o jedno miejsce dziesiętne dalej niż miejsce dziesiętne niepewności, a następnie zaokrąglamy wg. normalnych reguł do tego samego miejsca dziesiętnego, do którego zaokrąglono niepewność pomiarową m = ( ± 0.012) g
8 Zapis wyników pomiarowych 2/2 Wyniki pomiarów i obliczeń najlepiej podawać w jednostkach, dla których wartość liczbowa zawarta jest przedziale od 0,01 do Można używać: przedrostków (m, m, M, G itd.) lub notacji potęgowej (2x10-6, 2x10-3, 2x10 6, 2x10 9 ) I = A ± A źle I = (31.21 ± 0.12) μa I = (31.21 ± 0.12) x 10-6 [A]
9 Błąd i niepewność pomiaru 1/2 Statystyczny model błędu pomiaru błąd pomiaru wartość zmierzona wartość rzeczywista # rozumiany jest jakościowo: pomyłka, błędny odczyt itp. lub jako # pojedyncza realizacja zmiennej losowej, nie jest przedmiotem rachunku niepewności pomiaru niepewność pomiaru parametr związany z rezultatem pomiaru wielkości mierzonej charakteryzuje rozrzut wyników, jaki można (w sposób uzasadniony) jej przypisać Międzynarodowa Norma
10 Błąd i niepewność pomiaru 2/2 Błąd pomiarowy (błąd gruby) wynika z błędu popełnionego w czasie pomiaru lub odczytu. Źródłem błędu może być eksperymentator (np. cm zamiast cal, nieumiejętność obsługi aparatury) lub przyrząd (np. awaria). Wyniki obarczone błędem grubym odrzucamy (powtarzamy pomiar). Błąd przybliżenia (np. przybliżony model opisujący badane zjawisko) Niepewność pomiaru Niepewność przypadkowa (niepewność typu A) powodowana przez wiele niezależnych przyczyn o porównywalnym wpływie na wynik lub sam charakter badanego procesu/zjawiska (np. rozpad promieniotwórczy) Niepewność systematyczna (niepewność typu B) powodowana przez skończoną dokładność przyrządów pomiarowych lub przez systematyczny błąd urządzenia mierzącego (np. źle wyskalowana miarka)
11 Ocena niepewności Ocena niepewności typu A typu B wynika z Analizy statystycznej serii pomiarów wykorzystuje metody inne niż analiza statystyczna Ocena niepewności typu B może być stosowana w każdej sytuacji. Ocena niepewności typu A wymaga sprawdzenia (przy pomocy oceny typu B), że seria pomiarowa nie jest obciążona znaczącą składową systematyczną. Przykład: Pomiar długości ołówka linijką Międzynarodowa Norma nie neguje tradycyjnego rozróżnienia na niepewność przypadkową i niepewność systematyczną.
12 Niepewności pomiarowe - przykład przedmiot, linijka A, linijka B wyniki pomiarów długości przedmiotu linijką A podziałka 1mm: 30, 31, 29, 32, 31, 28, 30, wyniki pomiarów długości przedmiotu linijką B podziałka 1mm: 33, 31, 34, 35, 32, 34, 33, Oba pomiary są obarczone niepewnością przypadkową obserwujemy rozrzut wyników wokół określonej wartości Serie pomiarów różnią się: jedna z linijek jest źle wyskalowana wprowadzając niepewność systematyczną Niepewności systematyczne mogą być trudne do wykrycia, interpretacji i eliminacji.
13 Niepewności przypadkowe pomiarów bezpośrednich 1/8 Pomiar okresu drgań wahadła Dokładny stoper (0.01s) Czas reakcji człowieka jest rzędu 0.2s
14 Niepewności przypadkowe pomiarów bezpośrednich 2/8 i-ty pomiar T i [s] Wyniki kolejnych pomiarów okresu Naszym zadaniem jest podanie wyniku i jego niepewności
15 Niepewności przypadkowe pomiarów bezpośrednich 3/8 Wynik pomiaru średnia arytmetyczna Wielkością najbardziej zbliżoną do wartości rzeczywistej (estymatorem wartości oczekiwanej) jest średnia arytmetyczna pomiarów:
16 Niepewności przypadkowe pomiarów bezpośrednich 4/8 Niepewność pojedynczego pomiaru Wielkością najlepiej opisującą niepewność pojedynczego pomiaru jest odchylenie standardowe pojedynczego pomiaru:
17 Niepewności przypadkowe pomiarów bezpośrednich 5/8 Niepewność wyniku niepewność średniej arytmetycznej Wielkością najlepiej opisującą niepewność wyniku jest odchylenie standardowe średniej arytmetycznej można zmniejszać zwiększając liczbę pomiarów n
18 Rozkład Gaussa Dla niepewności przypadkowych rozkład wielkości mierzonych wokół wartości prawdziwej dany jest rozkładem Gaussa ( x, S x ) ( xx ) / 2Sx ( x) e S x 2 Niepewności przypadkowe pomiarów bezpośrednich 6/8 Prawdziwa wartość mierzonej wielkości utożsamiana z wartością oczekiwaną W przedziale [x-s x,x+s x ] mieści się 68,3% wszystkich wyników W przedziale [x-3s x,x+3s x ] mieści się 99,8% wszystkich wyników UWAGA!!! Przy skończonej liczbie pomiarów parametry rozkładu można tylko estymować (przybliżać)
19 Niepewności przypadkowe pomiarów bezpośrednich 7/8 Rozkład Gaussa cd. Analiza statystyczna niepewności przypadkowych dużej serii pomiarowej
20 Niepewności przypadkowe pomiarów bezpośrednich 8/8 Niepewność statystyczna małych serii pomiarów Dla małej liczby pomiarów: daje zaniżoną wartość niepewności Współczynnik Studenta Liczba pomiarów Poziom ufności n a a0.95 a Poziom ufności prawdopodobieństwo z jakim wyznaczony przedział zawiera wartość rzeczywistą mierzonej wielkości.
21 Zapis niepewności 1/2 Zapis niepewności (zaokrąglanie) Podaje się nie więcej niż dwie cyfry znaczące estymatora niepewności. Liczymy co najmniej trzy i zaokrąglamy zawsze do góry. Wynik pomiaru obliczamy o co najmniej jedno miejsce dziesiętne dalej niż miejsce dziesiętne, na którym zaokrąglono niepewność, a następnie zaokrąglamy wg. normalnych reguł do tego samego miejsca dziesiętnego, do którego zaokrąglono niepewność notatki sprawozdanie źle
22 Zapis niepewności 2/2 Zapis niepewności (w prezentacji wyników) Z użyciem odchylenia standardowego (poziom ufności 68%) albo Z użyciem symbolu ± Uwaga! Symbol ± (najczęściej używany w medycynie, przemyśle, instrukcjach) zarezerwowany jest dla niepewności rozszerzonej. Z grubsza: dla poziomu ufności co najmniej 95%. Używając go podajemy dwa lub trzy razy szerszy przedział niepewności (lub uwzględniamy odpowiedni współczynnik Studenta).
23 Średnia ważona Dwa pomiary tej samej wielkości: oraz
24 Niepewność w pomiarach pośrednich Propagacja niepewności pomiarowych 1/5 v s t
25 x n x x f z,... 1, 2 x n x x f z,... 1, n x n x x z S x f S x f S x f S W pomiarach pośrednich znamy związki funkcyjne pomiędzy poszukiwaną wielkością a wielkościami mierzonymi Wartość oczekiwana tej wielkości jest funkcją wartości oczekiwanych poszczególnych zmiennych Odchylenie standardowe szukanej wielkości jest funkcją odchyleń wielkości mierzonych t l v np. t l v np t l v S t l S t S np. x n n x x z S x f S x f S x f S W wielu przypadkach można stosować przybliżony wzór (metoda różniczki zupełnej) t l v S t l S t S 2 1 np. Propagacja niepewności pomiarowych 2/5
26 Propagacja niepewności pomiarowych 3/5 Niepewność w pomiarach pośrednich I. Dla sumy i różnicy Niepewności systematyczne Niepewności maksymalne Niepewności przypadkowe Pomiary pośrednie (opisane funkcją wielu zmiennych niezależnych)
27 Niepewność w pomiarach pośrednich II. Dla iloczynu i ilorazu Propagacja niepewności pomiarowych 4/5 Niepewności systematyczne Niepewności maksymalne Niepewności przypadkowe Pomiary pośrednie (opisane funkcją wielu zmiennych niezależnych)
28 Propagacja niepewności pomiarowych 5/5
29 Graficzne przedstawianie wyników Dlaczego wyniki warto przedstawiać na wykresach? Na wykresie łatwiej wychwycić empiryczne relacje między badanymi wielkościami. Graficzne przedstawienie wyników niejednokrotnie pozwala na wyznaczenie szukanych wielkości. s vt
30 czy ten wykres jest dobry? Jak zrobić dobry wykres? 1/7
31 czy ten wykres jest już dobry? Jak zrobić dobry wykres? 2/7
32 czy ten wykres jest już dobry? Jak zrobić dobry wykres? 3/7
33 czy ten wykres jest już dobry? Jak zrobić dobry wykres? 4/7
34 Jak zrobić dobry wykres? 5/7 czy ten wykres jest już dobry?
35 Jak zrobić dobry wykres? 6/7 ten wykres jest już dobry
36 Jak zrobić dobry wykres? 7/7 źle dobrze
37 Regresja liniowa Regresja liniowa 1/4 metoda pozwalająca na zbadanie związku pomiędzy mierzonymi wielkościami i wyznaczenie parametrów dopasowania wraz z niepewnościami s vt
38 Regresja liniowa 2/4 obecnie zwykle rozumiana jako metoda najmniejszych kwadratów pomiary model np.: [a,b parametry] Metoda minimalizacji odchyleń: Najprostszy model: zależność liniowa bez wag
39 Regresja liniowa 3/4 Wartości oczekiwane parametrów i ich niepewności Współczynnik korelacji [im bliższy 1 tym lepiej] Suma kwadratów dla dobrego dopasowania n-liczba danych, m-liczba parametrów] Dla zależności liniowej przepisy na a i b są proste!
40 To też jest regresja liniowa (parametry modelu są w pierwszej potędze) Regresja liniowa 4/4 Model: wraz z niepewnościami
41 PiotrBieniek.pl I to już koniec na dzisiaj Za zgodą Autorów wykorzystane zostały elementy prezentacji prof. Marka Stankiewicza i dr. hab. Jacka Zejmy
Statystyczne Metody Opracowania Wyników Pomiarów
Statystyczne Metody Opracowania Wyników Pomiarów dla studentów ZMIN Teresa Jaworska-Gołąb 2017/18 Co czytać [1] I Pracownia fizyczna, Andrzej Magiera red., Oficyna Wydawnicza IMPULS, Kraków 2006; http://www.1pf.if.uj.edu.pl/materialy/zalecana-literatura
Statystyczne Metody Opracowania Wyników Pomiarów
Statystyczne Metody Opracowania Wyników Pomiarów dla studentów ZMIN Teresa Jaworska-Gołąb 2018/19 Co czytać [1] I Pracownia fizyczna, Andrzej Magiera red., Oficyna Wydawnicza IMPULS, Kraków 2006; http://www.1pf.if.uj.edu.pl/materialy/zalecana-literatura
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka Stankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka tankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i efektów
Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych Dr inż. Marcin Zieliński I Pracownia Fizyczna dla Biotechnologii, wtorek 8:00-10:45 Konsultacje Zakład Fizyki Jądrowej
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Chemii 2007 Paweł Korecki 2013 Andrzej Kapanowski Po co jest Pracownia Fizyczna? 1. Obserwacja zjawisk i
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Chemii (2018) Autor prezentacji :dr hab. Paweł Korecki dr Szymon Godlewski e-mail: szymon.godlewski@uj.edu.pl
Podstawy opracowania wyników pomiarów
Podstawy opracowania wyników pomiarów I Pracownia Fizyczna Chemia C 02. 03. 2017 na podstawie wykładu dr hab. Pawła Koreckiego Katarzyna Dziedzic-Kocurek Instytut Fizyki UJ, Zakład Fizyki Medycznej k.dziedzic-kocurek@uj.edu.pl
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Dzięki uprzejmości: Paweł Korecki Instytut Fizyki UJ pok. 256 e-mail: pawel.korecki@uj.edu.pl http://users.uj.edu.pl/~korecki
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH Dr Benedykt R. Jany I Pracownia Fizyczna Ochrona Środowiska grupa F1 Rodzaje Pomiarów Pomiar bezpośredni - bezpośrednio
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Biologii A i B dr hab. Paweł Korecki e-mail: pawel.korecki@uj.edu.pl http://www.if.uj.edu.pl/pl/edukacja/pracownia_i/
Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński
Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia
LABORATORIUM Z FIZYKI
LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły
Zmierzyłem i co dalej? O opracowaniu pomiarów i analizie niepewności słów kilka
Zmierzyłem i co dalej? O opracowaniu pomiarów i analizie niepewności słów kilka Jakub S. Prauzner-Bechcicki Grupa: Chemia A Kraków, dn. 7 marca 2018 r. Plan wykładu Rozważania wstępne Prezentacja wyników
Niepewności pomiarów
Niepewności pomiarów Międzynarodowa Organizacja Normalizacyjna (ISO) w roku 1995 opublikowała normy dotyczące terminologii i sposobu określania niepewności pomiarów [1]. W roku 1999 normy zostały opublikowane
Fizyka (Biotechnologia)
Fizyka (Biotechnologia) Wykład I Marek Kasprowicz dr Marek Jan Kasprowicz pokój 309 marek.kasprowicz@ur.krakow.pl www.ar.krakow.pl/~mkasprowicz Marek Jan Kasprowicz Fizyka 013 r. Literatura D. Halliday,
Temat: SZACOWANIE NIEPEWNOŚCI POMIAROWYCH
Temat: SZCOWNIE NIEPEWNOŚCI POMIROWYCH - Jak oszacować niepewność pomiarów bezpośrednich? - Jak oszacować niepewność pomiarów pośrednich? - Jak oszacować niepewność przeciętną i standardową? - Jak zapisywać
Dokładność pomiaru: Ogólne informacje o błędach pomiaru
Dokładność pomiaru: Rozumny człowiek nie dąży do osiągnięcia w określonej dziedzinie większej dokładności niż ta, którą dopuszcza istota przedmiotu jego badań. (Arystoteles) Nie można wykonać bezbłędnego
KARTA INFORMACYJNA PRZEDMIOTU
Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU
Laboratorium Fizyczne Inżynieria materiałowa. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Laboratorium Fizyczne Inżynieria materiałowa Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego błąd pomiaru = x i x 0 Błędy pomiaru dzielimy na: Błędy
Niepewność pomiaru. Wynik pomiaru X jest znany z możliwa do określenia niepewnością. jest bledem bezwzględnym pomiaru
iepewność pomiaru dokładność pomiaru Wynik pomiaru X jest znany z możliwa do określenia niepewnością X p X X X X X jest bledem bezwzględnym pomiaru [ X, X X ] p Przedział p p nazywany jest przedziałem
WPROWADZENIE DO TEORII BŁĘDÓW I NIEPEWNOŚCI POMIARU
Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego WPROWADZENIE DO TEORII BŁĘDÓW I NIEPEWNOŚCI POMIARU 1. Błąd a niepewność pomiaru Pojęcia błędu i niepewności
Projektowanie systemów pomiarowych. 02 Dokładność pomiarów
Projektowanie systemów pomiarowych 02 Dokładność pomiarów 1 www.technidyneblog.com 2 Jak dokładnie wykonaliśmy pomiar? Czy duża / wysoka dokładność jest zawsze konieczna? www.sparkfun.com 3 Błąd pomiaru.
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura
ĆWICZENIE 13 TEORIA BŁĘDÓW POMIAROWYCH
ĆWICZENIE 13 TEORIA BŁĘDÓW POMIAROWYCH Pomiary (definicja, skale pomiarowe, pomiary proste, złożone, zliczenia). Błędy ( definicja, rodzaje błędów, błąd maksymalny i przypadkowy,). Rachunek błędów Sposoby
Określanie niepewności pomiaru
Określanie niepewności pomiaru (Materiały do ćwiczeń laboratoryjnych z przedmiotu Materiałoznawstwo na wydziale Górnictwa i Geoinżynierii) 1. Wprowadzenie Pomiar jest to zbiór czynności mających na celu
SMOP - wykład. Rozkład normalny zasady przenoszenia błędów. Ewa Pawelec
SMOP - wykład Rozkład normalny zasady przenoszenia błędów Ewa Pawelec 1 iepewność dla rozkładu norm. Zamiast dodawania całych zakresów uwzględniamy prawdopodobieństwo trafienia dwóch wartości: P x 1, x
Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.
Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Wprowadzenie do rachunku niepewności pomiarowej. Jacek Pawlyta
Wprowadzenie do rachunku niepewności pomiarowej Jacek Pawlyta Fizyka Teorie Obserwacje Doświadczenia Fizyka Teorie Przykłady Obserwacje Przykłady Doświadczenia Przykłady Fizyka Potwierdzanie bądź obalanie
Analiza niepewności pomiarowych i opracowanie wyników. Chemia C
Analiza niepewności pomiarowych i opracowanie wyników dr Anna Majcher 5 marca 2015 Chemia C I Pracownia Fizyczna, WFAiIS UJ Po co nam niepewności pomiarowe? Pytania: Jak daleko jest stąd do najbliższego
Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm.
2 Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm. Nr pomiaru T[s] 1 2,21 2 2,23 3 2,19 4 2,22 5 2,25 6 2,19 7 2,23 8 2,24 9 2,18 10 2,16 Wyniki pomiarów okresu drgań dla wahadła
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie
Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów.
Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów.. KEITHLEY. Practical Solutions for Accurate. Test & Measurement. Training materials, www.keithley.com;. Janusz Piotrowski: Procedury
Laboratorium Metrologii
Laboratorium Metrologii Ćwiczenie nr 1 Metody określania niepewności pomiaru. I. Zagadnienia do przygotowania na kartkówkę: 1. Podstawowe założenia teorii niepewności. Wyjaśnić znaczenie pojęć randomizacja
ANALIZA DOKŁADNOŚCI WYNIKU POMIARÓW
ĆWICZENIE 3 ANALIZA DOKŁADNOŚCI WYNIKU POMIARÓW 3.. Cel ćwiczenia Celem ćwiczenia jest nauczenie studentów określania błędów granicznych oraz niepewności całkowitej w pomiarach bezpośrednich i pośrednich
Dr inż. Paweł Fotowicz. Procedura obliczania niepewności pomiaru
Dr inż. Paweł Fotowicz Procedura obliczania niepewności pomiaru Przewodnik GUM WWWWWWWWWWWWWWW WYRAŻANIE NIEPEWNOŚCI POMIARU PRZEWODNIK BIPM IEC IFCC ISO IUPAC IUPAP OIML Międzynarodowe Biuro Miar Międzynarodowa
Rozkład normalny, niepewność standardowa typu A
Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy
Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia
Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia III Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia Sonda poboru ciśnienia Sonda poboru ciśnienia (Rys. ) jest to urządzenie
Pracownia Astronomiczna. Zapisywanie wyników pomiarów i niepewności Cyfry znaczące i zaokrąglanie Przenoszenie błędu
Pracownia Astronomiczna Zapisywanie wyników pomiarów i niepewności Cyfry znaczące i zaokrąglanie Przenoszenie błędu Każdy pomiar obarczony jest błędami Przyczyny ograniczeo w pomiarach: Ograniczenia instrumentalne
Analiza i monitoring środowiska
Analiza i monitoring środowiska CHC 017003L (opracował W. Zierkiewicz) Ćwiczenie 1: Analiza statystyczna wyników pomiarów. 1. WSTĘP Otrzymany w wyniku przeprowadzonej analizy ilościowej wynik pomiaru zawartości
Ćwiczenie 1. Metody określania niepewności pomiaru
Grzegorz Wielgoszewski Data wykonania ćwiczenia: Nr albumu 134651 7 października 01 Proszę podać obie daty. Grupa SO 7:30 Data sporządzenia sprawozdania: Stanowisko 13 3 listopada 01 Proszę pamiętać o
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW
ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 17 III 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 www: http://hirg.if.pw.edu.pl/~gos/students/kadd Politechnika Warszawska Wydział
Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki?
1 Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki? Sprawozdania należny oddać na kolejnych zajęciach laboratoryjnych. Każde opóźnienie powoduje obniżenie oceny za sprawozdanie o 0,
Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi
Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska D syst D śr m 1 3 5 2 4 6 śr j D 1
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego
Ćwiczenie M6 Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego M6.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przyspieszenia ziemskiego poprzez analizę ruchu wahadła prostego. M6..
Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego
2019/02/14 13:21 1/5 Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego 1. Cel ćwiczenia Wyznaczenie przyspieszenia
Charakterystyka mierników do badania oświetlenia Obiektywne badania warunków oświetlenia opierają się na wynikach pomiarów parametrów świetlnych. Podobnie jak każdy pomiar, również te pomiary, obarczone
Zajęcia wprowadzające W-1 termin I temat: Sposób zapisu wyników pomiarów
wielkość mierzona wartość wielkości jednostka miary pomiar wzorce miary wynik pomiaru niedokładność pomiaru Zajęcia wprowadzające W-1 termin I temat: Sposób zapisu wyników pomiarów 1. Pojęcia podstawowe
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)
Niepewność pomiaru w fizyce.
Niepewność pomiaru w fizyce. 1. Niepewność pomiaru - wprowadzenie Każda badana doświadczalnie zależność fizyczna jest zależnością wyidealizowaną pomiędzy pewną liczbą wielkości fizycznych, to znaczy nie
A. Metody opracowania i analizy wyników pomiarów K.Kozłowski i R Zieliński I Laboratorium z Fizyki część 1 Wydawnictwo PG.
A. Metody opracowania i analizy wyników pomiarów K.Kozłowski i R Zieliński I Laboratorium z Fizyki część 1 Wydawnictwo PG. B. Metodyka wykonywania pomiarów oraz szacowanie niepewności pomiaru. Celem każdego
Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia
Doświadczenie: Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia Cele doświadczenia Celem doświadczenia jest zbadanie zależności drogi przebytej w ruchu przyspieszonym od czasu dla kuli bilardowej
Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją
Podstawy niepewności pomiarowych Ćwiczenia
Podstawy niepewności pomiarowych Ćwiczenia 1. Zaokrąglij podane wartości pomiarów i ich niepewności. = (334,567 18,067) m/s = (153 450 000 1 034 000) km = (0,0004278 0,0000556) A = (2,0555 0,2014) s =
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Analiza niepewności pomiarów
Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej
Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: obliczenia na liczbach przybliżonych dr inż. Paweł Zalewski Akademia Morska w Szczecinie Cyfry znaczące reguły Kryłowa-Bradisa: Przy korzystaniu z przyrządów z podziałką przyjęto zasadę, że
Ćw. 2: Analiza błędów i niepewności pomiarowych
Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (200/20) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 2: Analiza błędów i niepewności pomiarowych
Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich
Podstawy Metrologii i Technik Eksperymentu Laboratorium Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Instrukcja do ćwiczenia nr 4 Zakład Miernictwa
przybliżeniema Definicja
Podstawowe definicje Definicje i podstawowe pojęcia Opracowanie danych doświadczalnych Często zaokraglamy pewne wartości np. kupujac telewizor za999,99 zł. dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl
Agrofi k zy a Wyk Wy ł k ad I Marek Kasprowicz
Agrofizyka Wykład I Marek Kasprowicz Agrofizyka nauka z pogranicza fizyki i agronomii, której obiektem badawczym jest ekosystem i obiekty biologiczne kształtowane poprzez działalność człowieka, badane
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
Rozkład Gaussa i test χ2
Rozkład Gaussa jest scharakteryzowany dwoma parametramiwartością oczekiwaną rozkładu μ oraz dyspersją σ: METODA 2 (dokładna) polega na zmianie zmiennych i na obliczeniu pk jako różnicy całek ze standaryzowanego
O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,
Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyn i współczynnika sztywności zastępczej
Doświadczalne wyznaczanie (sprężystości) sprężyn i zastępczej Statyczna metoda wyznaczania. Wprowadzenie Wartość użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić
Rok akademicki: 2012/2013 Kod: JFM s Punkty ECTS: 3. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Statystyka inżynierska Rok akademicki: 2012/2013 Kod: JFM-1-210-s Punkty ECTS: 3 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Medyczna Specjalność: Poziom studiów: Studia I stopnia
Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.
Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru
Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.
Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru
Analiza korelacyjna i regresyjna
Podstawy Metrologii i Technik Eksperymentu Laboratorium Analiza korelacyjna i regresyjna Instrukcja do ćwiczenia nr 5 Zakład Miernictwa i Ochrony Atmosfery Wrocław, kwiecień 2014 Podstawy Metrologii i
Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych.
Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie ma następujące części: 1 Pomiar rezystancji i sprawdzanie prawa Ohma, metoda najmniejszych kwadratów. 2 Pomiar średnicy pręta.
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów
STATYSTYKA MATEMATYCZNA WYKŁAD 4 Testowanie hipotez Estymacja parametrów WSTĘP 1. Testowanie hipotez Błędy związane z testowaniem hipotez Etapy testowana hipotez Testowanie wielokrotne 2. Estymacja parametrów
INFORMATYKA W CHEMII Dr Piotr Szczepański
INFORMATYKA W CHEMII Dr Piotr Szczepański Katedra Chemii Fizycznej i Fizykochemii Polimerów WPROWADZENIE DO STATYSTYCZNEJ OCENY WYNIKÓW DOŚWIADCZEŃ 1. BŁĄD I STATYSTYKA błąd systematyczny, błąd przypadkowy,
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Precyzja a dokładność
Precyzja a dokładność Precyzja pomiaru jest miarą rzetelności przeprowadzenia doświadczenia, lub mówi nam jak powtarzalny jest ten eksperyment. Dokładność pomiaru jest miarą tego jak wyniki doświadczalne
Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do rachunku błędów pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami:
Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła
Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
BŁĘDY W POMIARACH BEZPOŚREDNICH
Podstawy Metrologii i Technik Eksperymentu Laboratorium BŁĘDY W POMIARACH BEZPOŚREDNICH Instrukcja do ćwiczenia nr 2 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy Metrologii
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 3 Wyznaczanie modułu sztywności metodą dynamiczną Kalisz, luty 2005 r. Opracował: Ryszard Maciejewski Doświadczenie
Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych.
msg O 7 - - Temat: Badanie soczewek, wyznaczanie odległości ogniskowej. Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów
Niepewność pomiaru masy w praktyce
Niepewność pomiaru masy w praktyce RADWAG Wagi Elektroniczne Z wszystkimi pomiarami nierozłącznie jest związana Niepewność jest nierozerwalnie związana z wynimiarów niepewność ich wyników. Podając wyniki
Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk
Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Zastosowanie pojęć
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
Szkoła z przyszłością. Zastosowanie pojęć analizy statystycznej do opracowania pomiarów promieniowania jonizującego
Szkoła z przyszłością szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Narodowe Centrum Badań Jądrowych, ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE
Pobieranie prób i rozkład z próby
Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.
Dr hab. Anna M. Nowicka
Dr hab. Anna M. Nowicka Nauka stosowana mająca za zadanie: Odkrywanie oraz formułowanie praw i kryteriów Rozwój metod analitycznych umożliwiających ustalenie określoną czułością, precyzją i dokładnością
DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1
DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 I. ZAGADNIENIA TEORETYCZNE Niepewności pomiaru standardowa niepewność wyniku pomiaru wielkości mierzonej bezpośrednio i złożona niepewność standardowa. Przedstawianie wyników
Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny
Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) Wprowadzenie Wartość współczynnika sztywności użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić pionowo
02. WYZNACZANIE WARTOŚCI PRZYSPIESZENIA W RUCHU JEDNOSTAJNIE PRZYSPIESZONYM ORAZ PRZYSPIESZENIA ZIEMSKIEGO Z WYKORZYSTANIEM RÓWNI POCHYŁEJ
TABELA INFORMACYJNA Imię i nazwisko autora opracowania wyników: Klasa: Ocena: Numery w dzienniku Imiona i nazwiska pozostałych członków grupy: Data: PRZYGOTOWANIE I UMIEJĘTNOŚCI WEJŚCIOWE: Należy posiadać
5. WNIOSKOWANIE PSYCHOMETRYCZNE
5. WNIOSKOWANIE PSYCHOMETRYCZNE Model klasyczny Gulliksena Wynik otrzymany i prawdziwy Błąd pomiaru Rzetelność pomiaru testem Standardowy błąd pomiaru Błąd estymacji wyniku prawdziwego Teoria Odpowiadania
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego