JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE

Wielkość: px
Rozpocząć pokaz od strony:

Download "JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE"

Transkrypt

1 1 JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE Precyzja Dr hab. inż. Piotr KONIECZKA Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska ul. G. Narutowicza 11/ GDAŃSK

2 Wielkość sygnałów dla takiej samej zawartości analitu precyzja (powtarzalność, precyzja pośrednia, odtwarzalność).

3 Definicje 3 Precyzja (ang. precision) zgodność pomiędzy niezależnymi wynikami uzyskanymi w trakcie analizy danej próbki z zastosowaniem danej procedury analitycznej.

4 Definicje 4 Powtarzalność (ang. repeatability) precyzja wyników uzyskanych w tych samych warunkach pomiarowych (dane laboratorium, analityk, instrument pomiarowy, odczynniki).

5 Definicje 5 Precyzja pośrednia (ang. intermediate precision) długoterminowe odchylenie procesu pomiarowego, do którego wyznaczenia wykorzystuje się odchylenie standardowe serii pomiarów uzyskanych w danym laboratorium w kilkutygodniowym okresie czasu. Precyzja pośrednia jest pojęciem szerszym od powtarzalności.

6 Definicje 6 Odtwarzalność (ang. reproducibility) precyzja wyników uzyskanych w różnych laboratoriach z zastosowaniem danej procedury pomiarowej.

7 7 Powtarzalność - wyznaczana na podstawie wartości obliczonego odchylenia standardowego serii pomiarów przeprowadzonych: w danym laboratorium; przez danego analityka; z wykorzystaniem danego urządzenia pomiarowego; w krótkim okresie czasu.

8 8 Precyzja pośrednia jest pojęciem szerszym od powtarzalności, gdyż na jej wartość wpływ mają: czynniki osobowe różni analitycy wykonujący oznaczenia jak i niestabilność pracy danego analityka w ciągu całego okresu czasu; czynniki aparaturowe ze względu na to, że pomiary mogą być przeprowadzone z wykorzystaniem: różnych instrumentów z danego laboratorium; roztworów wzorcowych i odczynników pochodzących od różnych producentów, lub też różnych szarż produkcyjnych; różnych akcesoriów np. różnych kolumn GC, o tej samej charakterystyce, lecz pochodzących od różnych producentów, bądź też z różnych szarż produkcyjnych;

9 Warunki prowadzenia pomiarów analitycznych jakie muszą być zachowane w trakcie wyznaczania powtarzalności, precyzji pośredniej i odtwarzalności 9 Warunek Powtarzalność Precyzja pośrednia Odtwarzalność Aparatura S Z Z Partia akcesoriów S Z Z Analityk S Z Z Skład matrycy Z Z Z Stężenie Z Z Z Partia odczynników S Z Z Warunki laboratoryjne (temperatura wilgotność) S Z Z Laboratorium S S Z S konieczność zachowania stałości parametru Z możliwość zmiany danego parametru

10 Porównanie dotychczasowych i nowo proponowanych definicji parametrów dotyczących precyzji 10 Podejście klasyczne Precyzja miara zgodności między wartościami eksperymentalnymi otrzymanymi w trakcie badań wykonanych w określonych warunkach. Powtarzalność - precyzja procedury w przypadku jednego wykonawcy pomiarów pracującego w danym laboratorium, otrzymującego kolejne wyniki podczas badania w krótkich odstępach czasu identycznego produktu z wykorzystaniem tej samej procedury i za pomocą tej samej aparatury. Podejście zalecane przez VIM Precyzja stopień zgodności między niezależnymi wynikami uzyskanymi w trakcie analizy danej próbki z zastosowaniem danej procedury analitycznej. Powtarzalność precyzja wyników uzyskanych w tych samych warunkach pomiarowych (dane laboratorium, analityk, instrument pomiarowy, odczynniki). VIM - International Vocabulary of Basic and General Terms in Metrology

11 Porównanie dotychczasowych i nowo proponowanych definicji parametrów precyzji Podejście klasyczne Odtwarzalność precyzja metody, będąca miarą zgodności wyników osiąganych w przypadku różnych wykonawców pracujących w różnych laboratoriach lub w tym samym laboratorium w różnych okresach, przy czym każdy z nich otrzymuje indywidualne wyniki podczas badania identycznego produktu z wykorzystaniem tej samej metody. Podejście zalecane przez VIM Odtwarzalność precyzja wyników uzyskanych w różnych laboratoriach z zastosowaniem danej procedury pomiarowej. Precyzja pośrednia długoterminowe odchylenie procesu pomiarowego, do którego wyznaczenia wykorzystuje się odchylenie standardowe serii pomiarów uzyskanych w danym laboratorium w kilkutygodniowym okresie czasu. Precyzja pośrednia jest pojęciem szerszym od powtarzalności. 11 VIM - International Vocabulary of Basic and General Terms in Metrology

12 1 Wg ICH wartość odchylenia standardowego można obliczyć na podstawie jednego z poniższych sposobów: przeprowadzeniu co najmniej 9 niezależnych oznaczeń w całym zakresie pomiarowym (np.: 3 niezależne oznaczenia na 3 poziomach stężeń); przeprowadzeniu 6 niezależnych oznaczeń analitu w próbkach wzorcowych na poziomie stężenia odpowiadającemu stężeniu w próbce rzeczywistej; na podstawie wyników 6 niezależnych oznaczeń dla analitów występujących w 3 różnych matrycach i na lub 3 poziomach stężeń; Wg zaleceń EURACHEM wskazane jest przeprowadzenie 10 niezależnych oznaczeń i na tej podstawie obliczenie odchylenia standardowego.

13 13 s 1 s μ 1 μ np.: wykonanie daną procedurą pomiarową (stałe odchylenie standardowe) analiz dla próbek o różnej zawartości analitu; s s 1 μ 1 = μ np.: wykonanie analiz dla tej samej próbki (taka sama wartość oczekiwana) dwiema niezależnymi procedurami (różne wartości odchylenia standardowego); GBC Rodzinnie, Zakopane,

14 Wariancja Wariancja jest to średnia arytmetyczna kwadratów odchyleń poszczególnych wartości cechy od średniej arytmetycznej zbiorowości. 14 s = 1 n 1 n i 1 ( ) x i x śr

15 Odchylenie standardowe Definiowane jako miara rozproszenia uzyskanych poszczególnych wartości oznaczeń wokół wartości średniej: 15 s = n i = 1 ( x x ) i n 1 śr gdzie: x i wartość pojedynczego wyniku oznaczenia; x śr średnia arytmetyczna z uzyskanych wyników; n liczba uzyskanych wyników;

16 16 Odchylenie standardowe jest równe zeru wtedy i tylko wtedy, gdy wszystkie wyniki są identyczne. W każdym innym przypadku wielkość ta jest dodatnia. Zatem im większe rozproszenie wyników, tym wartość s jest większa. W tym miejscu należy zwrócić uwagę na jeden podstawowy fakt. Rozrzut wyników związany jest z każdym postępowaniem analitycznym. Możliwe jest natomiast, że zjawiska tego nie udało się zaobserwować ze względu na np. zbyt niską rozdzielczość stosowanego przyrządu kontrolno-pomiarowego.

17 17 Serie wyników pomiarów uzyskane z wykorzystaniem przyrządów kontrolno-pomiarowych o różnej rozdzielczości. Uzyskane wyniki Wartość odchylenia standardowego Przyrząd 1 Przyrząd Przyrząd ,8 16, ,1 17, ,9 16, ,4 17, ,3 17, , 17, ,0 16,96 0 0, 0,3

18 18 Właściwości odchylenia standardowego jeżeli do każdej wartości wyniku pomiaru dodamy (lub od niej odejmiemy) stałą wartość to wartość odchylenia standardowego nie zmieni się, jeżeli każdą wartość wyniku pomiaru pomnożymy lub podzielimy przez dowolną stałą to wartość odchylenia standardowego zostanie także pomnożona lub podzielona przez tę stałą, odchylenie standardowe jest zawsze liczbą mianowaną, przy czym miano jego jest wyrażone w takich samych jednostkach jak miano wartości wyników w próbce,

19 Odchylenie standardowe: 19 a. dla znanej wartości rzeczywistej µ x s n i = 1 = ( x μ ) i n x b. dla nieznanej wartości rzeczywistej (oszacowanie x śr ) s = n i = 1 ( x x ) i n 1 śr

20 0 c. względne odchylenie standardowe ( s ) RSD = R s x śr d. odchylenie standardowe średniej arytmetycznej s= s n

21 1 e. odchylenie standardowe metody (ogólne) s g = 1 n k k i = 1 s i ( n 1) i gdzie: n - ogólna liczba oznaczeń k - liczba serii dla równolicznych serii wzór upraszcza się do postaci: s 1 k = g s i k i = 1

22 Współczynnik zmienności Współczynnik zmienności (CV) powstaje przez pomnożenie wartości RSD przez 100%: CV 100% = RSD Współczynnik zmienności - jest ilorazem bezwzględnej miary zmienności cechy i średniej wartości tej cechy, jest wielkością niemianowaną, najczęściej podawaną w procentach. Współczynnik zmienności stosuje się w porównaniach zróżnicowania: kilku zbiorowości pod względem tej samej cechy, tej samej zbiorowości pod względem kilku różnych cech.

23 3

24 4 Tabela 8 Współczynniki zmienności (CV) dla metod ilościowych dla różnych zakresów ułamków masy pierwiastków Ułamek masy CV (%) 10 μg/kg do 100 μg/kg 0 > 100 μg/kg do μg/kg μg/kg 10

25 5 Odchylenie standardowe Liczba pomiarów

26 6 Odchylenie standardowe Liczba pomiarów

27 7 Odchylenie standardowe koszt Liczba pomiarów

28 8 Odchylenie standardowe koszt czas Liczba pomiarów

29 9 Odchylenie standardowe koszt czas n opt Liczba pomiarów

30 30 Ocena (porównanie) uzyskanej(ych) wartości odchylenia standardowego 1. Ocena na podstawie obliczonej wartości RSD (bądź CV). Z zastosowaniem odpowiedniego testu statystycznego a. w celu sprawdzenia istotności różnicy między odchyleniem standardowym badanej populacji a wartością zadaną stosujemy test χ. b. w celu porównania precyzji dwóch niezależnych serii pomiarowych uzyskanych w trakcie analizy próbek o zawartości analitu na takim samym poziomie, stosujemy test F-Snedecora

31 31 c. do porównania precyzji dwóch zależnych serii pomiarowych, stosujemy test Morgana d. do porównywania precyzji dla równolicznych populacji (ilość wyników uzyskanych porównywanymi procedurami) stosujemy test F max Hartleya e. w celu porównywania precyzji (kilka metod, serie nie koniecznie równoliczne) - test Bartletta

32 test χ Sprawdzamy hipotezę zerową, że odchylenie standardowe s populacji badanej nie różni się w sposób statystycznie istotny od wartości zadanej s o. stosowalność testu tylko w przypadku rozkładu normalnego! Sposób postępowania: 3 obliczyć wartość wyrażenia: χ = n s s o porównać wartość obliczoną z wartością krytyczną χ (z tablic rozkładu χ ) kr

33 test χ 33 Opracowywano metodę oznaczania zawartości jonów Ca + w wodzie z wykorzystaniem techniki potencjometrycznej z zastosowaniem elektrody jonoselektywnej. Sprawdzić czy odchylenie standardowe dla opracowywanej metody, różni się w sposób statystycznie istotny od wartości odchylenia standardowego dla metody odniesienia - ASA, dla której s o = 0,067 mg/dm 3.

34 test χ 34 Wykonano 5 oznaczeń uzyskując następujące wyniki w mg/dm 3 : Lp. wynik Lp. wynik 1 8, ,77 8, ,88 3 8, ,75 4 8, ,68 5 8, ,71 6 8, ,73 7 8,65 0 8,74 8 8,7 1 8,80 9 8,88 8, ,60 3 8, ,63 4 8,7 1 8,7 5 8, ,75 χ = n s s o Obliczone parametry: s = 0,074 mg/dm 3 χ = 30,

35 test χ Test χ wartości krytyczne 35 α 0,05 0,01 f 1 3,84 6,64 5,99 9,1 3 7,81 11,34 4 9,49 13,8 5 11,07 15,09 6 1,59 16, ,07 18, ,51 0, ,9 1, ,31 3, ,68 4,7 1 1,03 6, 13,36 7, ,68 9, ,00 30, ,30 3, ,59 33, ,87 34, ,14 36, ,41 37,57 1 3,67 38,93 33,9 40,9 3 35,17 41, ,41 4, ,65 44,31 z tablicy rozkładu χ : χ (α =0,05; f =n -1=4) = kr 36,41 χ = 30, ponieważ χ <χ nie ma podstaw do kr odrzucenia hipotezy o równości wartości odchylenia standardowego

36 test F-Snedecora 36 Sposób postępowania: obliczyć wartości odchyleń standardowych dla serii wyników uzyskanych obydwiema procedurami (s 1 i s ), obliczyć wartość parametru testu F-Snedecora wg wzoru: F = 1 n1 1 n n n 1 s s 1 F > 1 zawsze!!!

37 test F-Snedecora 37 z tabeli rozkładu testu F-Snedecora wyszukać wartość parametru F kr dla przyjętego poziomu istotności - α (najczęściej α = 0,05) oraz wyliczonych stopni swobody f 1 i f (gdzie f 1 =n 1-1 i f =n -1 a n 1 i n to ilość wyników uzyskanych z zastosowaniem obydwu metod); porównać wartość F z wartością F kr ;

38 test F-Snedecora 38 Oznaczano zawartość HCl dwiema metodami: kulometryczną i konduktometryczną. Sprawdzić, czy obliczone wartości odchyleń standardowych dla uzyskanych tymi metodami serii pomiarowych różnią się między sobą w sposób statystycznie istotny. Uzyskane wyniki [mol/dm 3 ]: kulometria konduktometria 0,0095 0,0103 0,0098 0,0110 0,0097 0,011 0,0093 0,0108 0,0097 0,0106 0,0096 0,0104 0,0099 0,0109

39 test F-Snedecora 39 Obliczone wartości: kulometria konduktometria n = 7 n =7 s = 0,0000 mol/dm 3 s = 0,00033 mol/dm 3 s s 1 F = s s 1 =,69

40 test F-Snedecora Test F-Snedecora wartości krytyczne f 1 f 19,00 99,01 19,16 99,17 19,5 99,5 19,30 99,30 19,33 99,33 19,36 99,34 19,37 99,36 19,38 99,38 19,39 99,40 19,40 99,41 3 9,55 30,81 9,8 9,46 9,1 8,71 9,01 8,4 8,94 7,91 8,88 7,67 8,84 7,49 8,81 7,34 8,78 7,3 8,76 7,13 4 6,94 18,00 6,59 16,69 6,39 15,98 6,6 15,5 6,16 15,1 6,09 14,98 6,04 14,80 6,00 14,66 5,96 14,54 5,93 14,45 5 5,79 13,7 5,41 1,06 5,19 11,39 5,05 10,97 4,95 10,67 4,88 10,45 4,8 10,7 4,78 10,15 4,74 10,05 4,70 9,96 6 5,14 10,9 4,76 9,78 4,53 9,15 4,39 8,57 4,8 8,47 4,1 8,6 4,15 8,10 4,10 7,98 4,06 7,87 4,03 7,79 7 4,74 9,55 4,35 8,45 4,1 7,85 3,97 7,46 3,87 7,19 3,79 7,00 3,73 6,84 3,68 6,71 3,63 6,6 3,60 6,54 8 4,46 8,65 4,07 7,59 3,84 7,01 3,69 6,63 3,58 6,37 3,50 6,19 3,44 6,03 3,39 5,91 3,34 5,8 3,31 5,74 9 4,6 8,0 3,86 6,99 3,63 6,4 3,48 6,06 3,37 5,80 3,9 5,6 3,3 5,47 3,18 5,35 3,13 5,6 3,10 5, ,10 3,71 3,48 3,33 3, 3,14 3,07 3,0,97,94 7, ,98 7,0 6,55 3,59 6, 5,99 3,36 5,67 5,64 3,0 5,3 5,39 3,09 5,07 5,1 3,01 4,88 5,06,95 4,74 4,95,90 4,63 4,85,86 4,54 4,78,8 4,46 α = 0,05 α = 0,01 Z tablicy rozkładu F-Snedecora odczytano wartość F kr dla danego poziomu istotności i odpowiednich liczb stopni swobody. F kr (α=0,05; f 1 =f =6)= F =, ,8 Ponieważ F<F kr zatem wynika stąd wniosek, że uzyskane wartości odchylenia standardowego nie różnią się między sobą w sposób statystycznie istotny (porównywane metody nie różnią się pod względem precyzji).

41 test F max Hartleya 41 Sposób postępowania: obliczyć wartości odchylenia standardowego dla poszczególnych serii wyników uzyskanych poddawanymi ocenie metodami znaleźć wśród nich wartość minimalną s min i maksymalną s max ; obliczyć wartość parametru testu F max wg wzoru: F = max s s max min porównać wartość F max z wartością krytyczną F max o (z tablic rozkładu F max o )

42 test F max Hartleya 4 Oznaczano zawartość HCl trzema metodami: kulometryczną, konduktometryczną i miareczkowania alkacymetrycznego. Sprawdzić, czy obliczone wartości odchylenia standardowego dla uzyskanych tymi metodami serii pomiarowych różnią się między sobą w sposób statystycznie istotny. Uzyskane wyniki [mol/dm 3 ]: kulometria konduktometria alkacymetria 0,0095 0,0103 0,011 0,0098 0,0110 0,0103 0,0097 0,011 0,010 0,0093 0,0108 0,0095 0,0097 0,0106 0,009 0,0096 0,0104 0,0093 0,0099 0,0109 0,0098

43 test F max Hartleya 43 Obliczone wartości: kulometria konduktometria alkacymetria n = 7 n =7 n =7 s = 0,0000 mol/dm 3 s = 0,00033 mol/dm 3 s = 0,00106 mol/dm 3 s min s max F max max = min = s s 8,1

44 test F max Hartleya 44 Wartości krytyczne F max o dla α = 0,05 f k ,0 87, ,4 7,8 39, 50,7 6,0 7,9 83,5 93, ,60 15,5 0,6 5, 9,5 33,6 37,5 41,1 44,6 48,0 5 7,15 10,8 13,7 16,3 18,7 0,8,9 4,7 6,5 8, 6 5,8 8,38 10,4 1,1 13,7 15,0 16,3 17,5 18,6 19,7 7 4,99 6,94 8,44 9,70 10,8 11,8 1,7 13,5 14,3 15,1 8 4,43 6,00 7,18 8,1 9,03 9,78 10,5 11,1 11,7 1, 9 4,03 5,34 6,31 7,11 7,80 8,41 8,95 9,45 9,91 10,3 10 3,7 4,85 5,67 6,34 6,9 7,4 7,87 8,9 8,66 9,01 15,86 3,54 4,01 4,37 4,68 4,95 5,19 5,40 5,59 5,77 0,46,95 3,9 3,54 3,76 3,94 4,10 4,4 4,37 4,49 30,07,40,61,78,91 3,0 3,1 3,1 3,9 3, ,67 1,85 1,96,04,11,17,,6,30,33 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 Z tablicy rozkładu F max odczytano wartość F max o dla danego poziomu istotności (α), ilości porównywanych wartości odchylenia standardowego (k) i odpowiednich liczb stopni swobody (f ). GBC Rodzinnie, Zakopane, F max o (α=0,05; k = 3; f =6)= 8,38 F max = 8,1 Ponieważ F max > F max o zatem wynika stąd wniosek, że uzyskane wartości odchylenia standardowego różnią się między sobą w sposób statystycznie istotny (porównywane metody różnią się pod względem precyzji).

45 Przykład 45 Oznaczano zawartość siarczanów w wodzie techniką nefelometryczną. Oznaczeń dokonano w 5 próbkach (5 serii) o różnej zawartości siarczanów wykonując po 7 oznaczeń w serii. Obliczyć odchylenie standardowe metody. Uzyskane wyniki zestawiono poniżej (wszystkie dane w mg/dm 3 ): Pomiar Seria 1 Seria Seria 3 Seria 4 Seria 5 1 1,6 8,31 31,5 15,1 6,1 1,4 8,45 31,8 15,8 6,8 3 1,8 8,70 31,9 15,6 7,3 4 1,4 8,11 3,1 15,0 8,1 5 1,0 8,5 33,4 14,7 7,8 6 1,9 8,10 33,3 15,9 6,3 7 11,8 8,78 31, 14,6 7,0 x śr 1,4 8,39 3, 15, 7,1 s 0,40 0,7 0,86 0,53 0,74 CV [%] 3,4 3,3,66 3,45,7

46 Ponieważ zbiory są równoliczne, w celu sprawdzenia jednorodności wariancji (warunek konieczny przy wyznaczaniu odchylenia standardowego metody) zastosowano test F max Hartleya. W tym celu obliczono wartość wyrażenia: max W tym przypadku gdy poziomy zawartości są różne operujemy CV zamiast s: F = max CV max = CV min = stąd: CV CV 3,45,66 F max = 1,68 max min F = max Pomiar Seria 1 Seria Seria 3 Seria 4 Seria 5 1 1,6 8,31 31,5 15,1 6,1 1,4 8,45 31,8 15,8 6,8 3 1,8 8,70 31,9 15,6 7,3 4 1,4 8,11 3,1 15,0 8,1 5 1,0 8,5 33,4 14,7 7,8 6 1,9 8,10 33,3 15,9 6,3 7 11,8 8,78 31, 14,6 7,0 min x śr 1,4 8,39 3, 15, 7,1 s 0,40 0,7 0,86 0,53 0,74 CV [%] 3,4 3,3,66 3,45,7 s s 46

47 Wartości krytyczne F max o dla α = 0,05 f k ,0 87, ,4 7,8 39, 50,7 6,0 7,9 83,5 93, ,60 15,5 0,6 5, 9,5 33,6 37,5 41,1 44,6 48,0 5 7,15 10,8 13,7 16,3 18,7 0,8,9 4,7 6,5 8, 6 5,8 8,38 10,4 1,1 13,7 15,0 16,3 17,5 18,6 19,7 7 4,99 6,94 8,44 9,70 10,8 11,8 1,7 13,5 14,3 15,1 8 4,43 6,00 7,18 8,1 9,03 9,78 10,5 11,1 11,7 1, 9 4,03 5,34 6,31 7,11 7,80 8,41 8,95 9,45 9,91 10,3 10 3,7 4,85 5,67 6,34 6,9 7,4 7,87 8,9 8,66 9,01 15,86 3,54 4,01 4,37 4,68 4,95 5,19 5,40 5,59 5,77 0,46,95 3,9 3,54 3,76 3,94 4,10 4,4 4,37 4,49 30,07,40,61,78,91 3,0 3,1 3,1 3,9 3, ,67 1,85 1,96,04,11,17,,6,30,33 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 F max o (α=0,05; k = 5; f =6)= 1,1 F max =1,68 47 Z tablicy rozkładu F max odczytano wartość F max o dla danego poziomu istotności (α), ilości porównywanych wartości odchylenia standardowego (k) i odpowiednich liczb stopni swobody (f ). Ponieważ F max <F maxo zatem wynika stąd wniosek, że uzyskane wartości odchylenia standardowego nie różnią się między sobą w sposób statystycznie istotny.

48 Obliczono odchylenie standardowe metody: 48 dla równolicznych serii skorzystano z zależności: CV stąd po podstawieniu danych: 1 k = g CV i k i = 1 CV g =3,10% Można także policzyć średnią z wartości CV (tylko gdy wartości odchyleń standardowych nie różnią się w sposób statystycznie istotny): CV g =3,06%

49 49 Obliczanie powtarzalności procedury Oznaczano zawartość jonów chlorkowych (Cl - ) w próbkach wody morskiej z wykorzystaniem techniki potencjometrycznej z zastosowaniem chlorkowej elektrody jonoselektywnej. W celu wyznaczenia powtarzalności zastosowanej procedury analitycznej przeprowadzono pomiary zawartości jonów Cl - dla próbek roztworu modelowego. Badania przeprowadzono w 7 seriach po 7 pomiarów w serii.

50 Wyniki pomiarów jak i obliczone wartości średnie dla każdej serii, wartości odchylenia standardowego oraz wartości współczynnika zmienności zestawiono w tabeli: 50 F = max F max = 3,3 CV CV max min zawartość jonów chlorkowych [mg Cl - /dm 3 ] seria 1 seria seria 3 seria 4 seria 5 seria 6 seria , 99,8 103,1 103,8 104,8 103,0 100,4 10,3 101,6 10,9 106, 106,4 105,4 99, ,1 100,9 10,3 105, 105, 103,7 100, 4 104, 98,3 104,4 100,8 105, 104,8 101, , 101,1 106,0 10,8 103,4 100,8 100,8 6 10,8 103,3 10,9 103, 104,6 104,1 98, , 100,8 103,1 104,6 106,0 10, 98,6 średnia 104,1 100,8 103,5 103,8 105,1 103,4 100,0 odchylenie standardowe 1,65 1,54 1,6 1,77 0,98 1,58 1,00 CV RSD 1,59% 1,53% 1,% 1,70% 0,93% 1,5% 1,00%

51 Wartości krytyczne F max o dla α = 0,05 f k ,0 87, ,4 7,8 39, 50,7 6,0 7,9 83,5 93, ,60 15,5 0,6 5, 9,5 33,6 37,5 41,1 44,6 48,0 5 7,15 10,8 13,7 16,3 18,7 0,8,9 4,7 6,5 8, 6 5,8 8,38 10,4 1,1 13,7 15,0 16,3 17,5 18,6 19,7 7 4,99 6,94 8,44 9,70 10,8 11,8 1,7 13,5 14,3 15,1 8 4,43 6,00 7,18 8,1 9,03 9,78 10,5 11,1 11,7 1, 9 4,03 5,34 6,31 7,11 7,80 8,41 8,95 9,45 9,91 10,3 10 3,7 4,85 5,67 6,34 6,9 7,4 7,87 8,9 8,66 9,01 15,86 3,54 4,01 4,37 4,68 4,95 5,19 5,40 5,59 5,77 0,46,95 3,9 3,54 3,76 3,94 4,10 4,4 4,37 4,49 30,07,40,61,78,91 3,0 3,1 3,1 3,9 3, ,67 1,85 1,96,04,11,17,,6,30,33 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 F max o (α=0,05; k = 7; f =6)= 15,0 F max =3,3 51 Z tablicy rozkładu F max odczytano wartość F max o dla danego poziomu istotności (α), ilości porównywanych wartości odchylenia standardowego (k) i odpowiednich liczb stopni swobody (f ). Ponieważ F max < F maxo zatem wynika stąd wniosek, że uzyskane wartości odchylenia standardowego nie różnią się między sobą w sposób statystycznie istotny. Można policzyć wartość średnią

52 5 Wartość powtarzalności obliczono jako średnią arytmetyczną z obliczonych wartości współczynnika zmienności dla każdej z 7 serii. Wyniosła ona w tym przypadku: CV = 1,35 %

53 53 Obliczanie precyzji pośredniej Na podstawie wyników badań opisanych w poprzednim przykładzie wyznaczono dodatkowo wartość precyzji pośredniej. W tym celu obliczono wartość średnią i wartość odchylenia standardowego dla wszystkich 49 wyników - (7 serii po 7 wyników w serii) pomiarów. Otrzymano następujące wartości: średnia: 103 mg Cl - /dm 3 odchylenie standardowe:,19 mg Cl - /dm 3

54 54 Z kolei wartość precyzji pośredniej wyznaczono jako współczynnik zmienności: CV =,1% Jest rzeczą zrozumiałą, że wartość precyzji pośredniej przewyższa wartość powtarzalności, gdyż na jej wartość ma wpływ znacznie większa liczba zmiennych (np.: czas pomiarów).

55 55

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA narzędzie do opracowywania i interpretacji wyników pomiarów

STATYSTYKA MATEMATYCZNA narzędzie do opracowywania i interpretacji wyników pomiarów STATYSTYKA MATEMATYCZNA narzędzie do opracowywania i interpretacji wyników pomiarów Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Statystyka matematyczna - część matematyki

Bardziej szczegółowo

Wprowadzenie 2010-10-20

Wprowadzenie 2010-10-20 PODSTAWY STATYSTYKI Dr hab. inż. Piotr Konieczka piotr.konieczka@pg.gda.pl 1 Wprowadzenie Wynik analityczny to efekt przeprowadzonego pomiaru(ów). Pomiar to zatem narzędzie wykorzystywane w celu uzyskania

Bardziej szczegółowo

JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE

JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE 1 Granica wykrywalności i granica oznaczalności Dr inż. Piotr KONIECZKA Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska ul. G. Narutowicza 11/12

Bardziej szczegółowo

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem. Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej

Bardziej szczegółowo

Walidacja metod analitycznych Raport z walidacji

Walidacja metod analitycznych Raport z walidacji Walidacja metod analitycznych Raport z walidacji Małgorzata Jakubowska Katedra Chemii Analitycznej WIMiC AGH Walidacja metod analitycznych (według ISO) to proces ustalania parametrów charakteryzujących

Bardziej szczegółowo

JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE

JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE 1 Przykład walidacji procedury analitycznej Piotr KONIECZKA Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska ul. G. Narutowicza 11/1 80-33 GDAŃSK

Bardziej szczegółowo

Ana n l a i l za z a i ns n tru r men e t n al a n l a

Ana n l a i l za z a i ns n tru r men e t n al a n l a Analiza instrumentalna rok akademicki 2014/2015 wykład: prof. dr hab. Ewa Bulska prof. dr hab. Agata Michalska Maksymiuk pracownia: dr Marcin Wojciechowski Slide 1 Analiza_Instrumentalna: 2014/2015 Analiza

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Szkoła Letnia STC Łódź mgr inż. Paulina Mikoś

Szkoła Letnia STC Łódź mgr inż. Paulina Mikoś 1 mgr inż. Paulina Mikoś Pomiar powinien dostarczyć miarodajnych informacji na temat badanego materiału, zarówno ilościowych jak i jakościowych. 2 Dzięki temu otrzymane wyniki mogą być wykorzystane do

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących

Bardziej szczegółowo

SYSTEM KONTROLI I ZAPEWNIENIA JAKOŚCI WYNIKÓW BADAŃ W LABORATORIUM. Piotr Konieczka

SYSTEM KONTROLI I ZAPEWNIENIA JAKOŚCI WYNIKÓW BADAŃ W LABORATORIUM. Piotr Konieczka SYSTEM KONTROLI I ZAPEWNIENIA JAKOŚCI WYNIKÓW BADAŃ W LABORATORIUM Piotr Konieczka 1 2 Jakość spełnienie określonych i oczekiwanych wymagań (zawartych w odpowiedniej normie systemu zapewnienia jakości).

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

NARZĘDZIA DO KONTROLI I ZAPEWNIENIA JAKOŚCI WYNIKÓW ANALITYCZNYCH. Piotr KONIECZKA

NARZĘDZIA DO KONTROLI I ZAPEWNIENIA JAKOŚCI WYNIKÓW ANALITYCZNYCH. Piotr KONIECZKA 1 NARZĘDZIA DO KONTROLI I ZAPEWNIENIA JAKOŚCI WYNIKÓW ANALITYCZNYCH Piotr KONIECZKA Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska ul. G. Narutowicza 11/12 80-952 GDAŃSK e-mail: kaczor@chem.pg.gda.pl

Bardziej szczegółowo

JAK WYZNACZYĆ PARAMETRY WALIDACYJNE W METODACH INSTRUMENTALNYCH

JAK WYZNACZYĆ PARAMETRY WALIDACYJNE W METODACH INSTRUMENTALNYCH JAK WYZNACZYĆ PARAMETRY WALIDACYJNE W METODACH INSTRUMENTALNYCH dr inż. Agnieszka Wiśniewska EKOLAB Sp. z o.o. agnieszka.wisniewska@ekolab.pl DZIAŁALNOŚĆ EKOLAB SP. Z O.O. Akredytowane laboratorium badawcze

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Metrologia: powtarzalność i odtwarzalność pomiarów. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: powtarzalność i odtwarzalność pomiarów. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: powtarzalność i odtwarzalność pomiarów dr inż. Paweł Zalewski Akademia Morska w Szczecinie Definicje: Pojęciami związanymi z metodami diagnozowania procesów i oceny ich bezpieczeństwa oraz

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 Inne układy doświadczalne 1) Układ losowanych bloków Stosujemy, gdy podejrzewamy, że może występować systematyczna zmienność między powtórzeniami np. - zmienność

Bardziej szczegółowo

Walidacja metod analitycznych

Walidacja metod analitycznych Kierunki rozwoju chemii analitycznej Walidacja metod analitycznych Raport z walidacji Małgorzata Jakubowska Katedra Chemii Analitycznej WIMiC AGH oznaczanie coraz niŝszych w próbkach o złoŝonej matrycy

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

KALIBRACJA BEZ TAJEMNIC

KALIBRACJA BEZ TAJEMNIC KALIBRACJA BEZ TAJEMNIC 1 Piotr KONIECZKA Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska e-mail: piotr.konieczka@pg.gda.pl 2 S w S x C x -? C w 3 Sygnał wyjściowy detektora funkcja

Bardziej szczegółowo

Wyniki operacji kalibracji są często wyrażane w postaci współczynnika kalibracji (calibration factor) lub też krzywej kalibracji.

Wyniki operacji kalibracji są często wyrażane w postaci współczynnika kalibracji (calibration factor) lub też krzywej kalibracji. Substancja odniesienia (Reference material - RM) Materiał lub substancja której jedna lub więcej charakterystycznych wartości są wystarczająco homogeniczne i ustalone żeby można je było wykorzystać do

Bardziej szczegółowo

Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich

Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Zmienne muszą być zmiennymi ilościowym (liczymy i porównujemy średnie!) Są to testy parametryczne Nazwa

Bardziej szczegółowo

Zasady wykonania walidacji metody analitycznej

Zasady wykonania walidacji metody analitycznej Zasady wykonania walidacji metody analitycznej Walidacja metod badań zasady postępowania w LOTOS Lab 1. Metody badań stosowane w LOTOS Lab należą do następujących grup: 1.1. Metody zgodne z uznanymi normami

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

Zastosowanie materiałów odniesienia

Zastosowanie materiałów odniesienia STOSOWANIE MATERIAŁÓW ODNIESIENIA W PRAKTYCE LABORATORYJNEJ 1 Piotr KONIECZKA Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska ul. G. Narutowicza 11/1 80-33 GDAŃSK e-mail:piotr.konieczka@pg.gda.pl

Bardziej szczegółowo

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde

Bardziej szczegółowo

KALIBRACJA. ważny etap procedury analitycznej. Dr hab. inż. Piotr KONIECZKA

KALIBRACJA. ważny etap procedury analitycznej. Dr hab. inż. Piotr KONIECZKA KALIBRAJA ważny etap procedury analitycznej 1 Dr hab. inż. Piotr KONIEZKA Katedra hemii Analitycznej Wydział hemiczny Politechnika Gdańska ul. G. Narutowicza 11/12 8-233 GDAŃK e-mail: piotr.konieczka@pg.gda.pl

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania analizy wariancji w opracowywaniu wyników badań empirycznych Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki -

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

MATERIAŁY ODNIESIENIA - kryteria wyboru i zasady stosowania

MATERIAŁY ODNIESIENIA - kryteria wyboru i zasady stosowania 1 MATERIAŁY ODNIESIENIA - kryteria wyboru i zasady stosowania Dr inż. Piotr KONIECZKA Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska ul. G. Narutowicza 11/12 80-952 GDAŃSK e-mail: kaczor@chem.gda.pl

Bardziej szczegółowo

Metrologia: definicje i pojęcia podstawowe. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: definicje i pojęcia podstawowe. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: definicje i pojęcia podstawowe dr inż. Paweł Zalewski Akademia Morska w Szczecinie Pojęcia podstawowe: Metrologia jest nauką zajmująca się sposobami dokonywania pomiarów oraz zasadami interpretacji

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k: Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,

Bardziej szczegółowo

Ćwiczenie: Weryfikacja hipotez statystycznych dla jednej i dwóch średnich.

Ćwiczenie: Weryfikacja hipotez statystycznych dla jednej i dwóch średnich. Ćwiczenie: Weryfikacja hipotez statystycznych dla jednej i dwóch średnich. EXCEL Do weryfikacji różnic między dwiema grupami jednostek doświadczalnych w Excelu wykorzystujemy funkcję o nazwie T.TEST. Zastosowana

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

WYKŁAD 5 TEORIA ESTYMACJI II

WYKŁAD 5 TEORIA ESTYMACJI II WYKŁAD 5 TEORIA ESTYMACJI II Teoria estymacji (wyznaczanie przedziałów ufności, błąd badania statystycznego, poziom ufności, minimalna liczba pomiarów). PRÓBA Próba powinna być reprezentacyjna tj. jak

Bardziej szczegółowo

Walidacja metody analitycznej podejście metrologiczne. Waldemar Korol Instytut Zootechniki-PIB, Krajowe Laboratorium Pasz w Lublinie

Walidacja metody analitycznej podejście metrologiczne. Waldemar Korol Instytut Zootechniki-PIB, Krajowe Laboratorium Pasz w Lublinie Walidacja metody analitycznej podejście metrologiczne Waldemar Korol Instytut Zootechniki-PIB, Krajowe Laboratorium Pasz w Lublinie Walidacja potwierdzenie parametrów metody do zamierzonego jej zastosowania

Bardziej szczegółowo

Wydział Matematyki. Testy zgodności. Wykład 03

Wydział Matematyki. Testy zgodności. Wykład 03 Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin. Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw

Bardziej szczegółowo

Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów.

Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów. Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów.. KEITHLEY. Practical Solutions for Accurate. Test & Measurement. Training materials, www.keithley.com;. Janusz Piotrowski: Procedury

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

Analizy wariancji ANOVA (analysis of variance)

Analizy wariancji ANOVA (analysis of variance) ANOVA Analizy wariancji ANOVA (analysis of variance) jest to metoda równoczesnego badania istotności różnic między wieloma średnimi z prób pochodzących z wielu populacji (grup). Model jednoczynnikowy analiza

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Ćwiczenie 7. Walidacja metody redoksymetrycznego oznaczania kwasu askorbowego w suplementach diety i w moczu osób suplementowanych witaminą C

Ćwiczenie 7. Walidacja metody redoksymetrycznego oznaczania kwasu askorbowego w suplementach diety i w moczu osób suplementowanych witaminą C Ćwiczenie 7 Walidacja metody redoksymetrycznego oznaczania kwasu askorbowego w suplementach diety i w moczu osób suplementowanych witaminą C Literatura 1. Bulska E. Metrologia chemiczna, sztuka prowadzenia

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Testowanie hipotez statystycznych cd.

Testowanie hipotez statystycznych cd. Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:

Bardziej szczegółowo

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28 Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

, a ilość poziomów czynnika A., b ilość poziomów czynnika B. gdzie

, a ilość poziomów czynnika A., b ilość poziomów czynnika B. gdzie Test Scheffego, gdzie (1) n to ilość powtórzeń (pomiarów) w jednej grupie (zabiegu) Test NIR Istnieje wiele testów dla porównań wielokrotnych opartych o najmniejszą istotna różnicę między średnimi (NIR).

Bardziej szczegółowo

Porównanie wielu rozkładów normalnych

Porównanie wielu rozkładów normalnych Porównanie wielu rozkładów normalnych Założenia:. X i N(µ i, σi 2 ), i =,..., k 2. X,..., X k są niezależne Czy µ = = µ k? Czy σ 2 = = σ 2 k? Próby: X i,..., X ini, i =,..., k X i, varx i, s 2 i = varx

Bardziej szczegółowo

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH Co to są hipotezy statystyczne? Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej. Dzielimy je

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

Elementy statystyki STA - Wykład 5

Elementy statystyki STA - Wykład 5 STA - Wykład 5 Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 ANOVA 2 Model jednoczynnikowej analizy wariancji Na model jednoczynnikowej analizy wariancji możemy traktować jako uogólnienie

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

Statystyczne metody analizy danych

Statystyczne metody analizy danych Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezińska Definicje Statystyka (ang.statistics) - to nauka zajmująca się zbieraniem, prezentowaniem i analizowaniem

Bardziej szczegółowo

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd.

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. WYKŁAD 9 TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. Było: Przykład 1. Badano krąŝek o wymiarach zbliŝonych do monety jednozłotowej ze stronami oznaczonymi: A, B. NaleŜy ustalić, czy krąŝek jest symetryczny?

Bardziej szczegółowo

Sterowanie jakością badań i analiza statystyczna w laboratorium

Sterowanie jakością badań i analiza statystyczna w laboratorium Sterowanie jakością badań i analiza statystyczna w laboratorium CS-17 SJ CS-17 SJ to program wspomagający sterowanie jakością badań i walidację metod badawczych. Może działać niezależnie od innych składników

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich

Bardziej szczegółowo

I. METODY POBIERANIA PRÓBEK DO CELÓW URZĘDOWEJ KONTROLI ZAWARTOŚCI CYNY W ŚRODKACH SPOŻYWCZYCH W OPAKOWANIACH METALOWYCH

I. METODY POBIERANIA PRÓBEK DO CELÓW URZĘDOWEJ KONTROLI ZAWARTOŚCI CYNY W ŚRODKACH SPOŻYWCZYCH W OPAKOWANIACH METALOWYCH ZAŁĄCZNIK Nr 5 METODY POBIERANIA PRÓBEK DO CELÓW URZĘDOWEJ KONTROLI ZAWARTOŚCI CYNY W ŚRODKACH SPOŻYWCZYCH W OPAKOWANIACH METALOWYCH ORAZ PRZYGOTOWYWANIE PRÓBEK I KRYTERIA WYBORU METOD ANALITYCZNYCH STOSOWANYCH

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych

Bardziej szczegółowo

Oznaczanie polaryzacji w produktach cukrowniczych metodą w bliskiej podczerwieni (NIR)

Oznaczanie polaryzacji w produktach cukrowniczych metodą w bliskiej podczerwieni (NIR) Oznaczanie polaryzacji w produktach cukrowniczych metodą w bliskiej podczerwieni (NIR) 1 Dr inż. Krystyna Lisik Mgr inż. Paulina Bąk WSTĘP 1. Polarymetryczne oznaczanie sacharozy 2. Klasyczne odczynniki

Bardziej szczegółowo

Walidacja metod wykrywania, identyfikacji i ilościowego oznaczania GMO. Magdalena Żurawska-Zajfert Laboratorium Kontroli GMO IHAR-PIB

Walidacja metod wykrywania, identyfikacji i ilościowego oznaczania GMO. Magdalena Żurawska-Zajfert Laboratorium Kontroli GMO IHAR-PIB Walidacja metod wykrywania, identyfikacji i ilościowego oznaczania GMO Magdalena Żurawska-Zajfert Laboratorium Kontroli GMO IHAR-PIB Walidacja Walidacja jest potwierdzeniem przez zbadanie i przedstawienie

Bardziej szczegółowo

KARTA PRZEDMIOTU. I stopień, stacjonarna Obowiązkowy TAK. Ćwiczenia Laboratoriu m. egzamin / zaliczenie na ocenę* 0.5 1

KARTA PRZEDMIOTU. I stopień, stacjonarna Obowiązkowy TAK. Ćwiczenia Laboratoriu m. egzamin / zaliczenie na ocenę* 0.5 1 Politechnika Wrocławska WYDZIAŁ CHEMICZNY KARTA PRZEDMIOTU Nazwa w języku polskim Nazwa w języku angielskim Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów i forma: Rodzaj

Bardziej szczegółowo

Kryteria wyboru i oceny metod badawczych

Kryteria wyboru i oceny metod badawczych Kryteria wyboru i oceny metod badawczych Mariusz B. Bogacki 10.10.2008 Politechnika Poznańska, Instytut Technologii i Inżynierii Chemicznej, Zakład Inżynierii Procesowej. Błędy pomiarowe Błąd pomiaru oznacza

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Podstawy Metrologii i Technik Eksperymentu Laboratorium Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Instrukcja do ćwiczenia nr 4 Zakład Miernictwa

Bardziej szczegółowo

Autor: Dariusz Piwczyński 1 Ćwiczenie: Doświadczenia 2-grupowe w układzie niezależnym i zależnym.

Autor: Dariusz Piwczyński 1 Ćwiczenie: Doświadczenia 2-grupowe w układzie niezależnym i zależnym. Autor: Dariusz Piwczyński 1 Ćwiczenie: Doświadczenia 2-grupowe w układzie niezależnym i zależnym. Zadania: Arkusz kalkulacyjny Excel Do weryfikacji różnic między dwiema grupami obiektów w Excelu wykorzystujemy

Bardziej szczegółowo

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Potencjometryczna metoda oznaczania chlorków w wodach i ściekach z zastosowaniem elektrody jonoselektywnej

Potencjometryczna metoda oznaczania chlorków w wodach i ściekach z zastosowaniem elektrody jonoselektywnej Potencjometryczna metoda oznaczania chlorków w wodach i ściekach z zastosowaniem elektrody jonoselektywnej opracowanie: dr Jadwiga Zawada Cel ćwiczenia: poznanie podstaw teoretycznych i praktycznych metody

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

Opisowa analiza struktury zjawisk statystycznych

Opisowa analiza struktury zjawisk statystycznych Statystyka Opisowa z Demografią oraz Biostatystyka Opisowa analiza struktury zjawisk statystycznych Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

Analiza wariancji (ANalysis Of Variance - ANOVA)

Analiza wariancji (ANalysis Of Variance - ANOVA) Analiza wariancji (ANalysis Of Variance - ANOVA) W poprzednim rozdziale przedstawiono sposób porównywania dwóch wartości średnich. Często jednak zachodzi potrzeba porównywania większej liczby średnich

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności

Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności Statystyka indukcyjna pozwala kontrolować i oszacować ryzyko popełnienia błędu statystycznego

Bardziej szczegółowo

Estymacja parametrów rozkładu cechy

Estymacja parametrów rozkładu cechy Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

Analiza wariancji i kowariancji

Analiza wariancji i kowariancji Analiza wariancji i kowariancji Historia Analiza wariancji jest metodą zaproponowaną przez Ronalda A. Fishera. Po zakończeniu pierwszej wojny światowej był on pracownikiem laboratorium statystycznego w

Bardziej szczegółowo

Opracowanie wyników porównania międzylaboratoryjnego w zakresie emisji zanieczyszczeń gazowo-pyłowych SUWAŁKI 2008

Opracowanie wyników porównania międzylaboratoryjnego w zakresie emisji zanieczyszczeń gazowo-pyłowych SUWAŁKI 2008 Opracowanie wyników porównania międzyoratoryjnego w zakresie emisji zanieczyszczeń gazowo-pyłowych SUWAŁKI 2008 Wstęp W dniach 16.06.2008 17.06.2008 roku przeprowadzone zostało porównanie międzyoratoryjne

Bardziej szczegółowo

WYBRANE TECHNIKI ELEKTROANALITYCZNE

WYBRANE TECHNIKI ELEKTROANALITYCZNE WYBRANE TECHNIKI ELEKTROANALITYCZNE seminarium dr inż. Piotr Konieczka, mgr inż. Agnieszka Kuczyńska Katedra Chemii Analitycznej, Wydział Chemiczny, Politechnika Gdańska Techniki elektroanalityczne: 1.pomiar

Bardziej szczegółowo

Ćwiczenie 10 Walidacja miareczkowej metody oznaczania kwasu askorbowego W preparatach farmaceutycznych

Ćwiczenie 10 Walidacja miareczkowej metody oznaczania kwasu askorbowego W preparatach farmaceutycznych Ćwiczenie 10 Walidacja miareczkowej metody oznaczania kwasu askorbowego W preparatach farmaceutycznych Literatura: 1. Bulska E. Metrologia chemiczna, sztuka prowadzenia pomiarów. Malamut, Warszawa 2008,

Bardziej szczegółowo

Charakterystyka mierników do badania oświetlenia Obiektywne badania warunków oświetlenia opierają się na wynikach pomiarów parametrów świetlnych. Podobnie jak każdy pomiar, również te pomiary, obarczone

Bardziej szczegółowo

Statystyka opisowa. Wykład VI. Analiza danych jakośiowych

Statystyka opisowa. Wykład VI. Analiza danych jakośiowych Statystyka opisowa. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści Rangowanie 1 Rangowanie 3 Rangowanie Badaniu statystycznemu czasami podlegają cechy niemierzalne jakościowe), np. kolor włosów, stopień

Bardziej szczegółowo

ZASTOSOWANIE CERTYFIKOWANYCH MATERIAŁÓW ODNIESIENIA NIEZBĘDNY WARUNEK UZYSKANIA MIARODAJNOŚCI POMIARÓW. Piotr KONIECZKA

ZASTOSOWANIE CERTYFIKOWANYCH MATERIAŁÓW ODNIESIENIA NIEZBĘDNY WARUNEK UZYSKANIA MIARODAJNOŚCI POMIARÓW. Piotr KONIECZKA ZASTOSOWANIE CERTYFIKOWANYCH MATERIAŁÓW ODNIESIENIA NIEZBĘDNY WARUNEK UZYSKANIA MIARODAJNOŚCI POMIARÓW 1 Piotr KONIECZKA Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska ul. G. Narutowicza

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka TesttStudenta Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo